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ABSTRACT

Diffusion models have shown impressive sample generation capabilities across
various domains. However, current methods are still lacking in human-
understandable explanations and interpretable control: (1) they do not provide a
probabilistic framework for systematic interpretation. For example, when tasked
with generating an image of a “Nighthawk”, they cannot quantify the probabil-
ity of specific concepts (e.g., “black bill” and “brown crown” usually seen in
Nighthawks) or verify whether the generated concepts align with the instruction.
This limits explanations of the generative process; (2) they do not naturally sup-
port control mechanisms based on concept probabilities, such as correcting errors
(e.g., correcting “black crown” to “brown crown” in a generated “Nighthawk”
image) or performing imputations using these concepts, therefore falling short
in interpretable editing capabilities. To address these limitations, we propose
Energy-based Conceptual Diffusion Models (ECDMs). ECDMs integrate dif-
fusion models and Concept Bottleneck Models (CBMs) within the framework
of Energy-Based Models to provide unified interpretations. Unlike conventional
CBMs, which are typically discriminative, our approach extends CBMs to the
generative process. ECDMs use a set of energy networks and pretrained diffu-
sion models to define the joint energy estimation of the input instructions, concept
vectors, and generated images. This unified framework enables concept-based
generation, interpretation, debugging, intervention, and imputation through con-
ditional probabilities derived from energy estimates. Our experiments on various
real-world datasets demonstrate that ECDMs offer both strong generative perfor-
mance and rich concept-based interpretability.

1 INTRODUCTION

Denoising diffusion probabilistic models are capable of generating high-quality images (Rombach
et al., 2022; Bluethgen et al., 2024), videos (Brooks et al., 2024), and structured data (Ingraham
et al., 2023) across various domains, such as artwork, medicine, and biology. However, existing dif-
fusion models typically fall short in human-understandable explanations and interpretable control
capabilities during the generation process. For instance, when the model is tasked with generat-
ing an image of a “Nighthawk”, a practitioner may be interested in determining whether the model
bases its generation on specific bird concepts (e.g., “black bill” and “brown crown” when generating
a “Nighthawk” image). Additionally, the practitioner would want the capability to correct potential
generation errors using these concepts (e.g., correcting “black crown” to “brown crown” in a gener-
ated “Nighthawk” image). Without these interpretation and correction capabilities, diffusion models
– no matter how high-resolution their generated images are – can hardly be considered trustworthy
or reliable by human standards.

Recent advances in interpretable diffusion models aim to address the problem by analyzing de-
composed features (Du et al., 2021; 2023; Liu et al., 2022; 2023) or fine-tuning additional model
components (Li et al., 2024a; Wang et al., 2023; Lyu et al., 2024; Luo et al., 2024; Li et al., 2024b;
Kumari et al., 2023; Feng et al., 2022; Gandikota et al., 2023). However, these methods still suffer
from the following key limitations:

1. Systematic Interpretation: They do not provide a probabilistic framework that facilitates sys-
tematic interpretation of the generation process. Consequently, it is still challenging to assess
how the human-intended visual concepts are inherently represented and incorporated in the text-
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to-image diffusion model’s generation process, and whether the interpreted concepts from the
generation process align with the intended concepts from the instruction.

2. Concept-Based Generation: They can only control the generation with a limited number of
concepts (e.g., interpolating between “hairy” and “hairless” or composing a small number of
visual components). As a result, they often struggle to generate images based on a broader set
of concepts. This restriction significantly narrows the concept-based control space available in
diffusion models, limiting their versatility in more complex generation tasks.

3. Intervention: Current methods often fail to correct generation errors based on concept-based
probabilistic explanations (e.g., correcting “black crown” to “brown crown”). Furthermore,
they cannot effectively intervene in the generation process by leveraging the interactions among
class-level instructions, concept-based explanations, and sampling intermediates.

To provide systematic concept-based explanations and control for diffusion models, we propose
Energy-based Conceptual Diffusion Models (ECDMs). ECDMs unify diffusion models and Con-
cept Bottleneck Models (CBMs) under the Energy-Based Models framework. In contrast to conven-
tional discriminative CBMs (“image” → “concepts” → “class label”), our ECDM enables concept-
level interpretations and control to generative tasks (“class label” → “concepts” → “image”).

Specifically, ECDMs use a set of networks and the pretrained diffusion model to quantify the en-
ergy between the class-level instruction y, concept-level explanation c, and the generated image x.
Within this unified framework, one can

(1) generate the image x with corresponding concept vectors c as interpretations, i.e., p(x, c|y),
(2) given an input instruction y and the generated image x, debug what concepts are generated

incorrectly by comparing the what concepts are generated (i.e., p(c|x)) and what concepts
should have been generated (i.e., p(c|y)),

(3) given an input instruction y, intervene the generation process of image x by replacing incor-
rect concepts with correct ones [ck]K−n

k=1 , i.e., p([ck]Kk=K−n+1,x|y, [ck]
K−n
k=1 ), and

(4) given an input instruction y and part of a generated image Ω(x), impute the remainder of the
image Ω̄(x) with the concept explanations, i.e., p(Ω̄(x), c|Ω(x),y).

Importantly, thanks to the unified energy-based framework, these conditional probabilities can be
naturally computed through composition of different energy functions. Our contributions are:

• We propose Energy-Based Conceptual Diffusion Models (ECDMs), a framework that unifies
the concept-based generation, conditional interpretation, concept debugging, intervention,
and imputation under the joint energy-based formulation.

• With ECDM’s unified framework, we develop a set of algorithms to compute different con-
ditional probabilities by composing corresponding energy functions.

• Empirical results on real-world datasets demonstrate ECDM’s state-of-the-art performance
in terms of image generation, imputation, and their conceptual interpretations.

2 RELATED WORKS

Energy-Based Modeling of Diffusion Models convert diffusion models into energy-based models
(EBMs) (Salimans & Ho, 2021) or model EBMs using diffusion model-based formulations to facil-
itate training and sampling on high-dimensional datasets (Gao et al., 2021; Zhu et al., 2024). In (Liu
et al., 2022), the generation process of the diffusion model can be decomposed into a linear combi-
nation of individual factors (Du et al., 2021), each represented by a different EBM. COMET and its
extension (Du et al., 2021; Su et al., 2024) trained energy functions by recomposing input images
to discover global concepts and scene objects. Furthermore, Liu et al. (2023) integrated EBM-based
concept discovery and compositional processes into text-to-image diffusion models, while Du et al.
(2023) improved the sampling strategy and proposed a new parameterization scheme for composi-
tional operators and samplers in energy-based diffusion models. Xie et al. (2016); Du & Mordatch
(2019) also used EBM formulation as compositions in a broarder context. We note several key dif-
ferences between these methods and our ECDM. (1) The number of supported concepts is fixed and
limited (e.g., only 6 concepts (Su et al., 2024), compared to 112 concepts in our ECDM), and hence
not sufficiently informative as interpretations. (2) More importantly, these works aim to composi-
tional generation with deterministic concepts, therefore fail to provide probabilistic interpretation,
which is the focus of our ECDM. Therefore these methods are not applicable for our setting (see
Appendix E.1 for more details).
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In contrast, our ECDMs explicitly consider human-understandable probabilistic concept explana-
tions in its design by jointly modeling the input instruction y, associated concepts c, and the gener-
ated image x during the generation process within a unified energy-based framework.

Concept Bottleneck Models (CBMs) (Kumar et al., 2009; Koh et al., 2020) first predict a set
of human-understandable concepts given an input, and then use the predicted concept vector to
infer the final model decisions. Built upon the original CBMs, Concept Embedding Models
(CEMs) (Zarlenga et al., 2022) encode each concept into a positive and a negative embedding,
which are activated accordingly based on the presence or absence of the corresponding concept.
Energy-based Concept Bottleneck Models (ECBMs) (Xu et al., 2024) formulate the CBMs under
the EBM framework, successfully improving both concept and class-label accuracy. However, these
CBMs are discriminative, focusing on predicting concepts and labels given an image; they cannot
generate images from labels or concepts and are therefore not applicable to our setting.

Interpretable Diffusion Models employ adaptors (Gandikota et al., 2023; Lyu et al., 2024) or addi-
tional learning procedures (Wang et al., 2023; Guo et al., 2023; Ismail et al., 2023; Luo et al., 2024;
Hudson et al., 2024) to discover interpretable generation directions towards certain concepts (e.g.,
face attributes) or objects. Among them, most related to our work are EGC (Guo et al., 2023) and
CBGM (Ismail et al., 2023). EGC (Guo et al., 2023) learns a diffusion model to perform both gener-
ation and classification via energy-based formulation, while CBGM (Ismail et al., 2023) integrates
a concept bottleneck in the diffusion model to enhance its interpretability. However, both methods
require training a new diffusion model from scratch and are therefore not applicable to our setting
(see Appendix E.1 for more details), which focuses on explaining and finetuning pretrained large
diffusion models.

3 ENERGY-BASED CONCEPTUAL DIFFUSION MODELS

In this section, we introduce the notation, problem settings, and then our proposed ECDM in detail.
Notation. We consider a class-level text-to-image generation setting, with M classes and K con-
cepts. Specifically, given a class-level label y (e.g., “Nighthawk”), a diffusion model will generate
a corresponding image x, with the generation process potentially interpreted by a set of concepts,
represented by a binary vector c ∈ C = {0, 1}K (e.g., “black bill” and “brown crown”). We denote
the k-th dimension of the concept vector c as ck. We denote the pretrained latent diffusion model as
ϵθ(·,xt, t), which is parameterized by θ; it takes the noisy latent xt at timestep t and the condition ·
as the input to predict the denoised latent xt−1. We use a pretrained text encoder F to extract (1) the
class embedding u from the given instruction (u = F (y)) and (2) the concept embedding v from
concepts (v = F (c)). Finally, the structured energy network Eψ(·, ·) parameterized by ψ, maps
(x, c) or (y, c) to real-valued scalar energy values.

Problem Settings. For each data point, we consider the following problem settings:

1. Concept-Based Generation (p(x, c|y)). This is the main task for a diffusion model. Given
the instruction y, the goal is to infer the concepts c and generate the image x. In ECDM, we
decompose p(x, c|y) into concept inference p(c|y) and image generation p(x|c).

2. Interpretation (p(c|x)). Interpret what concepts c are used when generating the image x.
3. Debugging (p(c|y) ?

= p(c|x)). Given the input y and the generated image x, debug what
concepts are generated incorrectly by comparing the what concepts are generated (i.e., p(c|x))
and what concepts should be generated (i.e., p(c|y)).

4. Intervention/Correction p([ck]
K
k=K−n+1,x|y, [ck]

K−n
k=1 ). Given the instruction y and the cor-

rected concepts [ck]K−n
k=1 , infer other concepts [ck]Kk=K−n+1 and generate the image x.

5. Imputation p(Ω̄(x), c|Ω(x),y). Given the instruction y and a partially masked image Ω(x),
where Ω(·) is a masking function and x = Ω(x) ∪ Ω̄(x), impute the masked pixels Ω̄(x) and
generate the associated concept interpretations c.

3.1 PRELIMINARIES

Conditional diffusion models aim to learn a data distribution p(x|y) by gradually removing noise
from a normally distributed variable. This process is equivalent to learning the reverse trajectory of
a fixed Markov chain of length T . These models can also be interpreted as a sequence of denoising

3
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Figure 1: Overview of our ECDM. (a) Training: During training, the model learns the positive
concept embedding v(+)

k , the negative concept embedding v(−)
k , and two sets of energy networks by

optimizing Eqn. 4. (b) Generation: During generation, ECDMs first infer an optimal concept vector
ĉ, which is the most compatible with the instruction y, by minimizing the mapping energy, then use
the inferred concept vector as the condition to minimize the concept energy by performing diffusion
sampling. (c) Interpretation: During interpretation, ECDMs first inverse a pivotal trajectory using
DDIM inversion given the generated image and corresponding instruction. Next, ECDMs update
the concept probability c̃ by minimizing the energy matching target (Eqn. 15).

networks ϵθ(y,xt, t), where t = 1, . . . , T . Each autoencoder is trained to predict a noise-free
variant of its noisy input xt. The corresponding objective can be simplified as follows:

LCDM = Ex,ϵ∼N (0,I),t[∥ϵ− ϵθ(y,xt, t)∥22], (1)

where t is uniformly sampled from {1, . . . , T}. Ho et al. (2020) show that minimizing Eqn. 1 is
equivalent to minimizing the variational bound on negative log likelihood of the data distribution:

E[− log pθ(x|y)] ≤ Ex,ϵ∼N (0,I),t[∥ϵ− ϵθ(y,xt, t)∥22] := LCDM (2)

After training, the diffusion model generates an image x0 by iterative denoising, starting from initial
noise xT ∼ N (0, I) and continuing the sampling steps as follows:

xt−1 = xt − γϵθ(y,xt, t) + η · ξ, ξ ∼ N (0, σ2
t I), (3)

where γ is the step size, and η is the randomness-controlling parameter in DDIM (Song et al.,
2020a). Song et al. (2020b) further show that the diffusion model trained by Eqn. 1 also models
the score of the given data distribution, i.e., ϵθ(y,xt, t) = ∇x log pθ(x|y)|x=xt . Note that one can
replace the input instruction y with a concept vector c to learn p(x|c) by training ϵθ(c,xt, t).

3.2 ENERGY-BASED CONCEPTUAL DIFFUSION MODELS

Overview. Our ECDM consists of two energy networks parameterized by ψ: (1) a concept energy
network Econcept

ψ (x, c), the gradient of which models the score of the concept-conditional data
distribution p(x|c) and has its minimum at the highest conditional log-likelihood and (2) a mapping
energy network Emap

ψ (y, c), which maps the class-level instruction y to the corresponding concept
vector c by measuring the compatibility between y and c. Both energy networks model the data
distribution using “unnormalized” probability densities. Our ECDM is trained by minimizing the
following loss function:

Ltotal(x, c,y) = Lconcept(x, c) + λmLmap(y, c), (4)

4
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where two terms Lconcept and Lmap denote the loss functions for the concept and mapping energy
networks Econcept

ψ (x, c) and Emap
ψ (y, c), respectively. λm is a balancing hyperparameter. Fig. 1

shows the overview of our ECDM. Below we provide rationale and details of the loss terms in detail.

Generative Concept Energy Network Econcept
ψ (x, c). Our concept energy network captures the

compatibility between the concepts c and the generated image x while enabling generative sam-
pling from the concept-conditional data distribution p(x|c). Notably, the gradient of the energy
Econcept
ψ (x, c) is proportional to the conditional data distribution pθ(x|c)’s score, which is the dif-

fusion model’s denoising step ϵθ(c,x, t). Formally we have:

∇xEconcept
ψ (x, c) ∝ ∇x log pθ(x|c) = ϵθ(c,x, t) (5)

This enables the implicit modeling of this energy network using diffusion models. In practice,
our concept energy network consists of an concept input network Dc(c) and a pretrained diffusion
network ϵθ(·,x, t), where we replace c in ϵθ(c,x, t) with Dc(c). Specifically,

Econcept
ψ (x, c) ≜ Ex,ϵ∼N (0,I),t[∥ϵ− ϵθ(Dc(c),xt, t)∥22], (6)

where the concept input network Dc(c) works as follows: Given a set of K concepts c, each concept
k ∈ {1, . . . ,K} is associated with a positive embedding v(+)

k and a negative embedding v(−)
k

projected by the text feature extractor F . The final concept embedding vk is a combination of
the positive and negative embedding weighted by the concept probability ck, defined as vk = ck ·
v
(+)
k + (1− ck) · v(−)

k . Finally, another network Dv(v) projects the combined concept embedding
v ≜ [vk]

K
k=1 to the final input embedding, i.e., Dc(c) = Dv(v). Note that during training, we form

the vk as v(+)
k if ck = 1, and v(−)

k if ck = 0.

Since Econcept
ψ (x, c) can be seen as the (approximate) variational upper bound for the negative

log-likelihood − log pθ(x|c) (more details in the Appendix A.2), it can be used directly as the loss
function Lconcept(x, c) during training. We then have

Lconcept(x, c) ≜ Econcept
ψ (x, c) ≜ Ex,ϵ∼N (0,I),t[∥ϵ− ϵθ(Dc(c),xt, t)∥22]. (7)

After training, generating the image x given the concept vector c is then equivalent to solving
x = argminxE

concept
ψ (x, c) using Eqn. 5.

Mapping Energy Network Emap
ψ (y, c). The mapping energy network connects the class-level

instruction y and the concept vector c by measuring the compatibility between y and c. We input
the class embedding u corresponding to y and the fused concept embedding w = Dc(c) into a
neural network to compute the mapping energy Emap

ψ (y, c). Formally, we have:

Emap
ψ (y, c) = Duw(u,w), (8)

where Duw(·, ·) is a trainable neural network. The network will output an energy estimate for each
pair of (u,w). Following (Xu et al., 2024), the training loss function for each instruction-concept
pair (y, c) is formulated as:

Lmap(y, c) = Emap
ψ (c,y) + log

(∑M

m=1,c′∈C
e−Emap

ψ (c′,ym)
)
, (9)

where c′ enumerates all concept combinations in the concept space C. We use negative sampling to
enumerate a subset of the possible combinations for computational efficiency.

3.3 CONCEPT-BASED JOINT GENERATION

Fig. 1(b) demonstrates the generation pipeline using our ECDM. To generate an image x based on
concepts c given class-level instructions y, we minimize the following joint energy:

Ejoint
ψ (x, c,y) ≜ Econcept

ψ (x, c) + λmEmap
ψ (c,y). (10)

Specifically, concept-based generation aims to search for

argmax
x̂,ĉ

p(x̂, ĉ|y) = argmax
x̂,ĉ

e−Ejoint
ψ (x̂,ĉ,y)∑

x,c e
−Ejoint

ψ (x,c,y)
= argmin

x̂,ĉ

Ejoint
ψ (x̂, ĉ,y)

5
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To make computation efficient, we start by searching for the optimal c:

argmaxĉ p(ĉ|y) = argminĉ Emap
ψ (y, ĉ). (11)

After obtaining the optimal concept prediction ĉ which is the most compatible one with the instruc-
tion y, we use ĉ as the condition to minimize the joint energy model Ejoint

ψ (x, c,y) for generation.
The minimization of the joint energy model is achieved by gradient descent-like sampling process
from the diffusion model. Formally, we have:

xt−1 = xt − γ∇xEjoint
ψ (x,y, c)

∣∣
x=xt,c=ĉ

+ ξ, (12)

= xt − γ∇xEconcept
ψ (x, c)

∣∣
x=xt,c=ĉ

+ ξ, ξ ∼ N (0, σ2
t I), t = T, . . . , 1, (13)

where ∇xEconcept
ψ (x, c) is given by Eqn. 5. (See Appendix A.2 for more details.) We then alternate

between Eqn. 11 and Eqn. 13 until convergence. Empirically, we find that one iteration usually
produces sufficiently good results.

3.4 INTERPRETATION AND DEBUGGING VIA CONCEPT INVERSION

Interpretation p(c|x). Our ECDM can interpret a given external diffusion model ϵinterpretϕ (y,x, t)

using the conditional probability p(c|x), which estimates what concepts c are used by
ϵinterpretϕ (y,x, t) to generate the image x given the input instruction y. Specifically, we derive the
concept probability by matching the energy landscape between our ECDM’s concept energy network
Econcept
ψ (x, c) and the external energy model Einterpret

θ (x,y) associated with ϵinterpretϕ (y,x, t)
(similar to Eqn. 5). Fig. 1(c) shows an overview of this process consisting of two steps: Pivotal
Inversion and Energy Matching Inference (see Appendix D for more details).

Pivotal Inversion. Given an image x and the corresponding instruction y, pivotal inversion aims to
replay the sampling trajectory of the external (interpreted) energy model Einterpret

θ (x,y), providing
pivotal representations at each sample step for alignment. We use the reversed DDIM (more details
in Eqn. 39 of the Appendix) to produce a T -step deterministic trajectory between image x0 and the
Gaussian noise vector xT . In each timestep t, the trajectory can be represented as:

∇xEinterpret
ϕ (x,y)

∣∣
x=xt

= ϵinterpretϕ (y,xt, t) (14)

Energy Matching Inference. To infer the concept vector c given the pivotal representation, we
freeze the concept energy network Econcept

ψ (x, c) to search for the optimal concept vector c̃ globally
at each timestep t minimizing Eqn. 15 as follows:

min
∥∥∥∇xEconcept

ψ (x, c)−∇xEinterpret
θ (x,y)

∥∥∥2
2
, (15)

Proposition 3.1 below shows that minimizing the Eqn. 15 is equivalent to matching the distribution
between p(c|x) and p(y|x), thereby effectively finding the optimal concept vector c̃ to interpret the
external diffusion model’s generation.
Proposition 3.1 (Conditional Concept Probability By Energy Matching). Given the instruction
y and the image x, minimizing Eqn. 15 is equivalent to minimizing the score’s disparity between
two conditional probabilities p(c|x) and p(y|x):∥∥∥∇xEconcept

ψ (x, c)−∇xEinterpret
θ (x,y)

∥∥∥2
2
= ∥∇x log p(c|x)−∇x log p(y|x)∥22 (16)

Transforming Proposition 3.1 into timestep-aware version, we can obtain the final optimal concept
vector c̃ via:

argminc̃

∥∥∥∇xEconcept
ψ (xt, c̃)−∇xEinterpret

θ (xt,y)
∥∥∥2
2

(17)

Debugging: p(c|y) ?
= p(c|x). Debugging involves the comparison between what concepts the

model has been generated (p(c|x)) and what concepts the model should have been generated
(p(y|x)). p(c|x) can be obtained via the energy matching process (Proposition 3.1), while p(y|x)
can be inferred by minimizing the mapping energy (Eqn. 11). By inspecting the disparity of these
two conditional probabilities, users can pinpoint the potential cause of the generation error, laying
the foundation for subsequent intervention and imputation to correct the discovered error.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.5 CONCEPT-BASED INTERVENTION FOR IMAGE CORRECTION

From Debugging to Intervention/Correction. Based on the debugging results from Sec. 3.4, we
can further perform concept intervention to correct the potential generation error. Specifically, if
the debugging process in Sec. 3.4 finds that concepts [ck]

K−n
k=1 are incorrect, i.e., p([ck]K−n

k=1 |y) ̸=
p([ck]

K−n
k=1 |x), one can then intervene on the image generation process by correcting these concepts.

Overview. Specifically, ECDM’s concept-based intervention consists of three steps: (1) correct
concepts [ck]

K−n
k=1 according to p([ck]

K−n
k=1 |y), (2) given the corrected concepts, infer all remain-

ing concepts via p([ck]
K
k=K−n+1|y, [ck]

K−n
k=1 ), and (3) use all concepts to generate the image, i.e,

computing p(x|[ck]Kk=K−n+1,y, [ck]
K−n
k=1 ) via the concept energy network in Eqn. 6.

Step 1: Correcting Concepts (p([ck]K−n
k=1 |y)). Correcting concepts is straightforward. After com-

puting the optimal ĉ by maximizing p([ck]
K−n
k=1 |y) (Eqn. 11), one can simply set c to ĉ in the

ECDM.

Step 2: Inferring Remaining Concepts. Inference of the remaining concepts is facilitated by our
mapping energy network and can be done using Eqn. 18 in Proposition 3.2 below.
Proposition 3.2 (Class-Specific Conditional Probability among Concepts). Given partially con-
cepts [ck]K−n

k=1 and class-level instruction y, infer the remaining concepts [ck]Kk=K−n+1 is:

p([ck]
K
k=K−n+1|y, [ck]K−n

k=1 ) =

e−Emap
ψ (c,y)∑

c′∈C e
−Emap

ψ (c′,y)
· p(y)

∑
[cj ]Kj=K−n+1

e−Emap
ψ (c,y)∑

c′∈C e
−Emap

ψ (c′,y)
· p(y)

(18)

Step 3: Generating the Corrected Image. Given all corrected concepts c ([ck]Kk=K−n+1 and
[ck]

K−n
k=1 ) combined), one then generates the corrected image x (i.e., p(x|c,y)) using using Eqn. 13.

3.6 INTERPRETABLE CONCEPT-BASED IMPUTATION

Imputation (p(Ω̄(x), c|Ω(x),y)). Our ECDM can also perform image imputation with concept-
based interpretations. Specifically, given the input instruction y and the partial image Ω(x), it can
generate (impute) the remaining pixels of the image Ω̄(x) and the associated concepts c as concept-
based interpretations. This is done via Eqn. 19 in Proposition 3.3 below.
Proposition 3.3 (Conditional Sampling by Concept Explaination). Given partially image Ω(x)
and class-level instruction y, inferring the remainder of the image Ω̄(x) and concepts c corresponds
to computing:

p(Ω̄(x), c|Ω(x),y) ∝ e−Ejoint
ψ (x,c,y)∑

x e
−Ejoint

ψ (x,c,y)
· e−Emap

ψ (c,y)∑
c′∈C e

−Emap
ψ (c′,y)

· p(y) (19)

The proof is available in Appendix A.1. Specifically, one can obtain the imputed image part Ω̄(x)
and the concept-based interpretations c by solving argmaxΩ̄(x),c p(Ω̄(x), c|Ω(x),y) above.

4 EXPERIMENTS

In this section, we compare our ECDM with existing generative methods on real-world datasets.

4.1 EXPERIMENT SETUP

Datasets. We use three real-world datasets to to evaluate different methods.

• Animals with Attributes 2 (AWA2) (Xian et al., 2018) is an animal image dataset containing
37,322 images, 85 concepts, and 50 animal classes. We select 45 photo-visible concepts for
experiments, following ProbCBM (Kim et al., 2023). We only include animal classes that
contain more than 300 images, leading to a total number of 24 classes in our final dataset.
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Table 1: The generation quality evaluation results on different datasets. Textual Inversion is not
readily available in PixArt-α model, therefore unavailable for the experiment. The Textual Inver-
sion results of CelebA-HQ is based on SD-2.1, hence identical results, see Appendix. C for further
explanation. For Inception Score (IS), Class Accuracy and Concept Accuracy, the higher the better.
For Frechet Inception Distance (FID), the lower the better.

Model
Data CUB AWA2 CelebA-HQ

Metric FID IS Class
Accuracy

Concept
Accuracy FID IS Class

Accuracy
Concept
Accuracy FID IS Class

Accuracy
Concept
Accuracy

SD-2.1 29.55 5.40 0.5033 0.9222 37.79 14.78 0.8935 0.9850 53.47 3.36 0.4881 0.8079
PixArt-α 46.85 3.82 0.1208 0.8231 59.71 13.47 0.9008 0.9764 - - - -

TI 23.36 5.41 0.6397 0.9496 29.63 14.79 0.9142 0.98 53.47 3.36 0.4881 0.8079
ECDM (Ours) 22.94 5.63 0.6492 0.9561 28.91 14.93 0.9200 0.9801 52.89 3.51 0.5017 0.8182

• Caltech-UCSD Birds-200-2011 (CUB) (Wah et al., 2011) is a fine-grained bird image dataset
with 11,788 images, 312 annotated attributes, and 200 classes. Following previous works (Koh
et al., 2020; Kim et al., 2023; Zarlenga et al., 2022), we select 112 attributes as the 112 concepts.

• CelebA-HQ (Karras, 2017) is a high-quality face image dataset with 30,000 images, 40 binary
attributes and 10,177 identities. Following CEM (Zarlenga et al., 2022), we select 8 most
frequent attributes as the 8 concepts and use 6 combination of the selected attributes as the 6
classes in our setting.

Baseline and Implementation Details. We compare the generation results of ECDM with the
direct class-level instruction generation of Stable Diffusion 2.1 (SD-2.1) (Rombach et al., 2022) and
PixArt-α (Chen et al., 2023). We further include the generation result from Text Inversion (TI) (Gal
et al., 2022), which is the most related finetuning-based method. We build our model upon the
pretrained Stable Diffusion 2.1 (Rombach et al., 2022) with parameters frozen for all experiments.
We use the AdamW optimizer during the training and inference process.

Evaluation Metrics. We employ three specific metrics to evaluate different methods:

• Frechet Inception Distance (FID). We measure the FID (Heusel et al., 2017) between the
synthetic and real images to evaluate the generated image quality. Lower FID indicates higher
image generation quality.

• Inception Score (IS). We measure the IS (Salimans et al., 2016) using the generated images to
evaluate the image quality. Higher IS indicates higher image generation quality.

• Class Accuracy. We train three class-level ResNet101 classification models (He et al., 2016) on
the corresponding datasets, and use the trained model to measure the class accuracy of generated
images. Higher class accuracy suggests that the generated images more effectively capture the
defining characteristics of a class.

• Concept Accuracy. We calculate the concept accuracy between the ground-truth concepts and
the predicted concepts from pretrained CEMs (Zarlenga et al., 2022). Higher concept accuracy
indicates that the generated image covers more desired visual concepts.

See more details on dataset construction, implementations, and evaluation in Appendix C and D.

4.2 RESULTS

Concept-Based Joint Generation. Fig. 2 shows the generation results of our ECDM on different
datasets. Visually, the outputs of our model are better aligned with the characteristics of real-world
subjects and exhibit more refined details compared to both standard text-to-image diffusion models
and their fine-tuned variants. The visual concepts included in the reference (ground-truth) image’s
(marked in green) are comprehensively depicted in our ECDM’s generated images. For instance,
the concepts “white breast color” and “bill length alike head” of the “Black Billed Cuckoo” are
successfully generated in the image. In contrast, all other methods miss the concept “white breast
color”, and both PixArt-α and SD-2.1 miss the concept “bill length alike head”.

Table 1 shows the quantitative results. Our ECDM consistently achieves a lower FID and a higher IS
compared to the baselines, indicating that ECDM produces images with higher fidelity and quality.
Notably, the class and concept accuracy of our model’s generated images in the majority of datasets
outperforms all other methods. This suggests that our model incorporates more visible concepts
during generation, providing richer class-discriminative characteristics in the resulting images.
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Reference Image ECDM (Ours) PixArt- SD-2.1
“A photo of the bird 

Black Billed 

Cuckoo”

“A photo of the animal 

Polar Bear”

Arctic

Paws

Furry

Big

Arctic

Paws

Furry

Big

Arctic

Paws

Furry

Big

Arctic

Paws

Furry

Big

Concepts

Images

Concepts

Images

Brown wing color

White breast color

Perching shape

Bill length alike head

Brown wing color

White breast color

Perching shape

Bill length alike head

Brown wing color

White breast color

Perching shape

Bill length alike head

Brown wing color

White breast color

Perching shape

Bill length alike head

TI

Arctic

Paws

Furry

Big

Brown wing color

White breast color

Perching shape

Bill length alike head

Figure 2: Visualizing generated outputs on CUB (upper) and AWA2 (lower) datasets. Words in
green/red indicate a correctly/wrongly generated visual concept. Images are generated under the
same random seed and instruction. Our ECDM generates more fine-grained and correct details
compared to other methods (e.g., “white breast color” and “bill length alike head” in Row 1).

Class Name

Great Crested 

Flycatcher

Olive Sided 

Flycatcher

0.0235

0.0488

0.3806

0.9363

0.9661

0.9884

0.9998

1.0000

0.9981

0.9910

0.9947

1.0000

1

1

1

1

1

1

0.8961

0.3984 

0.0684

0.9866

0.8724

0.0721

0.0021

0.9975

1.0000

0.9991

0.9950

0.0074

Ground Truth

Was Generated

Should Generate

Concept Names

0

1

1

1

1

0

Grey breast 

color

0.0235

0.9998

1

Yellow belly 

color

0.0488

1.0000

1

Round wing 

shape

0.3806

0.9981

1

Brown upper 

color

0.9363

0.9910

1

All-purpose 

bill shape

0.9661

0.9947

1

Black eye 

color

0.9884

1.0000

1

Brown wing 

color 

0.8961

0.0021

0

Grey wing 

color 

0.3984

0.9975

1

Solid tail 

pattern 

0.0684

1.0000

1

Perching 

shape

0.9866

0.9991

1

Grey crown 

color 

0.8724

0.9950

1

Blue belly 

color

0.0721

0.0074

0Ground Truth

Was Generated

Should Generate

Concept Names

Figure 3: Interpretation results on the CUB dataset. The images x are generated from an external
pretrained diffusion model (i.e., vanilla SD-2.1). Numbers in red indicate potential generation errors
compared with real concepts. Our ECDM can correctly interpret what concepts were generated
(p(c|x)) and what concepts should be generated for instruction y (p(c|y)).
Interpretation via Concept Inversion. Fig. 3 shows our ECDM’s probabilistic interpretations of
the generation process based on visual concepts. It shows that ECDM’s inferred concept prob-
abilities (the row “Was Generated p(c|x)) correctly reflect the concepts generated by the model.
Additionally, the concept probabilities derived from the mapping energy network (the row “Should
Generate p(c|y)”) correctly reflect the concepts that should be generated for the specific class (e.g.,
“Great Crested Flycatcher”). We provide further analysis of the interpretation results in Appendix B.

Debugging by Comparing p(c|x) and p(c|y). By comparing what concepts were generated
(p(c|x)) and what concepts should be generated for class y (p(c|y)), we can identify the cause of
potential generation errors. For example, an external pretrained diffusion model generates an “Olive
Sided Flycatcher” with “brown wings”, although it should be “grey wings”. Our ECDM assigns the
concept “brown wing color” a high prediction probability (0.8961), suggesting it was a key factor
in the generation. Our ECDM’s further indicates that “brown wing color” should not be generated,
with the “Should Generate” probability p(c|y) = 0.0021. In this way, users can identify incor-
rectly predicted concept probabilities using our method, gaining insight into the model’s generative
tendencies and establishing a foundation for further interpretive interventions and corrections.

Concept-Based Intervention. Fig. 4 shows the intervention results based on interpreted concept
probabilities. After user intervention, ECDM can effectively correct generation errors related to
visual concepts. For example, the interpretation process revealed that the “Black Billed Cuckoo”
should not have been generated with the concepts “grey crown color” and “grey upper color”, but
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Reference ImageBefore Intervention

Grey crown color: 0.8482

Grey upper color: 0.8680

White breast color: 0.0588

Perching shape: 0.3746

…

After Intervention

Grey crown color: 0

Grey upper color: 0

White breast color: 1

Perching shape: 1

…

White breast color: 0.8346

White primary color: 0.6009

Solid wing pattern: 0.3413

Grey back color: 0.5722

…

White breast color: 0

White primary color: 0

Solid wing pattern: 1

Grey back color: 0

…

Figure 4: Intervention visualization on CUB dataset. Contents in red are concepts debugged by
ECDM. Concept sets are corrected to intervene the generation process (e.g., the “White breast color”
in the Row 2 image is effectively intervened and corrected to red color).

Masked Image ECDM (Ours) SD2.1-Impaint Reference Image

Vermilion 

Flycatcher

Black Bill = 1

Grey Forehead = 0

Black Billed 

Cuckoo

White Breast = 1

White Throat = 1

Figure 5: Imputation on the CUB dataset. The imputation results of our ECDM is more consistent
with the corresponding concepts (e.g., “Grey Forehead = 0” in Row 1).

rather with “white breast color” and “perching shape.” After the user intervened by providing the
correct concept set, the model successfully corrected the generation based on these proper concepts.

Interpretable Imputation. Fig. 5 further demonstrates the imputation results from our model and
the standard SD-2.1-Inpainting model. Compared to the standard inpainting model, ECDM better
preserves class-specific characteristics (e.g., the bill of the Vermilion Flycatcher should be black,
and the forehead should not be grey) based on the inferred concepts. Our model also consistently
emphasizes the visual concepts related to the area being imputed (e.g., more white breast and throat
areas in the imputed region of the Black Billed Cuckoo). These two examples demonstrate that
ECDM effectively harnesses both concept perception and concept-based generation capabilities.

5 CONCLUSION AND LIMITATIONS

In this paper, we extend the concept bottleneck model into the generative process, identifying the
need for a joint modeling of conceptual generation, interpretation, debugging, intervention, and
imputation. We proposed Energy-Based Conceptual Diffusion Model (ECDM), a framework that
unifies generation, conditional interpretation and debugging, sampling intervention and imputation
under the joint energy-based formulation. A set of conditional probabilities is derived through the
combination of the energy functions. Our work also has several limitations, including the need for
more precise regional control in concept-based editing and the requirement for concept ground truth.
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A PROOFS AND ADDITIONAL DISCUSSIONS

A.1 PROOFS

Proposition 3.1 (Conditional Concept Probability By Energy Matching). Given the instruction
y and the image x, minimizing Eqn. 15 is equivalent to minimizing the score’s disparity between
two conditional probabilities p(c|x) and p(y|x):∥∥∥∇xEconcept

ψ (x, c)−∇xEinterpret
θ (x,y)

∥∥∥2
2
= ∥∇x log p(c|x)−∇x log p(y|x)∥22 (16)

Proof. For p(x|c) we have:

p(x|c) = p(c|x) · p(x)
p(c)

. (20)

Therefore,

∇x log p(x|c) = ∇x log
p(c|x) · p(x)

p(c)

= ∇x log p(c|x) +∇x log p(x).
(21)

For p(x|y) we have:

p(x|y) = p(y|x) · p(x)
p(y)

. (22)

Therefore, by a similar argument,

∇x log p(x|y) = ∇x log
p(y|x) · p(x)

p(y)

= ∇x log p(y|x) +∇x log p(x).
(23)

Given Eqn. 21 and Eqn. 23, we have:

∥∇x log p(x|c)−∇x log p(x|y)∥22 = ∥∇x log p(c|x)−∇x log p(y|x)∥22

=
∥∥∥∇xEconcept

ψ (x, c)−∇xEinterpret
θ (x,y)

∥∥∥2
2
,

(24)

concluding the proof.

Proposition 3.2 (Class-Specific Conditional Probability among Concepts). Given partially con-
cepts [ck]K−n

k=1 and class-level instruction y, infer the remaining concepts [ck]Kk=K−n+1 is:

p([ck]
K
k=K−n+1|y, [ck]K−n

k=1 ) =

e−Emap
ψ (c,y)∑

c′∈C e
−Emap

ψ (c′,y)
· p(y)

∑
[cj ]Kj=K−n+1

e−Emap
ψ (c,y)∑

c′∈C e
−Emap

ψ (c′,y)
· p(y)

(18)

Proof. We denote the mapping energy of the energy network parameterized by ψ between concept
c and the label y as Emap

ψ (c,y). We have:

p(c|y) = e−Emap
ψ (c,y)∑

c′∈C e
−Emap

ψ (c′,y)
. (25)
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By Bayes rule, we then have:

p([ck]
K
k=K−n+1|y, [ck]K−n

k=1 ) =
p([ck]

K
k=K−n+1, [ck]

K−n
k=1 ,y)

p([ck]
K−n
k=1 ,y)

=
p(c,y)

p([ck]
K−n
k=1 ,y)

=
p(c|y) · p(y)
p([ck]

K−n
k=1 ,y)

=
p(c|y) · p(y)∑

[cj ]Kj=K−n+1

p(c|y) · p(y)

=

e−Emap
ψ (c,y)∑

c′∈C e
−Emap

ψ (c′,y)
· p(y)

∑
[cj ]Kj=K−n+1

e−Emap
ψ (c,y)∑

c′∈C e
−Emap

ψ (c′,y)
· p(y)

,

(26)

concluding the proof.

Proposition 3.3 (Conditional Sampling by Concept Explaination). Given partially image Ω(x)
and class-level instruction y, inferring the remainder of the image Ω̄(x) and concepts c corresponds
to computing:

p(Ω̄(x), c|Ω(x),y) ∝ e−Ejoint
ψ (x,c,y)∑

x e
−Ejoint

ψ (x,c,y)
· e−Emap

ψ (c,y)∑
c′∈C e

−Emap
ψ (c′,y)

· p(y) (19)

Proof. Given Eqn. 35 and Eqn. 25, we have:

p(x, c,y) = p(x|c,y) · p(c,y)
= p(x|c,y) · p(c|y) · p(y)

=
e−Ejoint

ψ (x,c,y)∑
x e

−Ejoint
ψ (x,c,y)

· e−Emap
ψ (c,y)∑

c′∈C e
−Emap

ψ (c′,y)
· p(y).

(27)
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We already have x = Ω(x) ∪ Ω̄(x), and given Eqn. 27 we can get:

p(Ω̄(x), c|Ω(x),y) = p(Ω(x), Ω̄(x), c|y)
p(Ω(x)|y)

=
p(x, c|y)
p(Ω(x)|y)

=
p(x, c|y)∑

Ω̄(x)

p(Ω(x), Ω̄(x)|y)

=
p(x, c|y)∑

Ω̄(x)

p(x|y)

=

p(x, c,y)

p(y)∑
Ω̄(x)

p(x|y)

=
p(x, c,y)∑

Ω̄(x)

p(x|y) · p(y)

∝ p(x, c,y)

∝ e−Ejoint
ψ (x,c,y)∑

x e
−Ejoint

ψ (x,c,y)
· e−Emap

ψ (c,y)∑
c′∈C e

−Emap
ψ (c′,y)

· p(y),

(28)

concluding the proof.

A.2 ADDITIONAL DISCUSSION ON CONCEPT ENERGY NETWORK

We provide more details on the association between the concept energy network Econcept
ψ (x, c)

and the negative log-likelihood of the conditional data distribution − log pθ(x|c). According to Ho
et al. (2020), optimizing the variational bound for the conditional data distribution’s negative log
likelihood in diffusion model has:

E[− log pθ(x0|c)] ≤ Eq(x0:T )[− log
pθ(x0:T |c)

q(x1:T |x0, c)
] =: L, (29)

where q(x1:T |x0, c) being the approximate posterior in T time steps in the diffusion model (i.e., the
forward diffusion process). L is further decomposed into three terms by variance reduction:

L =Eq[DKL(q(xT |x0, c)||p(xT |c))

+
∑
t>1

DKL(q(xt−1|xt,x0, c)||pθ(xt−1|xt, c))

− log pθ(x0|x1, c)].

(30)

In the original DDPM (Ho et al., 2020), the first term is a constant due to the fixed vari-
ance design and the last term is considered as an independent discrete decoder. Therefore,
optimizing over L corresponds to optimizing the second term of L, denoted as Lt−1. Lt−1

can be further simplified based on the assumption that all KL divergences in Eqn. 30 are
comparisons between Gaussians and the posterior is tractable when conditioned on x0, which
being q(xt−1|xt,x0, c) = N (xt−1; µ̃t(xt,x0, c), β̃tI). With specific parameterization that
pθ(xt−1|xt,x0, c) = N (xt−1;µt(xt, c, t), σ

2
t I), Lt−1 can be written as:

Lt−1 = Eq[
1

2σ2
t

∥µ̃t(xt,x0, c)− µθ(xt, c, t)∥22] + C, (31)

where C is a constant not depending on θ. By reparameterization of both µ̃t(xt,x0, c) and
µθ(xt, c, t), Eqn. 31 can be further simplified to

Lt−1 − C = Ex0,ϵ[
β2
t

2σ2
tαt(1− ᾱt)

∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, c, t)

∥∥2
2
], (32)
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where
β2
t

2σ2
tαt(1− ᾱt)

is time step-aware fixed coefficients, αt are coefficients that only relate to βt.

As a result, minimizing Eqn. 32 corresponds to minimizing the negative log-likelihood
E[− log pθ(x0|c)]. In practice, the simplification form:

Ex,ϵ∼N (0,I),t[∥ϵ− ϵθ(xt, c, t)∥22] (33)

is proven to be an effective and feasible approximation facilitating the training process (Ho et al.,
2020). Therefore, minimizing Eqn. 33 still corresponds to minimizing the negative log-likelihood.
In Sec. 3.2, following literatures, we parameterized the concept energy model Econcept

ψ (x, c) in the
form of Eqn. 33 (Eqn. 6 in ECDM), minimization of which minimizes the negative log-likelihood.
The derivation above is consistent with (Ho et al., 2020), and we borrow their notation for consis-
tency.

We also provide another perspective of Eqn. 13’s simplification, the concept-based joint generation
process, here:

Given the class-level instruction y and the inferred optimal concept vector c, the minimization of
the joint energy via sampling from the gradient of the joint energy model ∇xEjoint

ψ (x,y, c) can be
simplified to sampling from the gradient of the concept energy network ∇xEconcept

ψ (x, c):

∇xEjoint
ψ (x,y, c) = ∇xEconcept

ψ (x, c) (34)

Given the instruction y and concept c, we can use the Boltzmann distribution to define the condi-
tional likelihood of the image x given y and c. With the joint energy in Eqn. 10:

p(x|c,y) = e−Ejoint
ψ (x,c,y)∑

x e
−Ejoint

ψ (x,c,y)

=
e−Econcept

ψ (x,c)−λmEmap
ψ (c,y)∑

x e
−Econcept

ψ (x,c)−λmEmap
ψ (c,y)

=
e−Econcept

ψ (x,c)∑
x e

−Econcept
ψ (x,c)

= p(x|c).

(35)

Thus, we can plug Eqn. 35 into the following Bayesian formula:

p(x, c|y) = p(x|c,y) · p(c|y)
= p(x|c) · p(c|y). (36)

Then take gradient with respect to x on both sides:

∇x log p(x, c|y) = ∇x log(p(x|c) · p(c|y))
= ∇x log p(x|c) +∇x log p(c|y)
= ∇x log p(x|c).

(37)

As the gradient of this energy function corresponds to the score of the conditional data distribution,
we have:

∇x log p(x, c|y) = ∇x log p(x|c) ⇐⇒ ∇xEjoint
ψ (x,y, c) = ∇xEconcept

ψ (x, c). (38)

B ADDITIONAL RESULTS

B.1 MORE RESULTS ON FINE-GRAINED CONCEPT-BASED GENERATION.

To further verify the fine-grained concept-based control capability of our ECDM’s Concept-Based
Joint Generation process, we gave different concept probabilities on certain concepts and then gener-
ated images based on these concept probabilities. The results, illustrated in Fig. 6, demonstrate how
the generated outputs vary according to adjustments in concept probabilities. For example, given the
same prompt, “A photo of the animal horse”, we adjusted the probabilities of the concepts “white”
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White = 1

Brown = 0

White = 0.9

Brown = 0.1

White = 0.8

Brown = 0.2

White = 0.7

Brown = 0.3

White = 0.5

Brown = 0.5

White = 0.3

Brown = 0.7

White = 0.2

Brown = 0.8

White = 0

Brown = 1

Figure 6: Concept probability adjustments on Concept-Based Joint Generation. We use the same
prompt “A photo of the animal horse” to first generate a set of concepts, and adjust different proba-
bilities of concepts “white” and “brown” to generate the final picture.

and “brown”. Specifically, we decreased the probability of the concept “white” from 1 to 0 and
simultaneously increased the probability of the concept “brown” from 0 to 1, and then perform joint
generation. Our ECDM accurately reflected these concept probability changes, producing images
of a horse with the corresponding colors. When the probability of “white” was set to 1 and “brown”
to 0, the model generated a pure white horse. As the probability of “white” decreased and that of
“brown” increased, the generated horse images gradually shifted in coloration, eventually producing
a purely brown horse. These results confirm that the energy-based formulation of our ECDM effec-
tively captures complex interactions among concepts. Furthermore, the model demonstrates precise
control in generating outputs that align with adjusted concept probabilities.

B.2 MORE RESULTS ON CONCEPT INTERPRETATION

To further verify the probabilistic interpretations in our proposed framework, we generate two dif-
ferent images from the same class and apply our concept inversion interpretation to derive the cor-
responding concept probabilities. The results are illustrated in Fig. 7, which highlights how the
derived probabilities vary depending on the image content. Given the same prompt “A photo of the
animal Polar Bear”, the diffusion model generates two different “Polar Bear” images: The top image
does not have a “water” and “arctic” background, while the bottom image has a “water” and “arctic”
background. Our ECDM correctly infers that the probabilities of the concepts “water” and “arctic”
in the top image are 0.1233 and 0.0363, respectively, much smaller than those in the bottom image
(0.9543 and 0.8015, respectively). For the concept “big,” we can also see meaningful variation in the
inferred probabilities, 0.9067 (top image) versus 0.9922 (bottom image), meaning that our ECDM
is more certain that the bottom image is a “big” polar bear, but is less certain about the top image
since it only shows the head of the bear. Therefore, our ECDM’s concept probability vector does
adjust with the generated image in interpretation.

B.3 ROBUSTNESS ANALYSIS

Typical methods tend to suffer from spurious features, e.g., irrelevant backgrounds. In contrast,
the concept-based modeling framework of our ECDM ensures the robustness of the interpretations.
Specifically, ECDM forces the model to learn concept-specific information and use these concepts
to generate images and interpret these images; in this way, ECDM focuses more on the genuine
attributes of the target object and is less influenced by irrelevant, spurious features, such as irrele-
vant backgrounds. As a result, our ECDM enjoys robustness when dealing with out-of-distribution
samples. For example, when interpreting a water bird with a spurious land background, our ECDM
focuses only on the concepts of the water bird on the foreground, and therefore will not be fooled
by the spurious features in the background.

We conducted a robustness analysis on the TravelingBirds dataset following the robustness experi-
ments of CBM (Koh et al., 2020). The results of these experiments are shown in Fig. 8. We provide
the bird image under significant background shift to our models for concept interpretation. In this
case study, our model can still accurately infer the corresponding concepts of the bird “Vermilion
Flycatcher” (e.g., “all-purpose bill shape” and “solid belly pattern”). These findings demonstrate
our model’s robustness when facing domain shifts.
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“A photo of the animal Polar Bear”

Images Concept Probabilities

Figure 7: Concept interpretation results on varying generations of the same class. We use the same
prompt to generate two different images of the class “Polar Bear”, and used our proposed concept
inversion interpretation to derive the corresponding concept probabilities.

Class Name

Vermilion 

Flycatcher

Ground Truth

Was Generated

Should Generate

Concept Names
All-purpose

bill shape

0.7349

0.9926

1

Solid belly

pattern

0.8583

0.9973

1

All-purpose

bill shape

0.7720

0.9926

1

Solid belly

pattern

0.7541

0.9973

1Ground Truth

Was Generated

Should Generate

Concept Names

Figure 8: Concept interpretation results on out-of-distribution samples. We conducted additional
experiments on the TravelingBirds dataset following the robustness experiments of CBM (Koh et al.,
2020).

C DATASET DETAILS

Caltech-UCSD Birds-200-2011 (CUB). (Wah et al., 2011) In CUB, we selected 20 classes of birds
as Table 2 shows. The concept selection is identical to CBM (Koh et al., 2020). We used 60 images
for each class to perform training. The class-level instruction is given as: “A photo of the bird [bird
class].”

Table 2: The class selection for the CUB dataset.

Pied billed Grebe Purple Finch Boat tailed Grackle Black billed Cuckoo
European Goldfinch Olive sided Flycatcher Northern Fulmar Fish Crow

American Crow Scissor tailed Flycatcher Northern Flicker Gadwall
Shiny Cowbird Eared Grebe Great Crested Flycatcher Vermilion Flycatcher

Frigatebird Western Grebe American Goldfinch Horned Grebe
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Table 3: The class selection for the AWA2 dataset.

horse zebra german shepherd polar bear
sheep rabbit seal grizzly bear
cow lion dolphin giant panda
deer elephant gorilla otter

squirrel collie buffalo ox
giraffe antelope tiger pig

Animals with Attributes 2 (AWA2). (Xian et al., 2018) In AWA2, we selected 24 classes of animals
as Table 3 shows. The concept selection is identical to ProbCBM (Kim et al., 2023). The class-level
instruction is given as: “A photo of the animal [animal class].”

CelebA-HQ. (Karras, 2017) We selected CelebA-HQ (1024 × 1024 px high resolution images),
instead of CelebA (64×64 px resolution images), to meet the demand of inputing resolution (512×
512 px) of the pretrained diffusion model. In CelebA-HQ, we performed the following procedures
to curate a subset of the dataset for training: (1) Following CEM (Zarlenga et al., 2022), we screened
out the top eight frequent face attributes: [‘Arched Eyebrows’, ‘Attractive’, ‘Heavy Makeup’, ‘High
Cheekbones’, ‘Male’, ‘Mouth Slightly Open’, ‘Smiling’, ‘Wearing Lipstick’]. (2) We randomly
selected six combinations of chosen attributes as the target class. We represented them as binaries in
the Table 4. (3) We performed standard Textual Inversion (Gal et al., 2022) using the recommended
default settings from Huggingface to bind each combination of concepts to an unique token (e.g.,
combination 1 binds to “<type1>” token). This avoided concept leakages in the training process of
our model. Finally, the binded tokens were used as the class-level instructions in our model. The
class-level instruction is given as: “A photo of the face [unique token].”

Table 4: The token-attribute relationship in CelebA-HQ dataset.

Tokens
Attributes Arched

Eyebrows Attractive Heavy
Makeup

High
Cheekbones Male Mouth

Slightly Open Smiling Wearing
Lipstick

<type1> 1 1 1 0 0 1 0 1
<type2> 0 0 0 1 1 1 1 0
<type3> 0 1 0 1 0 1 1 1
<type4> 1 0 0 1 1 1 1 0
<type5> 1 1 1 0 0 0 0 1
<type6> 1 1 0 1 0 1 1 1

D IMPLEMENTATION DETAILS

Association Between the Number of Model Parameters and the Number of Concepts. We
further provide the scaling association between the number of model parameters and the number of
concepts in Fig. 9. Our model is efficient, and scales linearly with the number of concepts in terms of
computation and the number of model parameters. For example, when the concept number K = 6,
the parameter size is 27.57 M, excluding all frozen pretrained components, and when K = 112,
the parameter size is 110.99 M. Note that the computational cost and number of parameters for all
frozen pretrained components are fixed (i.e., constant).

Sampling Efficiency. For the mapping energy network, we sample using the Gradient Inference
technique, as outlined in ECBM (Xu et al., 2024). This sampling procedure requires approximately
10 to 30 steps, taking around 10 seconds of wall-clock time. For the generative concept energy net-
work, we model the diffusion model as an implicit representation of the energy function, making the
diffusion model sampling algorithm applicable to our framework. We utilize the standard diffusion
sampling algorithm (i.e., DDIM (Song et al., 2020a)) to generate an image from the concept energy
network. This process involves approximately 50 steps and takes around 3 seconds of wall-clock
time when using a NVIDIA RTX 3090. Therefore, the computational overhead remains comparable
to that of standard diffusion models.

Training Details. We build our model based on publicly available Stable Diffusion 2.1 model, and
512× 512 as the input size for all evaluated methods, unless stated otherwise. We use the AdamW
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optimizer to train the model. We use λm = 0.1, batch size 4, a learning rate of 4 × 10−3, and at
most 100 iteration per image. We run all experiments on two NVIDIA RTX3090 GPUs. To perform
negative sampling in the training process, we perturb 30% of the concept set to sample 2 negative
concept vectors per positive sample. These are not incorporated in the generation and interpretation
process.

Generation Details. For all trained diffusion models, we use the same generation sampler (DDIM
Sampler), sampling steps (50 steps), and random seed as recommended by Huggingface. All class-
level instructions are consistent per dataset among all methods.

D.1 DETAILS OF THE CONCEPT-INVERSION INTERPRETATION

DDIM Inversion. Given an image x0, DDIM sampling (Song et al., 2020a) provides a path that
allows inverting the image back to the noised latents based on the assumption that ODE can be
inverted in the limit of sufficiently small steps (Kim et al., 2021). The inversion path is:

xt+1 =

√
αt+1

αt
xt +

(√
1

αt+1
− 1−

√
1

αt
− 1

)
· ϵθ (y,xt, t) , (39)

where αt is the noise scheduling coefficient at timestep t provided by the DDIM scheduler. This
inversion path enables a replay of the sampling trajectory, hence facilitating meaningful editing (Kim
et al., 2021; Mokady et al., 2023) or interpretation. Similar to Eqn. 1∼3, one can replace y with c.
We built our Concept Inversion based on the reverse DDIM detailed as follows.

According to Classifier-Free Guidance (Ho & Salimans, 2022), we can obtain a better conditional
diffusion model output ϵθ (y,xt, t) to be used in the Eqn. 39 by performing:

ϵ̃θ(y,xt, t) = ϵθ(∅,xt, t) + w(ϵθ(y,xt, t)− ϵθ(∅,xt, t)), (40)
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Figure 9: The number of model parameters
versus the number of concepts. Our ECDM
is efficient and scales linearly with the num-
ber of concepts. Note that we exclude all
frozen pretrained parameters in the parame-
ter counting.

where ϵθ(∅,xt, t) denotes unconditional diffusion
model (giving the model input unconditional em-
bedding in implementation), and w can be seen as
the conditional guidance strength. We adopt this
guidance strategy in the sampling process of ECDM
to obtain conditional diffusion model’s final out-
puts. Several studies (Mokady et al., 2023; Dong
et al., 2023) have found that the selection of guid-
ance strength w have strong effect in the reverse
DDIM process: lower w (e.g., w = 1) increases
the fidelity of the recovered image based on the re-
verted path, while higher w (e.g., w = 7.5) ensures
a better edit ability based on the reversed path. The
complication of higher w is the increase of ODE
sampling error, making the generated sample devi-
ate from the reversed trajectory. To make the best
of both worlds, we used a three stepped strategy to
(1) retain the original conditional sampling trajec-
tory for interpretation (energy matching), (2) enable
the intervention ability based on the interpreted tra-
jectory by using higher w, and (3) cancel out the de-
viating error brought by the larger value of w.

Step 1: Pivotal Inversion. The goal of pivotal inversion is to simulate how the pretrained diffusion
model samples an image directly conditioned on the instruction. In the inversion process, we reverse
a generated image x back to a trajectory of noised latent by using Eqn. 39 and w = 1. By using
w = 1 the diffusion model would only output the instruction-conditioned output ϵθ (y,xt, t), hence
a better depiction of the distribution p(x|y) for the subsequent matching process. The reversed
trajectory is saved for the following process. The reversed trajectory acts as pivots that illustrate the
model’s original sampling trajectory and, under our formulation, simulates the energy landscape of
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the external energy model (pretrained diffusion model). This facilitates the matching process in the
following steps.

Step 2: Error Cancellation by Null Text Optimization. We used the reversed trajectory saved
in step 1 to perform the replay of the generation sampling process. Inspired by (Mokady et al.,
2023), we adopted the same strategy in this step. We use larger w = 7.5 to obtain a conditional
diffusion model output for better edibility, and optimize the unconditional embedding per sampling
step ∅̄t|t=1,...,T to cancel out the sampling error. The optimized unconditional embeddings are
saved for the use of step 3.

Step 3: Concept Inversion by Incorporating the Optimized Unconditional Embedding. The
objective of this step is to determine the most compatible concept set conditioned on the generated
image using the simulated trajectory from pivotal inversion. We freeze all learned embeddings and
the concept energy network, and optimize the concept probability c̃. In this step, we start again from
the noised latent to perform generation sampling prediction but incorporating ∅̄t|t=1,...,T and use
w = 7.5. Specifically, we generate the output to perform matching by:

ϵ̃θ(c̃,xt, t) = ϵθ(∅̄t,xt, t) + w(ϵθ(c̃,xt, t)− ϵθ(∅̄t,xt, t)), (41)

where c̃ is the concept vector, the only vector we optimize in this step to obtain the concept proba-
bility.

By this means, both the edibility and the interpretability are preserved in the Concept Inversion
process. In practice, the second step is efficient with the early stopping strategy proposed in (Mokady
et al., 2023).

D.2 EVALUATION DETAILS

Evaluation Sample Number. To match the amount of the reference image when calculating FID,
we used 2400, 1200, and 600 synthetic images for AWA2, CUB, and CelebA-HQ dataset, respec-
tively. All methods generated the same amount of images for evaluation.

Details of the Classifier Used for Class Accuracy Calculation. We used ResNet101 (He et al.,
2016) to train classifiers on real images of these dataset to assess class accuracy. We used the official
data splits and recommended default hyperparameters for classifier training. The accuracy of these
three classifiers on CUB, AWA2, and CelebA-HQ real image test sets are: 0.7561, 0.9230, and
0.9526.

Details of the Classifier Used for Concept Accuracy Calculation. We used CEM (Zarlenga et al.,
2022) to train concept prediction models on real images of these dataset to assess concept accuracy.
CEM employed individual concept classifiers to predict each concept, achieving higher task perfor-
mance than the vanilla CBM (Koh et al., 2020) while maintaining high prediction efficiency, hence
become the choice. We used the official data splits and recommended default hyperparameters in
the official implementation for classifier training. The performance of these three CEM classifiers
on CUB, AWA2, and CelebA-HQ real image test sets are: 0.9649, 0.9810, and 0.9042.

Reproducibility. We will release the code upon the publication of this paper.

E FURTHER DISCUSSION OF RELATED WORKS AND FUTURE WORKS

E.1 RELATED WORKS

In this paper, we focus on the setting of concept-based generation and interpretation given a pre-
trained large diffusion model. Therefore, several related works, e.g., CBGM (Ismail et al., 2023)
and COMET (Liu et al., 2023) are not applicable in this setting. Specifically:

• CBGM (Ismail et al., 2023) involves training a new diffusion model from scratch using a modi-
fied Diffusion UNet. In contrast, we focus on augmenting an existing pretrained large diffusion
model (e.g., Stable Diffusion) to enable concept-based generation, intervention, and interpreta-
tion.
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• CBGM (Ismail et al., 2023) is not an energy-based model, which distinguishes it from our
ECDM.

• In this paper, we concentrate on the text-to-image generation setting, where the input is free-
form text and the output is an image. Furthermore, CBGM (Ismail et al., 2023) is a conditional
diffusion model that takes a class label as input, making it incompatible with our setting.

• COMET (Du et al., 2021) is an unsupervised, unconditional diffusion model that does not take
any input (neither class labels nor text). Therefore COMET is not applicable to our setting
either.

• Since COMET (Du et al., 2021) is an unsupervised learning model, the visual concepts decom-
posed by COMET do not have ground truth. Therefore it is not possible to evaluate COMET in
our setting.

E.2 FUTURE WORKS

Supporting Continuous-Valued Concepts. Our framework naturally supports the extension to
normalized continuous-valued concepts. For example, By normalizing the continuous concept value
to the range of [0, 1], the concept probability ck, which is already a real (continuous) number in the
range of [0, 1], used for mixing the positive/negative concept embedding can be substituted by this
value, and further be integrated into our framework.

Furthermore, our framework can be extended to support unnormalized continuous-valued concepts.
For example, we can learn a unit concept embedding ek ∈ Rd that represents the unit value of a
certain concept, and a continuous magnitude concept ck ∈ R embedding that represents the actual
magnitude of the concept. With ek and ck, we can then replace the final concept embedding vk =

ck · v(+)
k + (1 − ck) · v(−)

k with vk = ck · ek. All other components of our ECDM can remain
unchanged.
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