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Abstract
In the field of Vision-Language Models (VLM), the Contrastive
Language-Image Pretraining (CLIP) model has yielded outstanding
performance on many downstream tasks through prompt tuning.
By integrating image and text representations, CLIP exhibits zero-
shot generalization capabilities on unseen data. However, when
new categories and distribution shifts occur, the pretrained text
embeddings in CLIP may not align well with unseen images, po-
tentially leading to a decrease in CLIP’s zero-shot generalization
performance. To address this issue, many existing methods use test
samples to update the CLIP model during testing through a process
known as Test-Time Adaptation (TTA). Previous TTA techniques,
such as image augmentation, can lead to overfitting given outlying
samples, while methods based on teacher-student distillation can
increase memory use. Further, these methods significantly increase
inference time, which is a crucial factor in the testing phase. To
improve robustness, mitigate overfitting, and reduce bias toward
outlying samples, we propose a novel method: Self-Text Distillation
with Conjugate Pseudo-labels (SCP), designed to enhance CLIP’s
zero-shot generalization. SCP uses gradient information from con-
jugate pseudo-labels to enhance the model’s robustness toward
distribution shifts. It also innovates by using a fixed prompt list to
distil learnable prompts from within the same model, acting as a
self-regulation mechanism that minimizes overfitting. Additionally,
SCP is a fully test-time adaptation method that does not require
retraining. It directly improves CLIP’s zero-shot generalization at
test time without increasing either memory overheads or inference
time. In evaluations across three zero-shot generalization scenarios,
SCP surpasses existing state-of-the-art methods in performance
and significantly reduces inference time.
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1 Introduction
Within the field of large-scale vision-language models [11, 16], the
Contrastive Language-Image Pre-training model (CLIP [29]) has
demonstrated superior performance over traditional convolutional
neural network models across a range of tasks, including few-shot
classification and zero-shot generalization tasks [32]. The main
idea of CLIP is an innovative integration of textual data with visual
input through a dual-encoder framework. As such, CLIP consists
of two encoders: an image encoder and a text encoder. It generates
image features and text features to match a vast corpus of image-
text pairs through a contrastive learning scheme. By this method,
CLIP efficiently aligns visual and textual representations, allowing
the model to interpret the visual content of images and to capture
their associated textual representations. This distinctive strategy
means CLIP is able to capture the intricate dynamics between visual
and textual elements, significantly broadening its applicability and
efficacy across diverse scenarios [46].

Recent research has integrated the concept of prompts into
CLIP’s text encoder. Taken from the domain of natural language
processing (NLP [6]) this approach, known as prompt tuning, uses
embedded prompts [21], such as "a photo of a" to let CLIP swiftly
adapt to downstream tasks without the need to fine-tune the en-
coder. As a result, computation time is significantly reduced [34].
Further, to avoid the time-consuming task of manually crafting
fixed prompts, analysts can use learnable prompts that dynami-
cally change depending on the requirements of the task [49, 50].
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This adaptability means CLIP can more effectively leverage its pre-
trained knowledge, optimizing performance across a diverse range
of tasks with minimal additional computational overhead.

However, while learnable prompt tuning enhances the capa-
bilities of CLIP, this model still faces challenges with zero-shot
generalization not only due to distribution shifts within unseen
test data but also when confronted with entirely new labels or
categories [44]. More specifically, images can contain drastically
different content with huge variations in features. As an exam-
ple, consider the differences between a sunny park and a snowy
mountain landscape. Not only will the two images contain very
different backgrounds, but unusual animal species and culturally-
specific items will likely be encountered as well. These conditions
represent both new category and new distribution shifts that can
lead to a misalignment of image-text pairs. Overall, the result for
CLIP will be diminished zero-shot generalization performance in
new scenarios [42]. To address this challenge, previous methods
have leveraged test data, using them to update the model during
test-time through a process known as test-time adaptation (TTA).

While existing test-time adaptation methods can mitigate the ef-
fects of distribution shifts by using information from test data, these
methods face challenges of their own. For example, most updates
during test time depend on pseudo-labeling [24, 37], but pseudo-
labeling can lead to a bias towards outlier samples when the distri-
bution changes, diminishing the model’s performance in changing
environments. A more reliable method is image augmentation. This
approach aims to minimize marginal entropy to achieve more cer-
tain results [34, 47]. However, its lack of adequate regularization
can bias outcomes and lead to overfitting. Conversely, the teacher-
student distillation method [8, 40] generally yields smoother results
through distillation. The downside is that this strategy does increase
memory use, particularly with large-scale vision-language models.
It also substantially increases the inference time, both of which are
critical considerations during testing.

To address these issues, we introduce a novel method: Self text
distillation with Conjugate Pseudo-labels (SCP) for CLIP’s zero-
shot generalization. SCP employs conjugate pseudo-label to reduce
the bias on outlier samples and self-text distillation to reduce over-
fitting. Specifically, instead of using only entropy information as is
the case with traditional pseudo-labels, SCP uses conjugate pseudo-
labels which are optimized based on both gradient and entropy
information. This steers the model toward optimization, while re-
ducing any bias toward outlying samples in the face of distribution
shifts. The overall result is increased robustness. Further, to re-
duce overfitting, SCP implements self-text distillation as a form of
self-regularization. It uses teacher-student distillation within the
same frozen CLIP text encoder, which uses less memory than load-
ing two separate CLIP models. The learnable prompt mechanism
acts as the student model, and a fixed prompt list serves as the
teacher model. This distillation process imposes constraints on the
learnable prompt, preventing it from deviating too far during up-
dates. Through self-text distillation, the process not only maintains
low memory use but also reduces inference time during the test-
ing phase. Additionally, SCP involves a fully test-time adaptation
method, improving robustness directly during the testing phase
without the need for retraining.

Overall, the contributions of our work can be summarized as:

• Our method employs conjugate pseudo-labels at test-time, using
gradient information to effectively mitigate bias toward outlying
samples while improving robustness to distribution shifts.
• Our method implements a novel self-text distillation strategy
within the same model, acting as self-regularization to reduce
overfitting.
• Our method is a fully test-time adaptation method that eliminates
the need for retraining and directly improves the zero-shot gen-
eralization of CLIP by reducing both memory use and inference
time.

2 Related Works
In this section, we present the study of vision-langauge models
with prompt tuning and the methods of test-time adaptation.

2.1 Vision-Language Models with Prompt
Tuning

Vision-Language Pre-trained Models [22, 33] (VLMs) serve as a
bridge to unify the understanding of visual and textual data, achiev-
ing this through extensive pre-training that integrates both image
and text inputs. Of these models, the CLIP model [29] stands out
for its robust performance across a variety of tasks, including few-
shot classification, zero-shot classification, and generalization tasks.
CLIP is equipped with separate encoders for text and images and
learns via self-supervised techniques using contrastive loss. It essen-
tially aligns the representations of both textual and visual content,
allowing the model to “understand” and interpret visual material
in tandem with text descriptions. For this reason, CLIP boasts a
great deal of utility in a range of settings and has proven to be quite
effective.

One of the more recent developments in the realm of vision-
language models is the application of prompt tuning. Prompt tuning
emerged from the field of NLP as a means of effectively tailoring
large-scale models for downstream tasks [7, 30]. This approach
leverages textual prompts to direct the model’s attention towards
particular tasks, employing prompts as cues for the model to gener-
ate task-relevant responses. For instance, CLIP uses prompts such
as "a photo of a [object]" to assess the match between an image and
possible text descriptions, enhancing its classification capabilities
based on the most fitting description.

Most early studies involved manually setting prompts. But find-
ing appropriate prompts can be a time-consuming and challenging
task. Hence, recent research has focused on enabling the model to
learn more suitable prompts independently [18]. For example, the
CoOp [50] method was the first approach to introduce learnable
prompts for CLIP. The goal was to improve the model’s ability
to adapt to a task using a small set of training samples. While a
significant advancement in theory, the actual mechanism often
resulted in a model overfit for specific tasks. To address this, Co-
CoOp [49] seeks to maintain CLIP’s generalization performance
across a range of tasks by applying meta-learning techniques that
optimize the variation in prompts. By contrast, PLOT [2] employs
optimal transportation to manage multiple prompts. Meanwhile,
Maple [17] integrates learnable weights into both the image and
text encoders, representing a step forward in enhancing CLIP’s
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learning capabilities. However, what all these methods have in com-
mon is that they require the CLIP model to be retrained. Plus, they
only provide a modest boost to zero-shot generalization perfor-
mance. Conversely, our approach with SCP is designed to directly
enhance CLIP’s zero-shot generalization potential during testing,
eliminating the extensive retraining process. SCP focuses on ex-
ploiting the pre-trained model’s inherent properties, enabling CLIP
to effectively adapt to changing data.

2.2 Test-Time Adaptation
Test-time adaptation refers to updating the model during the testing
phase [26, 37, 47], as distinct from traditional domain adaptation
methods that require data from both the source and target do-
mains [41, 45]. This approach does not need access to source data
nor does it require retraining. Instead, it updates the model using
information from the test data to mitigate the effects of distribu-
tion shift. Previous methods include entropy minimization, image
augmentation, teacher-student model distillation, and the use of
pseudo-labels. Entropy minimization [26, 37] aims to enhance the
certainty of model predictions by minimizing the entropy of the test
data, but it may lead to overfitting on specific high certainty test
samples. Image augmentation techniques employ extensive aug-
mentations to minimize marginal entropy [34, 47]. This approach
seeks more stable results at the cost of an increased computational
overhead and reduced inference speed, especially with larger-scale
vision-language models. Teacher-student model distillation updates
twomodels simultaneously tomitigate overfitting [8, 40]. But, again,
this significantly increases the demand on computational memory.
Pseudo-labeling [35, 39], which is the method SCP uses, involves
updating the model with predictions as pseudo-labels. However,
inaccurate pseudo-labels risk biasing the model toward outlying
samples. Hence, to minimize this bias while reducing overfitting
and maintaining efficiency, we adopted an innovative self-text dis-
tillation method. This approach, which only requires one model
that performs both the teacher and the student roles, uses conjugate
pseudo-labels to do the optimization based on both gradient and
entropy information.

3 Preliminaries
In this section, we first introduce the structure of CLIP and the
settings of the learnable prompt, followed by an explanation of the
concepts of zero-shot generalization and test-time adaptation.

3.1 Introduction of CLIP
The CLIP model [29] consists of two encoders, one is an image
encoder 𝑓 (·), which is based on either ResNet[12] or ViT [36], and
the other is a text encoder 𝑔(·), which is based on Transformer.
CLIP pre-trains the contrast loss between image and text to get a
better correspondence between image and text. To apply CLIP to
specific downstream image classification tasks, a straightforward
and effective method involves embedding text prompts, such as "a
photo of a", prior to the text encoder. These prompts, along with the
[CLASS] token, are inputted to the text encoder. Consequently, the
text encoder of CLIP is guided to generate a semantic representation
that aligns with the corresponding input image. The inference

process of CLIP can be expressed as:

𝑃 (𝑦 = 𝑖 |x) = exp(cos(w𝑖 , f (x))/𝜏)∑𝐾
𝑗=1 exp(cos(w𝑗 , f (x))/𝜏)

(1)

where 𝑃 (𝑦 = 𝑖 |x) represents the probability of the input x belonging
to class 𝑖 , cos(w𝑖 , f (x)) is the cosine similarity between the class
embeddingw𝑖 and the image feature f (x) from image encoder 𝑓 (·),
𝜏 is a temperature parameter, and 𝐾 is the total number of classes.

The CoOp framework introduces a novel method that incorpo-
rates learnable prompts into the CLIP model while freezing the
remaining parameters of the encoders [50]. This is achieved by for-
mulating the prompts provided to the text encoder 𝑔(·) as follows:

t = [V1] [V2] . . . [V𝑚] . . . [V𝑀 ] [CLASS] (2)

where each [V𝑚], for 𝑚 = 1 to 𝑀 , represents a learnable vector
with the same dimensionality as the word embeddings used in CLIP.
The variable𝑀 determines the number of contextual tokens within
the prompt, and [CLASS] is the class name token.

For an image-text pair (x, t), the image feature f (x) is obtained
from the image encoder 𝑓 (·), and the text feature g(t) is obtained
from the text encoder 𝑔(·). The prediction is then calculated by:

𝑃 (𝑦 = 𝑖 |x) = exp(cos(g(t𝑖 ), f (x))/𝜏)∑𝐾
𝑗=1 exp(cos(g(t𝑗 ), f (x))/𝜏)

(3)

In this expression, for each individual prompt t𝑖 , the class token
[CLASS] is substituted with the respective word embedding vector
corresponding to the name of the 𝑖-th class.

3.2 Zero-shot Generalization
The concept of zero-shot generalization refers to the ability of a
model to correctly categorize new, unseen data [10]. Specifically,
let X𝑆 = {(x𝑠 , 𝑦𝑠 )}𝑁𝑠

𝑠=1 represent the dataset of seen classes, where
x𝑠 is a feature vector that can be obtained using a pre-trained deep
learning model such as ResNet. The labels 𝑦𝑠 are the corresponding
annotations for these feature vectors.Y𝑆 = {𝑦𝑠1, 𝑦𝑠2, . . . , 𝑦𝑠𝐶𝑠

} indi-
cates the label set of seen classes within the label spaceY, where𝐶𝑠
is the number of seen classes. Similarly, let X𝑇 = {(x𝑡 , 𝑦𝑡 )}𝑁𝑡

𝑡=1 rep-
resent the dataset of unseen classes, with Y𝑇 = {𝑦𝑡1, 𝑦𝑡2, . . . , 𝑦𝑡𝐶𝑡

}
indicating the label set of unseen classes, where 𝐶𝑡 is the number
of unseen classes. Y = Y𝑆 ∪ Y𝑇 denotes the union of both the
seen and unseen classes, ensuring Y𝑆 ∩ Y𝑇 = ∅. The objective
in zero-shot generalization is to train a model 𝑓 (𝜃 ) on X𝑆 and
apply 𝑓 (𝜃 ) : X𝑇 → Y𝑇 to classify the test samples of unseen
classes [28, 43].

3.3 Test-Time Adaptation
Test-time Adaptation (TTA) is the process of using test data infor-
mation to update the model during test time. The aim is to adapt
a pre-trained model to a target domain by adjusting the model
parameters 𝜃 at test time [3, 26]. This process refines the model’s
generalization capability, improving performance on samples from
different distributions. Fully test-time adaptation avoids the need
to retrain the original model [20] and relies solely on using the
test data for access to source data. It is particularly advantageous
when access to source domain data is limited by privacy or storage
considerations. TTA is achieved by minimizing an unsupervised
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Figure 1: Overview of the SCP framework.

loss function L(x𝑡 , 𝑓 (𝜃 )) for test samples x𝑡 ∈ X𝑇 . The adaptation
process is iterative, with each batch of test data leading to a pa-
rameter update through gradient descent:𝜃 ← 𝜃 −𝛼∇𝜃L(x𝑡 , 𝑓 (𝜃 )),
where 𝛼 is the learning rate.

4 Methodology
In this section, we first provide an overview of the SCP framework.
Then, the two core steps of the SCP algorithm are discussed –
these being the conjugate pseudo-labelling process and self-text
distillation.

4.1 Overview of SCP framework
Figure 1 provides an overview of the SCP method. SCP is based on a
CLIP model, which extracts image and text features and uses these
features to construct a similarity matrix that the student model then
uses to make predictions. Next, the conjugate pseudo label loss is
calculated based on the gradient information and the pseudo-labels
generated from the entropy information of the predictions. Teacher
predictions are made based on a fixed prompt list, while knowledge
is distilled through KL divergence with the student predictions to
result in the self-text distillation loss.

More specifically, the target data are divided into image patches,
which are then input into the image encoder to obtain the image
features. Then, learnable prompts generate learnable text patches,
which are input into the text encoder to produce text features
for the student model. These features are used to calculate the
similarity matrix upon which the student predictions are based.
The predictions from the student model with entropy values below
a set threshold of 𝛼 are then selected as the pseudo-labels. The loss
is calculated from both the pseudo-labels and the gradient loss from
the gradient information. As such, the overall conjugate pseudo
label loss comprises the pseudo label loss and the gradient loss.
This approach, which leverages the gradient information between
the model’s current output and the desired output, ensures that the

generated pseudo-labels will more effectively guide the model’s
learning process.

Concurrently, a fixed prompt list generates an assembled, fixed-
text patch via the averaging method to generate the teacher model’s
prediction. Next, the student prediction and the teacher predic-
tion are aligned using KL divergence, with the self-text distillation
process aiming to minimize this divergence. This configuration
helps the model learn stable knowledge representations from fixed
prompts while exploring new or task-specific knowledge through
adaptable prompts. Further, the process of self-regulation through
text distillation maintains the model’s regularity without modifica-
tions to the original CLIP architecture and without adding compu-
tational overhead.

In this approach, CLIP’s image and text encoders are pre-trained,
denoted as 𝑓 (·) and 𝑔(·), respectively, and both are kept constant
during the analysis. Given a specific target image x𝑡 , the corre-
sponding image and text features are extracted via the learnable
prompts described in Equation (2). This process is formalized as
follows: 𝑓 (x𝑡 ) = [𝑖1, 𝑖2, . . . , 𝑖𝑛] and 𝑔(t) = [𝑡1, 𝑡2, . . . , 𝑡𝑛]. Then, the
probability is computed as detailed in Equation (3).

The next two sections formally describe the process of selecting
conjugate pseudo-labels and the self-text distillation in detail.

4.2 Conjugate Pseudo-labels
In Fully TTA situations where the model is updated only during
the testing phase without access to source data, the accuracy of
pseudo-labels is crucial for ensuring the effectiveness of the model.
Previous pseudo-label methods only consider the prediction output
from the model [24], which may enhance the original bias of the
model, especially when the model is overconfident in its prediction.

Therefore, to enhance the reliability of pseudo-labels in fully
TTA, we employ the conjugate pseudo-labels technique 𝑦conjugate𝑡 .
This method considers both gradient information and entropy cer-
tainty. It initially involves entropy filtering to identify outputs with
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lower entropy, leading to more credible predictions from the model.
Mathematically, we define the entropy of the model’s output prob-
abilities p as:

𝐻 (p) = −
∑︁
𝑖

𝑝𝑖 log 𝑝𝑖 (4)

For each sample x𝑡 in the target domain X𝑇 , we calculate the
entropy 𝐻 (p(x𝑡 )) of the model’s output. Samples with entropy
lower than a threshold 𝛼 , i.e., {x𝑡 |𝐻 (p(x𝑡 )) < 𝛼}, are selected
for generating more reliable pseudo-labels. The selected pseudo-
labels 𝑦pseudo𝑡 are then used to compute the cross-entropy loss for
updating the model with the model’s predictions 𝑦𝑡,𝑖 :

Lce = −
∑︁
𝑖

𝑦
pseudo
𝑡 log𝑦𝑡,𝑖 (5)

For the selected pseudo-label samples, we compute the conjugate
pseudo-labels based on the gradient of a performance measure with
respect to the model’s parameters. In the CLIP model, the prediction
is based on the cosine similarity between the image features and
corresponding text features. The learnable parameters of the model
include the prompt embeddings associated with the text input t.
Given a pair of image and text (x𝑡 , t), the cosine similarity in the
CLIP model is defined as:

sim(x𝑡 , t) =
f (x𝑡 ) · g(t)
∥f (x𝑡 )∥∥g(t)∥

(6)

where f (x𝑡 ) represents the image features and g(t) represents the
text features extracted by the respective encoders in the CLIP model.
Consequently, the conjugate pseudo-label for an image x𝑡 is deter-
mined by the gradient of the cosine similarity with respect to the
image features f (x𝑡 ):

𝑦
conjugate
𝑡 = ∇f (x𝑡 ) sim(x𝑡 , t) (7)

This gradient provides direction for the model update, aiming to in-
crease the cosine similarity for the correct image-text pairs, thereby
improving the model’s accuracy on the target task. The gradient
of the cosine similarity with respect to the image features f (x𝑡 ) is
calculated as:

∇f (x𝑡 ) sim(x𝑡 , t) =
g(t)

∥f (x𝑡 )∥∥g(t)∥
− f (x𝑡 ) (f (x𝑡 ) · g(t))
∥f (x𝑡 )∥3∥g(t)∥

(8)

This takes both the alignment and magnitude of the image features
into account, directing the updates to not only match the direction
of the text features but also to adjust the scale of the image features.

Therefore, the conjugate loss is then:

Lgrad = −
𝐶∑︁
𝑖=1

𝑦
pseudo
𝑡 ·

(
𝑧𝑖 − 𝜖 · (1 − sim(x𝑡 , t))

+ 𝛼 · 𝑦conjugate𝑡 · (𝑧𝑖 − sim(x𝑡 , t))
) (9)

where 𝑧𝑖 are the logits. 𝜖 is a scaling factor to adjust the contribution
of the similarity term in the loss function. 𝛼 is a hyperparameter to
control the influence of the conjugate gradient term in the loss.

For the total conjugate pseudo-label method, the parameters are
updated using a combination of the cross-entropy loss and gradient
loss:

Lconj = Lgrad + Lce (10)
By applying these steps, our goal is to utilize a more accurate
pseudo-label to guide updates in the distribution shift scenario,

adapting the pre-trained model to the target domain more effec-
tively.

4.3 Self-text Distillation
The conjugate pseudo-labels provide some additional update in-
formation from the gradient information, optimizing the robust-
ness of the pseudo-labels at test-time. Furthermore, in addition
to this process, a self-regularization method also constrains the
optimization direction, further enhancing the robustness of the
model’s generalization capabilities. Existing test-time adaptation
methods commonly employ prior knowledge and use two models
in a teacher-student model distillation setup. However, for large-
scale vision-language models, this approach significantly increases
memory use and inference time. Minimizing these two overheads
is often of critical practical importance in real-world applications.

Hence, SCP employs a novel self-text distillation strategy as a
self-regularization mechanism. A fixed prompt list in CLIP’s text
encoder acts as the "teacher" and a learnable prompt mechanism
in the same encoder acts as the "student". This method explicitly
guides the training trajectory by imposing constraints, with the aim
of maximizing mutual consistency between the prompt features
and the frozen CLIP features. Ultimately, the goal is to mitigate
the problem of overfitting. Formally, given a learnable prompt t,
and a set of fixed text templates {𝑇1,𝑇2, . . . ,𝑇𝑛}, the text embedding
process through the CLIP text encoder 𝑔(·) and the computation of
fixed text feature embeddings vfixed can be represented as follows:

v = 𝑔(t) vfixed =
1
𝑛

𝑛∑︁
𝑘=1

𝑔(𝑇𝑘 ) (11)

The probability distributions 𝑝 (·) and 𝑞(·), derived from the
feature vectors v and vfixed through a softmax function, are given:

𝑝 (𝑖 |v) = exp(v ·w𝑖 )∑
𝑘 exp(v ·w𝑘 )

(12)

𝑞(𝑖 |vfixed) =
exp(vfixed ·w𝑖 )∑
𝑘 exp(vfixed ·w𝑘 )

(13)

where w𝑖 represents the weight vector associated with the 𝑖-th
category.

The self-text distillation loss, calculated using the KL divergence,
is expressed as:

Ltext =
∑︁
𝑖

𝑝 (𝑖 |v) log
(

𝑝 (𝑖 |v)
𝑞(𝑖 |vfixed)

)
(14)

The self-text distillation method focuses on aligning the learnable
and fixed embeddings across the dataset. Consequently, the calcu-
lation of Ltext, which aims to average the losses, may need to be
reconsidered based on the specific context of self-text distillation
implementation. This approach not only conserves memory, which
would otherwise be consumed by employing a teacher-student
model simultaneously, but it also ensures more stable updates to
the prompts.

Additionally, to enhance prediction stability and further reduce
bias towards extreme samples, ourmethodology integrates aweighted
averaging mechanism for updating the learnable prompts. This
method accumulates the influence of past prompts, ensuring that
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recent ones are adjusted in the context of their predecessors. The
cumulative weighted prompt is computed as follows:

T =

∑𝑛
𝑗=1𝑤 𝑗 t𝑗∑𝑛
𝑗=1𝑤 𝑗

, (15)

where the weight𝑤 𝑗 = 𝑒−(𝑛−( 𝑗+1) ) corresponds to the Gaussian-
based weight for the 𝑗-th prompt in the sequence, 𝑛 is the total
number of prompts, and T represents the updated prompt after
applying the weighted average. In this scheme, the weights are
configured to give greater influence to the more recent prompts,
achieving a balance between embracing new updates and retaining
the historical context, leading to a prompt that evolves smoothly
over time and is both stable and robust.

In our model, the overall optimization method is:

L = 𝜆1Lce + 𝜆2Lgrad + 𝜆3Ltext (16)

where, 𝜆 is weight coefficient.
We provide the algorithm pseudo code in Appendix A.1.

5 Experiments
In this section, we first present the experimental settings. Then,
we provide the results of a comparison on memory usage and the
inference time. In addition, we present an ablation study, analyzing
the impact of each component of the model.

5.1 Experiment settings
Benchmarks.We conduct zero-shot generalization evaluations on
three benchmarks

• Wild world distribution shift [26] This evaluation is designed
to assess the model’s robustness to changes in wild-world distri-
butions using 15 differently corrupted ImageNet variants. These
are considered to be indistinguishable from real-world scenarios.
• Cross-domain generalization [29]. This evaluation assesses
the generalization of the model to changes in fine-grained cate-
gorical datasets on 10 different categorical datasets.
• Natural distribution shift [34] This evaluation assesses the
model’s robustness to natural distribution shifts on four ImageNet
variants. These data are considered out-of-distribution data for
ImageNet.

Baselines. We compare the SCP with various test-time adaptation
methods, all of which are based on comparisons using the CLIP
model to ensure fairness. Each method qualifies as a full test-time
adaptation approach, with no access to source data and no retrain-
ing involved and updates are only made at test time. We strictly
adhered to the settings of these methods, reporting all results based
on five runs. The comparison included:

• TENT [37], the first method to employ test-time entropy mini-
mization.
• Pseudo-label [24], which updates the model using generated
pseudo-labels.
• MEMO [47], the inaugural image augmentation method for test-
time adaptation.
• CoTTA [40], which ustilizes a teacher-student model with image
augmentation.

• RMT [8], a robust teacher-student model employing symmetric
cross-entropy.
• SAR [26], a sharpness-aware and reliable entropy minimization
method.
• TPT [34], the first test-time adaptation method integrating CLIP
prompt tuning with minimization of marginal entropy through
image enhancement.

Datasets. For the wild world distribution shift benchmark [26], we
evaluate on the ImageNet-C dataset [15], which encompasses 15
types of image corruptions, including noise (Gaussian, shot, im-
pulse), blur (defocus, glass, motion, zoom), weather (snow, frost,
fog), and digital effects (brightness, contrast, elastic transformation,
pixelation, JPEG compression). Subsequently, for the cross-domain
generalization benchmark [29], we assess the performance on 10
distinct datasets. They include OxfordPets [27], StanfordCars [19],
Caltech101 [9], DTD [4], EuroSAT [13], FGVCAircraft [23], Flow-
ers102 [25], Food101 [1]. For the natural distribution shift bench-
mark [34], we evaluate on Imagenet [5], ImageNet-A [48], ImageNet-
R [14], ImageNet-Sketch [38], and ImageNetV2 [31].
Implementation Details. We test baselines following the experi-
mental setups and implementation of TENT, Pseudo Label, MEMO,
CoTTA, RMT, SAR and TPT. For our method, SCP, we initiate with
the 4-token prompt "a photo of a" and selected samples with en-
tropy less than 1 for pseudo-label, setting 𝜆1 = 10, 𝜆2 = 1000, and
𝜆3 = 5. For cross-domain evaluations, we set the batch size to 1. For
the other two benchmarks, the batch size is set to 100. The learning
rate is 0.0025. The length of fixed prompt list is 10 prompts.

5.2 Results
In this section, we present the experimental results for the three
benchmarks. Addtionally, we provide the evaluations of memory
usage and inference time. For all benchmark tests, we compare
each method separately based on the CLIP’s ResNet50 and ViT-B/16
models. All methods require no retraining, with updates conducted
only during testing.
Wild world distribution shift. In Table 1, we compare the perfor-
mance of the various methods in 15 ImageNet corruption scenarios.
When using the ResNet50 and ViT-B/16 models, the results from
TENT and pseudo label suggest that relying solely on entropy
minimization and pseudo-labels may reduce CLIP’s generalization
performance. Although TPT may show some improvement, it re-
lies on image augmentation based on noise transformation, which
may limit its effectiveness in corruption scenarios. However, our
method, SCP, outperforms all other methods in terms of average
accuracy and demonstrates improvements in almost all datasets.
This is because SCP utilizes gradient information to obtain more
accurate pseudo-labels and incorporates self-regulation to address
distribution shifts.
Cross-domain generalization. In Table 2, we evaluate the gen-
eralization performance of various models across 10 cross-domain
datasets. These datasets feature high-resolution images with a wide
range of unseen categories, from animals to vehicles such as cars
and airplanes. When using the ResNet50 and ViT-B/16 models,
entropy minimization methods, such as TENT and SAR, become
unstable. They solely rely on certainty, but the unseen categories
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Method Gauss. Shot Impul. Defoc. Glass Zoom Motion Snow Frost Fog Bright. Contr. Elastic Jpeg Pixel. Average

CLIP-RN50 41.4 39.4 24.6 48.6 33.2 35.4 45.1 34.8 41.5 47.2 54.5 48.6 47.5 44.0 41.3 41.8
• TENT 32.5 38.5 15.8 49.8 23.2 35.3 45.0 31.9 34.0 48.3 55.9 49.8 48.4 38.5 41.3 39.2
• Pseudo label 41.5 39.6 24.6 48.8 33.3 35.5 45.2 34.0 41.7 47.4 54.8 48.8 47.8 44.3 41.5 41.9
• MEMO 40.6 38.4 20.5 47.1 30.8 33.3 42.6 33.2 37.5 45.5 53.6 47.1 45.4 40.1 40.1 39.7
• CoTTA 40.7 38.3 23.0 42.7 30.4 31.0 45.8 32.6 38.1 48.2 53.0 48.7 47.7 45.0 42.8 40.5
• RMT 39.1 39.1 18.4 47.3 29.7 34.4 42.2 33.6 40.8 46.1 53.4 47.3 36.3 44.9 40.7 39.6
• SAR 41.6 39.6 24.7 49.6 33.6 36.0 45.8 35.4 42.1 48.0 55.5 49.6 48.4 44.6 41.9 42.4
• TPT 42.1 40.3 24.0 41.9 34.5 36.0 46.3 34.0 43.1 48.6 55.9 50.4 49.5 46.6 43.8 42.5
• SCP(Ours) 42.8 40.7 22.4 50.7 35.3 31.1 48.0 34.8 43.9 49.4 57.6 50.7 50.5 47.7 43.9 43.3

CLIP-ViT-B/16 57.6 57.2 51.2 61.6 53.9 48.9 60.2 53.4 55.3 58.7 64.5 61.7 58.5 57.6 59 57.3
• TENT 58.6 58.2 51.7 41.2 54.7 49.2 61.1 54.5 56.2 34.1 65.7 42.1 59.3 59.1 60.1 53.7
• Pseudo label 58.0 57.4 51.4 61.9 54.2 49.1 60.5 53.9 55.5 58.9 64.8 61.9 58.9 58.0 59.4 57.6
• MEMO 58.5 57.0 50.2 60.0 52.2 47.8 58.6 52.8 55.7 58.0 63.4 61.0 58.3 59.0 59.9 56.8
• CoTTA 57.5 57.6 51.2 59.2 53.6 48.6 57.2 55.1 54.9 57.6 62.2 61.3 59.7 59.3 60.1 57.0
• RMT 58.4 57.7 51.5 60.7 54.0 44.5 60.5 55.9 53.4 56.2 63.0 62.2 58.2 57.2 59.0 56.8
• SAR 58.2 58.1 51.9 62.4 54.8 49.5 61.2 54.5 56.2 59.4 64.9 62.4 58.9 58.4 60.2 58.1
• TPT 57.3 57.1 51.7 56.5 54.5 49.4 60.5 55.2 56.8 59.0 65.3 62.3 59.8 58.8 60.1 57.6
• SCP(Ours) 59.6 59.4 53.6 63.9 56.5 50.9 62.5 56.5 58.1 60.9 67.2 63.9 60.8 60.2 61.9 59.7

Table 1: Classification accuracy (%) for wild world distribution shift on ImageNet-C image classification task with the corruption
severity level 1. Evaluation on ResNet50 and ViT-B/16. Bold number indicates the best result.

Method Caltech DTD EuroSat Craft Food Flower Pets Cars Sun397 Ucf101 Average

CLIP-RN50 83.2 39.7 26.6 14.5 76.0 63.7 83.2 55.5 60.2 59.4 56.2
• TENT 85.9 39.9 21.5 15.8 76.1 61.1 83.6 55.7 59.9 58.1 55.8
• Pseudo label 86.0 40.1 23.8 15.6 75.4 60.9 83.7 55.7 58.7 58.3 55.8
•MEMO 85.9 40.0 21.0 15.7 76.0 61.1 83.6 55.8 59.9 58.2 55.7
• CoTTA 86.8 41.8 23.9 15.9 76.3 59.4 83.0 54.4 55.3 58.0 55.5
• RMT 86.7 41.9 23.8 15.9 48.8 59.6 83.7 55.8 58.9 58.2 53.3
• SAR 86.0 39.7 23.9 13.4 76.0 61.1 83.6 55.8 58.6 58.3 55.6
• TPT 86.6 42.1 27.4 16.5 76.3 62.4 83.3 56.1 60.8 59.6 57.1
• SCP(Ours) 87.6 41.7 28.2 16.8 78.9 63.7 83.9 56.2 63.6 61.1 58.2

CLIP-ViT-B/16 93.3 44.2 42.0 23.6 83.6 67.4 88.2 65.4 62.5 65.1 63.5
• TENT 93.0 44.3 37.2 23.7 86.0 67.3 88.1 65.4 64.4 64.8 63.4
• Pseudo label 93.0 44.3 38.9 23.7 85.6 67.4 88.1 65.3 62.6 65.0 63.4
•MEMO 93.1 44.3 36.0 23.7 86 67.3 88.2 65.4 63.5 64.8 63.2
• CoTTA 92.9 46.2 46.8 24.4 86.5 65.9 86.9 65.7 63.5 65.0 64.4
• RMT 93.0 46.2 41.0 24.2 85.3 66.0 87.8 64.5 63.4 64.9 63.6
• SAR 93.0 44.6 41.0 13.1 85.8 67.6 88.2 65.2 62.5 64.8 62.6
• TPT 94.1 47.7 42.4 24.7 84.6 68.9 87.7 66.8 65.5 68.0 65.0
• SCP(Ours) 93.9 43.9 47.3 24.8 87.4 70.0 88.6 65.9 69.1 67.8 65.9

Table 2: Classification accuracy (%) for cross-domain generalization on image classification task with 10 datasets. Evaluation on
ResNet50 and ViT-B/16. Bold number indicates the best result.

are too challenging to classify accurately. Teacher-student models
like CoTTA and SAR exhibit stability in scenarios with noise, but
they also struggle to predict new categories. The image augmenta-
tion method, TPT, shows some improvement but tends to overfit on
the augmentation samples. Our method, SCP, has enhanced CLIP’s
performance on almost all datasets, particularly on more complex
datasets like EuroSAT and SUN397, achieving an average accuracy
improvement of 2% over CLIP. These results suggest that self-text
distillation can mitigate overfitting and enhance stability when
addressing cross-domain challenges.
Natural distribution shift.As shown in Table 3, for both ResNet50
and ViT-B/16 models, SCP consistently maintains a higher accuracy,
with average accuracies of 46.5% and 61.4% respectively, which are

significantly above other competing methods. These results demon-
strate SCP’s superior generalization on a variety of challenging
datasets.
Memory usage and inference time. We compare the perfor-
mance of different methods in terms of memory usage, inference
time, and accuracy, using the ViT-B/16 model as the benchmark.
Entropy minimization methods like TENT and SAR use less mem-
ory but are less accurate. Teacher-student models, including RMT
and CoTTA, consume more memory, with CoTTA also extending
inference times, showcasing their computational complexity. TPT,
utilizing image augmentation, exhibits the longest inference times,
hinting at the added complexity from its image enhancement steps.
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Method ImageNet -A -R -Sketch -V2 Average

CLIP-RN50 58.2 21.8 56.1 33.3 51.4 44.2
• TENT 59.7 22.3 56.3 30.4 51.6 44.1
• Pseudo label 58.3 22.3 56.1 33.4 51.5 44.3
• MEMO 59.3 22.3 56.0 26.6 51.6 43.2
• CoTTA 58.8 22.1 54.7 30.5 50.5 43.3
• RMT 56.9 22.1 55.9 33.3 51.4 43.9
• SAR 58.9 22.3 56.3 33.6 51.5 44.5
• TPT 60.7 18.7 59.1 35.0 54.7 45.6
• SCP(Ours) 60.6 22.9 60.2 35.7 53.0 46.5

CLIP-ViT-B/16 66.7 47.8 73.9 46 60.8 59.0
• TENT 67.6 48.7 74.6 46.9 61.0 59.8
• Pseudo label 66.9 48.6 74.1 46.5 60.8 59.4
• MEMO 65.8 48.6 74.4 22.1 60.8 54.3
• CoTTA 63.1 47.5 70.5 40.7 56.8 55.7
• RMT 63.5 47.7 74.0 46.1 60.6 58.4
• SAR 67.6 48.8 74.4 46.8 61.0 59.7
• TPT 68.4 47.8 77.0 47.0 63.0 60.6
• SCP(Ours) 68.8 50.5 78.7 46.5 62.6 61.4

Table 3: Classification accuracy (%) for natural distribution
shift on image classification task. Evaluation on ResNet50
and ViT-B/16. Bold number indicates the best result.

SCP balances efficiency and accuracy, surpassing entropy minimiza-
tion in speed and maintaining high accuracy, indicating effective
management of distribution shifts with lower computational de-
mands. For detailed results, please refer to the Appendix A.3.

5.3 Ablation study
In this section, we discuss the ablation study, focusing on the impact
of self-text distillation and conjugate pseudo-labels, as well as the
hyperparameters, including 𝜆1, 𝜆2, 𝜆3. In addition, we compare the
experiments on prompt length, averaging methods, fixed prompt
list length and threshold 𝛼 .

Table 4 presents the contribution of the self-text distillation
(Ltext) and conjugate pseudo-labels (Lconj) techniques toward en-
hancing the CLIP model’s performance. As observed, applying con-
jugate pseudo-labels improves the average accuracy, which shows
the robustness of using both the gradients and entropy to optimize
the direction of the model updates. Next, integrating the self-text
distillation further increases the average accuracy. This shows that
consistency in the model is instrumental in boosting its generaliza-
tion capabilities. Notably, in all scenarios, the combination of the
two techniques yielded the highest average accuracy. Hence, we
can conclude that this combined strategy does enhance the model’s
ability to generalize across diverse distribution shifts.

In the ablation study presented in Figure 2, we explore the impact
of different hyperparameters on the performance of SCP. For 𝜆2 set
to 100, we observe that an increase in 𝜆1 tends to initially improve
accuracy but then shows a decrease, suggesting a sweet spot for
the trade-off between these two loss components. As 𝜆2 increases
to 1000, the pattern becomes less clear, potentially indicating a
different dynamic at higher scales of gradient loss. Furthermore,
varying 𝜆3, which controls the self-text distillation KL divergence,
shows a non-monotonic relationship with accuracy.

Method Wild Cross Natural Average

CLIP-RN50 41.8 56.2 44.2 47.4
+Lconj 41.7 56.7 46.2 48.2
+Ltext 43 56.9 46.2 48.7

+Lconj + Ltext 43.3 58.2 46.5 49.3

CLIP-ViT-B/16 57.3 64.5 59 60.3
+Lconj 58.9 63.8 60.7 61.1
+Ltext 58.7 64.9 60.5 61.4

+Lconj + Ltext 59.7 65.9 61.4 62.3

Table 4: Effects of the SCP components. Results are averaged
over three benchmarks, evaluated on ResNet50 and ViT-B/16.

Figure 2: Evaluation of SCP with selected hyperparameters
on three benchmarks using theViT-B/16model. The numbers
represent accuracy (%).

Besides, for Prompt token length, a prompt length of 4 tokens pro-
vides the highest accuracy. Regarding Averaging methods, Gaussian
weighting methods outperform both Exponential Moving Average
(EMA) and Basic Moving Average (BMA). The threshold 𝛼 , equal
to 1, provides the highest performance. For a more detailed results,
please refer to Appendix A.2.

6 Conclusion and Future Work
In this study, we introduce a self-text distillation with conjugate
pseudo-labels method (SCP) specifically designed for CLIP, aimed
at enhancing its zero-shot generalization capability when dealing
with changes in the distribution through test-time updates. SCP
significantly enhances CLIP’s zero-shot generalization performance
across wild world distribution shifts, natural distribution shifts,
and cross-domain generalization, while also accelerating inference
speed and effectively mitigates the overfitting issues associated
with previous test-time adaptation methods.

However, the current research focuses solely on individual datasets
and a single type of distribution shift. In the future, we aim to in-
vestigate the impacts under continuous distribution changes and
mixed distributions to further stabilize and robustify CLIP’s zero-
shot generalization.
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