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1 Comparison without Post-Processing 

Since some brand-new methods utilize post-processing, such as calibration stacking [5] or domain 
detector [2, 12], to alleviate the domain shift problem, we report the results of our Dual Progressive 
Prototype Network (DPPN) with post-processing in Table 3 of the main paper for fair comparison. In 
this part, we further compare our DPPN with recent methods that clearly report their results without 
post-processing, of which the comparison results are shown in Table 1. APN [15] only reports their 
results with calibration stacking. Our DPPN outperforms the best one by respectively 15.3%, 8.8%, 
and 7.3% for H on CUB, AWA2, and aPY datasets, and obtains comparable performance on SUN 
dataset. This demonstrates the effectiveness of learning representations that progressively explore 
category discrimination and attribute-region correspondence. 

Methods CUB AWA2 aPY SUN 
MCAu MCAs H MCAu MCAs H MCAu MCAs H MCAu MCAs H 

SJE[1] 
DEVISE[7] 
SYNC[3] 
MLSE[6] 
LFGAA[10] 
AREN[13] 
DAZLE[8] 

23.5 
23.8 
11.5 
22.3 
36.2 
38.9 
42.0 

59.2 
53.0 
70.9 
71.6 
80.9 
78.7 
65.3 

33.6 
32.8 
19.8 
34.0 
50.0 
52.1 
51.1 

8.0 
17.1 
10.0 
23.8 
27.0 
15.6 
25.7 

73.9 
74.7 
90.5 
83.2 
93.4 
92.9 
82.5 

14.4 
27.8 
18.0 
37.0 
41.9 
26.7 
39.2 

3.7 
4.9 
7.4 
12.7 

-
9.2 
-

55.7 
76.9 
66.3 
74.3 

-
76.9 

-

6.9 
9.2 
13.3 
21.7 

-
16.4 

-

14.7 
16.9 
7.9 
20.7 
18.5 
19.0 
21.7 

30.5 
27.4 
43.3 
36.4 
40.0 
38.8 
31.9 

19.8 
20.9 
13.4 
26.4 
25.3 
25.5 
25.8 

DPPN 56.8 82.8 67.4 34.7 94.1 50.7 17.7 80.8 29.0 18.1 42.1 25.3 
Table 1: Results of GZSL on four classifcation benchmarks under no post-processing settings. The 
best result is bolded. 

2 Conventional ZSL Results 

We provide the comparison results with several brand-new methods that are most related to DPPN 
under CZSL setting in Table 2. MCAu is used as evaluation metric. DPPN obtains comparable, 
even better performance, compared to SOTA methods, which demonstrates the transferability of our 
method. Notably, the performance of DPPN on CZSL is not as impressive as in GZSL. The reason is 
that DPPN focuses on improving representation discrimination to alleviate the domain bias problem. 
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Methods CUB AWA2 aPY SUN 
AREN[13] 
CosineSoftmax[9] 
RGEN[14] 
DAZLE[8] 
GEM-ZSL[11] 
APN[15] 

71.8 
54.4 
76.1 
65.9 
77.8 
72.0 

67.9 
71.1 
73.6 

-
67.3 
68.4 

39.2 
38.0 
44.4 

-
-
-

60.6 
62.6 
63.8 

-
62.8 
61.6 

DPPN 77.8 73.3 45.1 61.5 
Table 2: Results of CZSL. MCAu is used as the evaluation metric. The best result is bolded, and the 
second best is underlined. 

3 Comparison on Evaluation Metric AUSUC 

In this section, we give the comparison results with recent related methods on the evaluation metric 
of AUSUC [4]. As shown in Table 3, our DPPN outperforms the best one by respectively 19.7% and 
7.7% for AUSUC on CUB and AWA2 datasets, and obtains comparable performance on SUN dataset. 
The robust improvements over various metrics prove that DPPN can effectively alleviate the domain 
bias problem in GZSL. 

Methods CUB AWA2 aPY SUN 
SYNC[3] 
COSMO[2] 
EXEM[4] 

33.7 
35.7 
36.6 

50.4 
-

55.9 

-
-
-

24.1 
23.9 
25.1 

DPPN 56.3 63.6 33.4 23.1 
Table 3: Comparison results on AUSUC metric. The best result is bolded. 

4 Results of Input Size 224 × 224 

For fair comparison, we use the setting of input size 448 × 448 following recent SOTA methods, e.g., 
VSE-S [18], GEM-ZSL [11], and AREN [13]. In this part, we conduct experiments comparing DPPN 
with recent methods under the setting of input size 224×224, of which the results are shown in Table 4. 
From the results, our DPPN outperforms the best previous method by respectively 3.8%, 6.7%, and 
2.9% on CUB, aPY, and SUN datasets, and achieves the second-best performance on AWA2. The 
SOTA performance on different resolutions demonstrates the effectiveness and generalization of our 
DPPN. 

Methods CUB AWA2 aPY SUN 
MCAu MCAs H MCAu MCAs H MCAu MCAs H MCAu MCAs H 

PREN[17] 
LFGAA[10] 
AREN[13] 
RGEN[14] 
DAZLE[8] 
SELAR[16] 

32.5 
43.4 
63.2 
73.5 
56.7 
43.0 

55.8 
79.6 
69.0 
60.0 
59.6 
76.3 

43.1 
56.2 
66.0 
66.1 
58.1 
55.0 

32.4 
50.0 
54.7 
76.5 
60.3 
32.9 

88.6 
90.3 
79.1 
67.1 
75.7 
78.7 

47.4 
64.4 
64.7 
71.5 
67.1 
46.4 

-
-

30.0 
48.1 

-
-

-
-

47.9 
30.4 

-
-

-
-

36.9 
37.2 

-
-

35.4 
20.8 
40.3 
31.7 
52.3 
23.8 

27.2 
34.9 
32.3 
44.0 
24.3 
37.2 

30.8 
26.1 
35.9 
36.8 
33.2 
29.0 

DPPN 66.2 74.1 69.9 60.3 81.6 69.4 35.5 57.5 43.9 48.7 33.5 39.7 
Table 4: Results of GZSL on four classifcation benchmarks using input size 224 × 224. The best 
result is bolded, and the second best is underlined. 

5 Results of w/o Finetuning 

We adopt a two-step training schedule that frst trains DPPN with the fxed ResNet-101 backbone 
and then fne-tunes the whole network. As shown in Table 5, we also provide the results without 
fnetuning. Our DPPN outperforms the best previous method by respectively 5.0%, 5.1%, 6.5%, and 
0.9% for H on CUB, AWA2, aPY, and SUN datasets. The results show that our DPPN is superior to 
previous methods even without fnetuning. 
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Methods CUB AWA2 aPY SUN 
MCAu MCAs H MCAu MCAs H MCAu MCAs H MCAu MCAs H 

MLSE[6] 22.3 71.6 34.0 23.8 83.2 37.0 12.7 74.3 21.7 20.7 36.4 26.4 
CosineSoftmax[9] 47.4 47.6 47.5 56.4 81.4 66.7 26.5 74.0 39.0 36.3 42.8 39.3 
DAZLE[8] 56.7 59.6 58.1 60.3 75.7 67.1 - - - 52.3 24.3 33.2 
DPPN w/o ft. 60.4 66.1 63.1 61.8 86.8 72.2 38.8 55.0 45.5 45.0 36.2 40.2 

Table 5: Comparison results under without fnetuning setting. The best result is bolded. 

Different Combinations of Representations in Inference 

Only the visual representation fK (X) at the K-th iteration is used in inference for simplicity. In 
this section, we conduct experiments of using different combinations of representations as the fnal 
image representation in inference, of which the results are shown in Table 6. From the table, we 
can see that using only the K-th representation obtains comparable results with summing up all the 
representations. Since the representation derives from the preceding representation, the preceding 
representations bring limited supplement to the fnal performance. Besides, concatenating all the 
representations results in a fnal representation with a large dim, which is harder to train and obtains 
worse performance. Moreover, using f1(X) as the fnal image representation can obtain considerable 
performance. However, our DPPN learns more transferable and distinctive representations through 
updating, which will achieve better results if using the fnal representation in inference. 

Methods CUB AWA2 aPY SUN 
MCAu MCAs H MCAu MCAs H MCAu MCAs H MCAu MCAs H 

Sum All 72.0 75.2 73.6 61.4 89.7 72.9 39.5 60.5 47.8 42.4 38.6 40.5 
Concat All 69.3 73.2 71.2 60.5 87.1 71.4 39.3 60.0 47.5 41.5 38.2 39.8 
f1(X) (1-th) 65.8 80.3 72.3 62.9 82.8 71.5 37.9 58.9 46.1 46.3 34.4 39.5 
fK (X) (K-th) 70.2 77.1 73.5 63.1 86.8 73.1 40.0 61.2 48.4 47.9 35.8 41.0 

Table 6: Results of using different combinations of representations as the fnal image representation 
for inference. 

7 Visualization of Representations 

To intuitively demonstrate the distinction of our visual representations, we compare the representations 
of DPPN and Base-V2S using t-SNE on randomly selected categories, of which the results are shown 
in Fig. 1. Compared to Base-V2S, the representations are more compact inside a category and the 
margins between seen and unseen categories are enlarged in DPPN. This refects that DPPN obtains 
more distinctive and transferable representations through progressively learning attribute-region 
correspondence and category discrimination. 

CUB

Base-V2S DPPN

aPY

Base-V2S DPPN

Figure 1: Visualization of representations on CUB and aPY datasets. Dotted circles denote unseen 
categories while seen categories are not circled. 

8 Broader Impact 

This paper proposes a novel method DPPN to tackle the domain shift problem in Generalized Zero-
Shot Learning. The positive impacts of this paper can be summarized in two-fold: a) The proposed 
method enables people to recognize novel categories without elaborate labeling, which can reduce 
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annotation costs and diffculties. b) Our proposed DPPN brings negligible additional computation 
over the feature extractor network, which can save computing resources. The potential negative 
societal impacts contain: a) Our DPPN can alleviate the burden of labeling data, which may cause 
unemployment of data annotators. b) Our DPPN may be not suitable for data with large #categories 
and small #images in each category. c) The recognition of unseen domain remains still not good 
enough for industrial use, which should be further studied. 
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