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A RELATED WORK

Our work connects most closely to human-in-the-loop data augmentation and the expansive literature surrounding human
categorical perception from the cognitive science community, as well as ongoing efforts in the machine learning community
to develop more efficacious mixup-based data and label mixing functions.

A.1 HUMAN-IN-THE-LOOP DATA AUGMENTATION

Incorporating expert feedback into the learning procedure has received increasing attention [Chen et al., 2022]. In particular,
previous work has considered incorporating humans “in the loop” for data augmentation. For instance, DatasetGAN [Zhang
et al., 2021] employs human participants to label GAN-generated images and feeds these back to the model to generate
more synthetic data. [Kaushik et al., 2019] similarly incorporate human feedback by having humans create counterfactual
samples, and has been shown to be an efficient method to adjust model behavior [Kaushik et al., 2021]. Other works have
considered employing humans to provide “rationales” about examples to improve data-efficiency and downstream modeling
performance [Zaidan et al., 2007]. Here, we marry these ideas in the context of mixup by eliciting data and label-mixing
function parameters to align with human percepts.

A.2 HUMAN CATEGORICAL PERCEPTION

In cognitive science, eliciting humans’ judgments over synthetically-constructed examples is a tried-and-true method
to characterize human category boundaries [Newell and Bülthoff, 2002, Folstein et al., 2013, Feldman, 2021, Folstein
et al., 2012]. Such studies often reveal a non-linear structure of humans’ percepts. For instance, in the audio domain,
the identification of vowel categories has been found to demonstrate “warping” close to prototypical category members –
known as the “perceptual magnet effect” [Kuhl, 1991, Feldman et al., 2009]. Similar nonlinearities have been found in the
perception of boundaries between face identities [Beale and Keil, 1995] and the transitions between 3D shapes [Newell and
Bülthoff, 2002, Destler et al., 2019]. Our linearly interpolated stimuli are similar in spirit to the morphological trajectories
used in these works, as well as other synthetically-combined images [Oliva et al., 2006]. [Gruber et al., 2018] also consider
50/50 mixed images; however, their elicitation involves open-ended judgments which does not permit the same kind of data
and label mixing alignment studies as our methods more directly elicit human-inferred generative parameters. Our work also
connects to other non-linear perceptual phenomena encountered in the visual domain; namely, binocular rivalry, whereby
present participants with a different image in each eye has been shown to induce oscillatory percepts [Blake and Logothetis,
2002, Tong et al., 2006].
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A.3 OTHER MIXUP-BASED SYNTHETIC DATA SCHEMES

Many alternative mixup data and label mixing functions have been proposed [Verma et al., 2019, Yun et al., 2019, Kim
et al., 2020a,b, Hendrycks et al., 2022]. Closest to our work, [Sohn et al., 2022] highlight particular issues with the linear
interpolation in label space on the learned topology of the model’s category boundaries and instead utilize a Gaussian
Mixture Model (GMM)-based relabeling scheme to construct “better” labels than those used in baseline mixup. Additional
work on learning better pseudo-labels over mixup samples have been proposed [Arazo et al., 2020, Cascante-Bonilla et al.,
2020, Sohn et al., 2020, Qiu et al., 2022]. Similarly, Between-class (BC) learning [Tokozume et al., 2017, 2018] proposes
hand-crafted adjustments to label construction to better align with human perception based on waveform modulations;
however, to our knowledge, no previous works have directly considered incorporating humans in-the-loop for either the
construction of mixup samples or associated relabeling.

B ADDITIONAL NOTES ON H-MIX

B.1 HUMAN SUBJECT EXPERIMENTS

We include additional details on our human elicitation studies. For all experiments, we require participants speak English as
a first-language and reside in the United States. Across all experiments, the mean age for participants was 37.5 years old (±
standard deviation of 12.7 yrs) . The self-reported sex breakdown was approximately 57% male and 43% female.

Elicitation (RQ1) Each participant sees a total of 32 mixed images, where the final two are repeats. Repeats are primarily
used here to measure raters’ internal consistency1. The median time taken per participant per image as 9.30 and 11.01 seconds
for the Construct and Select-Shuffled interfaces, respectively. A bonus was offered to encourage participants
to provide responses which would match what other participants would provide; we applied this bonus to all participants
post-hoc resulting in the average participant being paid at a rate of $11.78.

Multiple Interface Styles (RQ1) Why do we consider two styles of elicitation interfaces? We reason that the first interface
could be prone to ordering effects – an astute participant could realize that they can count out where the midpoint is
located. This led us to design the second variety (Select-Shuffled) wherein the participant sees all images shuffled
simultaneously. We hypothesize that Construct could induce responses biased by the participant’s starting position. To
probe this, we run two sub-variants wherein participants start from either λf = 0.1 or λf = 0.9.

Elicitation (RQ2) Each participant sees 59− 62 images, where two images are repeated. Repeats are placed at the end
and correspond to the images presented on trials 15 and 20, respectively2. The order of the images presented in a batch, as
well as the order of the endpoint labels displayed for a given image, are shuffled across participants. We follow the same
third-person perspective prompting in Section 3 from [Chung et al., 2019]. Participants are asked “what combinations of
classes” they thought other participants would say is “used to make” each image, and “how confident” they thought other
participants would be in their estimate. Responses are indicated on a slider per question. An example survey screen can be
seen in Fig. 4. Subjects took a median of 8.41 seconds per image and were payed at a rate of $8/hr, with an optional bonus
which sought to encourage participants to provide calibrated confidence estimates, similar to that of [Vodrahalli et al., 2021];
the bonus was applied to all participants post-hoc. Each mixed image was seen by at least two different participants each.
Our interface is depicted in Fig. 4.

B.2 BREAK FROM MONOTONICTY

For users of H-Mix, it is worth noting that we do encounter some breaks with monotonicity (see Fig. 1) in a few of the
aggregated “category boundaries.” We reason this could be in part due to several aspects of our set-up. First, our study
involved irregular sampling across the space of mixing coefficients we consider: the 50/50 point is enriched. We ran two
phases of elicitation: in the first, we sampled 6 image classes per pair to be shown for three mixing coefficients: 0.5, and
one chosen randomly from each of the sets {0.1, 0.25} and {0.75, 0.9}, respectively (810 images of the 2070). All 1260

1Participants’ selections, for each interface type, change by a median of 0.1 in repeat trials, suggesting some inconsistencies in
participants’ judgments which persists across elicitation method.

2We observe a median difference of 0.03 and 0.05 in the inferred mixing coefficient and confidence on repeat trials, indicative of high
intra-annotator consistency.



other images are shown for a single mixing coefficient sampled uniformly from the set. Second, while we have human
judgments for over 2000 total images, there are less than 50 synthetic images considered for each category pair, giving any
participant noise – or the odd image – greater leverage to impact trends. We encourage others to use HILL-MixE Suite
and continue to scale this work and elucidate the stability of the inferred mixing coefficient category boundaries we begin to
hint at here.

Figure 1: Category boundary elicited from human participants involves a break with monotonicity.

C CONFIDENCE-BASED SMOOTHING DETAILS

We include further details of our methodology for leveraging human-provided confidence to construct ỹ introduced in Section
5. Human-derived soft labels have been demonstrated to be valuable for learning [Nguyen et al., 2013, Peterson et al., 2019,
Collins et al., 2022, Sanders et al., 2022]. We transform humans’ reported confidence into a smoothing parameter to induce
softness using an exponentially-decaying function of human-provided confidence ω: a ∗ (bω); here, a = 50, b = 0.0001.
We use the transformed confidence for additive smoothing on the two-category ỹ, spread mass accordingly across the
full gamut of classes. That is, we use smooth the mass between a completely uniform distribution and a “two-hot” label
which uses the human-derived relabeling. Parameters a, b are selected using a held-out set of regular CIFAR-10 images
(from a ∈ {5, 10, 15, 25, 50, 100}, b ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1}). We recommend the consideration of alternate
smoothing functions, which could, for instance, account for miscalibration in humans’ reported confidence.

Further, we compare the impact of learning with aggregated versus de-aggregated participants’ predictions. In Section 5,
we considered learning with relabelings averaged across participants for a mixed image, and smoothed with confidence
reports averaged across participants. Here, we consider instead separating out participants’ responses to learn with individual
relabelings smoothed by individual confidence, closely related to [Wei et al., 2022]. We find in Table 1 that learning with
de-aggregated data could potentially offer greater performance gains. However, as [Wei et al., 2022] discuss: whether to
aggregate can depend on many factors. Our empirical findings support the need for tailoring label construction in context.



Table 1: Varying whether to aggregate when using incorporating human confidence ω in label construction.

Label Type CE FGSM Calib

Ours (Avg with ω) 1.48±0.06 8.89±1.59 0.19±0.01
Ours (Separated with ω) 1.44±0.11 8.33±1.92 0.19±0.01

D INTERFACES INCLUDED IN HILL MIXE SUITE

We display sample pages of the interfaces created and used in this work, which we release as part of HILL MixE Suite.
Interfaces for Section 3 are shown in Figs. 2 and 3; the interface used Sections 4 is depicted in Fig. 4.

Figure 2: Construct interface where participants press arrow keys to select x̃.

Figure 3: Interface for the selection of a given λg from a set of possible mixed images.



Figure 4: Interface for inferring the mixup generative label parameter and providing confidence in such inference.

E ALTERNATIVE SYNTHETIC EXAMPLE CATEGORY COMPOSITION ELICITATION

Given human participants are uncertain about the underlying mixing coefficient in a number of cases, we consider whether
the category composition typically used in mixup – e.g., placing mass only on the labels of the images used to form the
synthetic combined sample – are reasonable. As demonstrated in the main text and in Fig. 5, a synthetic mixup image may
look like something else entirely.

We therefore consider a follow-up small-scale human elicitation study wherein we relax the mixup assumption that the label
mixing function must output a label constructed only from the two classes used to form the mixed image – and instead
collect ỹ directly by showing the mixed image to human annotators in the form of soft labels. This provides a comparison to
the previous human-annotated endpoint label mixing coefficients, and can further inspire useful designs for the label mixing
policy.

E.1 STUDY DESIGN

We recruit N = 8 participants again from Prolific [Palan and Schitter, 2018], yielding soft labels over a total of 100 mixed
images. Each participant saw 25 mixed images; each mixed image of the 100 was seen by two participants. The images are
drawn from the same set of stimuli created in Section 4; however, here, we only show images with a mixing coefficient
∈ {0.25, 0.5, 0.75}. Participants are told that images are formed by combining other images, and are asked to provide what
they think others would see in the image. Participants are asked to specify what others would view as the most probable
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Figure 5: Additional example soft labels elicited from individuals. Original mixup label for each associated image is shown
in red; the soft label elicited from humans (averaged over two individuals) is shown in blue. The left and center examples
involve substantial discrepancies between human percepts and the label which would be used in mixup; the rightmost image
highlights that some percepts do match the underlying mixing components (even without being informed of the underlying
classes). Examples are deliberately chosen to illustrate the range of soft labels elicited; all examples are include in H-Mix.

category with an associated percentage (on a scale of 0-100), an optional second most probable category with a probability,
and any categories that would be perceived as definitely not in the image. Again employing the third-person viewpoint
framing borrowed from [Chung et al., 2019]. We rely on the soft label elicitation interface proposed in [Collins et al., 2022]
and modify the instructions to be better suited combinations of images. Following Collins et al., we construct “Top 2 Clamp”
labels with a redistribution factor of 0.1, which controls how we spread mass over any categories still leftover as “possible”
once accounting for those ruled out as definitely not possible.



E.2 ANALYZING ELICITED SOFT LABELS FOR SYNTHETIC IMAGES

We explore the correspondence between the elicited category compositions of the mixed images with the labels that would
be used to generate the mixed image (as would be used in traditional mixup; i.e., placing mass only on two categories).
While participants did tend to place probability mass on the generating endpoints that correlated with the mixing coefficient
used (Pearson r = 0.52), interestingly, we find that participants report thinking that 38.3% (±0.6%) of the probability mass
of a label should be placed on different classes from those which are used to create the image. This is remarkable and
suggests that mixed images do not consistently look like the labels used to create them, corroborate similar trends found in
[Gruber et al., 2018] wherein humans endorse categories which are not present in the image. Hence, alternative labelings
even beyond the kind we explore in the main text may be preferred which are more aligned with human percepts. Examples
of such labeled mixed images are shown in Fig. 5 and the main text.

Takeaways The typical two-category labels used in mixup do not consistently match human perception. We find that
human annotators often assign probabilities to alternate classes when asked to label a mixed image. This suggests that the
pursuit of aligning synthetic data labeling to match human perception, at least for the synthetic data constructor used in
mixup, warrants the design of alternative label mixing functions grich which yield richer label distributions over a broader
range of categories.
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