
Graph Neural Network Bandits

Parnian Kassraie
ETH Zurich

pkassraie@ethz.ch

Andreas Krause
ETH Zurich

krausea@ethz.ch

Ilija Bogunovic
University College London
i.bogunovic@ucl.ac.uk

Abstract

We consider the bandit optimization problem with the reward function defined over
graph-structured data. This problem has important applications in molecule design
and drug discovery, where the reward is naturally invariant to graph permutations.
The key challenges in this setting are scaling to large domains, and to graphs
with many nodes. We resolve these challenges by embedding the permutation
invariance into our model. In particular, we show that graph neural networks
(GNNs) can be used to estimate the reward function, assuming it resides in the
Reproducing Kernel Hilbert Space of a permutation-invariant additive kernel. By
establishing a novel connection between such kernels and the graph neural tangent
kernel (GNTK), we introduce the first GNN confidence bound and use it to design
a phased-elimination algorithm with sublinear regret. Our regret bound depends
on the GNTK’s maximum information gain, which we also provide a bound for.
While the reward function depends on all N node features, our guarantees are
independent of the number of graph nodes N . Empirically, our approach exhibits
competitive performance and scales well on graph-structured domains.

1 Introduction

Contemporary bandit optimization approaches consider problems on large or continuous domains
and have successfully been applied to a significant number of machine learning and real-world
applications, e.g., in mobile health, environmental monitoring, economics, and hyperparameter
tuning, to name a few. The main idea behind them is to exploit the correlations between the rewards
of “similar” actions. This in turn, has resulted in increasingly rich models of reward functions (e.g.,
in linear and kernelized bandits [37, 12]), including several recent attempts to harness deep neural
networks for bandit tasks (see, e.g, [45, 29]). A vast majority of previous works only focus on
standard input domains and obtaining theoretical regret bounds.

Learning on graph-structured data, such as molecules or biological graph representations, requires
designing sequential methods that can effectively exploit the structure of graphs. Consequently, graph
neural networks (GNNs) have received attention as a rapidly expanding class of machine learning
models. They deem remarkably well-suited for prediction tasks in applications such as designing
novel materials [20], drug discovery [22], structure-based protein function prediction [16], etc. This
rises the question of how to bridge the gap, and design bandit optimization algorithms on graph-
structured data that can exploit the power of graph neural networks to approximate a graph reward.

In this paper, we consider bandit optimization over graphs and propose to employ graph neural net-
works with one convolutional layer to estimate the unknown reward. To scale to large graph domains
(both in the number of graphs and number of nodes), we propose practical structural assumptions
to model the reward function. In particular, we propose to use permutation invariant additive kernels.
We show a novel connection between such kernels and the graph neural tangent kernel (GNTK)
that we define in Section 3. Our main result are GNN confidence bounds that can be readily used
in sequential decision-making algorithms to achieve sublinear regret bounds (see Section 4.3).

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Related Work. Our work extends the rich toolbox of methods for kernelized bandits and Bayesian
optimization (BO) that work under the norm bounded Reproducing Kernel Hilbert Space assumption
[37, 14, 42, 12]). The majority of these methods are designed for general Euclidean domains and
rely on kernelized confidence sets to select which action to query next. The exception is [43], that
consider the spectral setting in which the reward function is a linear combination of the eigenvectors
of the graph Laplacian and the bandit problem is defined over nodes of a single graph. In contrast,
our focus is on optimizing over graph domains (i.e., set of graphs), and constructing confidence sets
that can quantify the uncertainty of graph neural networks estimates.

This work contributes to the literature on neural bandits, in which a fully-connected [45, 44, 19],
or a single hidden layer convolutional network [25] is used to estimate the reward function. These
works provide sublinear cumulative regret bounds in their respective settings, however, when applied
directly to graph features (as we demonstrate in Section 4.3), these approaches do not scale well with
the number of graph nodes.

Due to its important applications in molecule design, sequential optimization on graphs has recently
received considerable attention. For example, in [28], the authors propose a kernel to capture
similarities between graphs, and at every step, select the next graph through a kernelized random
walk. Other works (e.g., [17, 18, 23, 38]) encode graph representations to the (continuous) latent
space of a variational autoencoder and perform BO in the latent space. While practically relevant for
discovering novel molecules with optimized properties, these approaches lack theoretical guarantees
and deem computationally demanding.

A primary focus in our work is on embedding the natural structure of the data, i.e., permutation
invariance, into the reward model. This is inspired by the works of [6, 32] that consider invariances
in kernel-based supervised learning. Consequently, the graph neural tangent kernel plays an integral
role in our theoretical analysis. Du et al. [15] provide a recursive expression for the tangent kernel
of a GNN, without showing that the obtained expression is the limiting tangent kernel as defined
in Jacot et al. [21] (i.e., as in Eq. (3)). In contrast, we analyze the learning dynamics of the GNN
and properties of the GNTK by exploiting the connection between the structure of a graph neural
network and that of a neural network (in Section 3). We recover that the graph neural tangent kernel
also encodes additivity. Additive models for bandit optimization have been previously studied in [24]
and [35], however, these works only focus on Euclidean domains and standard base kernels.

Finally, we build upon the recent literature on elimination-based algorithms that make use of maximum
variance reduction sampling [13, 8, 7, 9, 40, 30]. One of our proposed algorithms, GNN-PE, employs
a phased elimination strategy together with our GNN confidence sets.

Main Contributions. We introduce a bandit problem over graphs and propose to capture prior
knowledge by modeling the unknown reward function using a permutation invariant additive kernel.
We establish a key connection between such kernel assumptions and the graph neural tangent kernel
(Proposition 3.2). By exploiting this connection, we provide novel statistical confidence bounds
for the graph neural network estimator (Theorem 4.2). We further prove that a phased elimination
algorithm that uses our GNN-confidence bounds (GNN-PE) achieves sublinear regret (Theorem 4.3).
Importantly, our regret bound scales favorably with the number of graphs and is independent of
the number of graph nodes (see Table 1). Finally, we empirically demonstrate that our algorithm
consistently outperforms baselines across a range of problem instances.

2 Problem Statement

We consider a bandit problem where the learner aims to optimize an unknown reward function via
sequential interactions with a stochastic environment. At every time step t ∈ {1, . . . , T}, the learner
selects a graph Gt from a graph domain G and observes a noisy reward yt = f∗(Gt) + εt, where f∗ :
G → R is the reward function and εt is i.i.d. zero-mean sub-Gaussian noise with known variance proxy
σ2. Over a time horizon T , the learner seeks a small cumulative regretRT =

∑T
t=1 f

∗(G∗)−f∗(Gt),
where G∗ ∈ arg maxG∈G f

∗(G). The aim is to attain regret that is sublinear in T , meaning that
RT /T → 0 as T →∞, which implies convergence to the optimal graph. As an example application,
consider drug or material design, where molecules may be represented with graph structures (e.g.,
from SMILES representations [1]) and the reward f∗(G) can correspond to an unknown molecular
property of interest, e.g., atomization energy. Evaluating such properties typically requires running

2

costly simulations or experiments with noisy outcomes. To identify the most promising candidate,
e.g., the molecule with the highest atomization energy, molecules are sequentially recommended for
testing and the goal is to find the optimal molecule with the least number of evaluations.

Graph Domain. We assume that the domain G is a finite set of undirected graphs with N nodes.1
Without exploiting structure, standard bandit algorithms (e.g., [3]) cannot generalize across graphs,
and their regret linearly depends on |G|. To capture the structure, we consider reward functions de-
pending on features associated with the graph nodes. Similar to Du et al. [15], we associate each node
j ∈ [N] with a feature vector hG,j ∈ Rd, for every graph G ∈ G. We use hG = (hG,j)

N
j=1 ∈ RNd

to denote the concatenated vector of all node features, and N (j) as the neighborhood of node j,
including itself. We define the aggregated node feature h̄G,j =

∑
i∈N (j) hG,i/||

∑
i∈N (j) hG,i||2 as

the normalized sum of the neighboring nodes’ features. Similarly, h̄G ∈ RNd denotes the aggregated
features, stacked across all nodes. Lastly, we let PN be the group of all permutations of length N ,
and use c ·G to denote a permuted graph, where a permutation c ∈ PN is a bijective mapping from
{1, . . . , N} onto itself. Permuting the nodes of a graph c · G produces a permuted feature vector
hc·G := (hG,c(j))

N
j=1, and the same holds for the aggregated features h̄c·G .

Reward Model. Practical graph optimization problems, such as drug discovery and materials
optimization often do not depend on how the graphs’ nodes in the dataset are ordered. We incorporate
this structural prior into modeling the reward function, and consider functions that are invariant to
node permutations. We assume that f∗ depends on the graph only through the aggregated node
features and gives the same reward for all permutations of a graph, i.e., f∗(c ·G) = f∗(G), for any
G ∈ G and c ∈ PN . To guarantee such an invariance, we assume that the reward belongs to the
reproducing kernel Hilbert space (RKHS) corresponding to a permutation invariant kernel

k̄(G,G′) =
1

|PN |2
∑

c,c′∈PN

k(h̄c·G, h̄c′·G′),

where k can be any kernel defined on graph representations h̄G. This assumption further restricts
the hypothesis space to permutation invariant functions defined on Nd–dimensional vector repre-
sentations of graphs. This is due to the reproducing property of the RKHS which allows us to write
f(G) = 〈f, k̄(G, ·)〉 = 〈f, k̄(c ·G, ·)〉 = f(c ·G). To make progress when optimizing over graphs
with a large number of nodes N , we assume that k decomposes additively over node features, i.e.,

k(h̄G, h̄G′) =
1

N

N∑

j=1

k(j)(h̄G,j , h̄G′,j).

Thereby, we obtain an additive graph kernel that is invariant to node permutations:

k̄(G,G′) =
1

|PN |2
∑

c,c′∈PN

1

N

N∑

j=1

k(j)(h̄G,c(j), h̄G′,c′(j)). (1)

For an arbitrary choice of k(j), calculating k̄ requires a costly sum over (N !)2 operands, since
|PN | = N !. In Section 3, we select a base kernel for which the sum can be reduced to N2 terms. We
are now in a position to state our main assumption. We assume that f∗ belongs to the RKHS of k̄
and has a B-bounded RKHS norm. The norm-bounded RKHS regularity assumption is typical in the
kernelized and neural bandits literature [37, 12, 45, 25]. Note that Eq. (1) only puts a structural prior
on the kernel function, i.e., it describes the generic form of an additive permutation invariant graph
kernel. Specifying the base kernels k(j) determines the representation power of k̄. The smoother the
base kernels are, the less complex the RKHS of k̄ will be. In Section 3, we set the base kernels k(j)
such that k̄ becomes the expressive graph neural tangent kernel.

3 Graph Neural Networks

Graph neural networks are effective models for learning complex functions defined on graphs. As
in Du et al. [15], we consider graph networks that have a single graph convolutional layer and L

1This assumption is for ease of exposition. Graphs with fewer than N nodes can be treated by adding
auxiliary nodes with no features that are disconnected from the rest of the graph.

3

fully-connected ReLU layers of equal width m. Such a network fGNN(G;θ) : G → R may be
recursively defined as follows:

f (1)(h̄G,j) = W (1)h̄G,j ,

f (l)(h̄G,j) =

√
2

m
W (l)σrelu

(
f (l−1)(h̄G,j)

)
∈ Rm, 1 < l ≤ L

fGNN(G;θ) =
1

N

N∑

j=1

√
2W (L+1)σrelu

(
f (L)(h̄G,j)

)
,

(2)

where θ := (W (i))i≤L+1 is initialized randomly with standard normal i.i.d. entries, and
σrelu(x) := max(0,x). The network operates on aggregated node features h̄G,j as typical in Graph
Convolutional Networks [27]. For convenience, we assume that at initialization fGNN(G;θ0) = 0,
for all G ∈ G, similar to [25, 45]. This assumption can be fulfilled without loss of generality, with
a similar treatment as in [25, Appendix B.2].

Embedded Invariances. In this work, we use graph neural networks to estimate the unknown reward
function f∗. This choice is motivated by the expressiveness of the GNN, the fact that it scales well
with graph size, and particularly due to the invariances embedded in its structure. We observe that the
graph neural network fGNN is invariant to node permutations, i.e., for all G ∈ G and c ∈ PN ,

fGNN(G;θ) = fGNN(c ·G;θ).

The key step to show this property is proving that fGNN can be expressed as an additive model of
L-layer fully-connected ReLU networks,

fGNN(G;θ) =
1

N

N∑

j=1

fNN(h̄G,j ;θ),

where fNN has a similar recursive definition as fGNN (see Equation A.1). The above properties are
formalized in Lemma A.1 and Lemma A.2.

Lazy (NTK) Regime. We initialize and train fGNN in the well-known lazy regime [11]. In this
initialization regime, when the width m is large, training with gradient descent using a small learning
rate causes little change in the network’s parameters. Let gGNN(G,θ) = ∇θfGNN(G,θ) denote
the gradient of the network. It can be shown that during training, for all G ∈ G, the network
remains close to fGNN(G,θ0) + gTGNN(G,θ0)(θ − θ0), that is, its first order approximation around
initialization parameters θ0. Training this linearized model with a squared error loss is equivalent to
kernel regression with a tangent kernel k̃GNN(G,G′) := gTGNN(G;θ0) gGNN(G′;θ0). For networks
of finite width, this kernel function is random since it depends on the random network parameters
at initialization. We show in Proposition 3.1, that in the infinite width limit, the tangent kernel
converges to a deterministic kernel. This proposition introduces the Graph Neural Tangent Kernel
as the limiting kernel, and links it to the Neural Tangent Kernel ([21], also defined in Appendix A).
Proposition 3.1. Consider any two graphs G and G′ with N nodes and d-dimensional node features.
In the infinite width limit, the tangent kernel k̃GNN(G,G′)/m converges to a deterministic kernel,

kGNN(G,G′) := lim
m→∞

k̃GNN(G,G′)/m. (3)

which we refer to as the Graph Neural Tangent Kernel (GNTK). Moreover,

kGNN(G,G′) =
1

N2

N∑

j,j′=1

kNN(h̄G,j , h̄G′,j′) (4)

where kNN : Sd−1 × Sd−1 → R is the Neural Tangent Kernel.

The proof is given in Appendix A.1. We note that h̄G,j lies on the d-dimensional sphere, since
the aggregated node features are normalized. The NTK is bounded by 1 for any two points on the
sphere [5]. Therefore, Proposition 3.1 implies that the GNTK is also bounded, i.e., kGNN(G,G′) ≤ 1
for any G,G′ ∈ G. This proposition yields a kernel which captures the behaviour of the lazy GNN.
While defined on graphs with Nd dimensional representations, the effective input domain of this

4

kernel is d-dimensional. This advantage directly stems from the additive construction of the GNTK.
The next proposition uncovers the embedded structure of the GNTK by showing a novel connection
between the GNTK and k̄, the permutation invariant additive kernel from Eq. (1). The proof is
presented in Appendix A.1.

Proposition 3.2. Consider k̄ from Eq. (1), where for every 1 ≤ j ≤ N the base kernel k(j) is set
to be equal to kNN,

k̄(G,G′) =
1

|PN |2
∑

c,c′∈PN

1

N

N∑

j=1

kNN(h̄G,c(j), h̄G′,c′(j)).

Then the permutation invariant additive kernel and the GNTK are identical, i.e., for all G, G′ ∈ G,

k̄(G,G′) = kGNN(G,G′).

This result implies that kGNN inherits the favorable properties of the permutation invariant additive
kernel class. Hence, functions residing inHGNN, the RKHS of kGNN, are additive, invariant to node
permutations, and act on G through its aggregated node features. While we use the GNTK as an
analytical tool, this kernel can be of independent interest in kernel methods over graph domains. In
particular, calculating kGNN requires significantly fewer operations compared to a kernel k̄ with an
arbitrary choice of k(j), for which calculating k̄(G,G′) requires super-exponentially many operations
in N (See Eq. (1)). In contrast, due to the decomposition in Eq. (4), calculating kGNN only costs
a quadratic number of summations.

4 GNN Bandits

The bandit literature is rich with algorithms that effectively balance exploration and exploitation to
achieve sublinear regret. Two components are common in kernelized bandit optimization algorithms.
The maximum information gain, for characterizing the worst-case complexity of the learning problem
[37, 24, 12, 40]; and confidence sets, for quantifying the learner’s uncertainty [4, 39, 36, 12, 31].
Our first main result is an upper bound for the maximum information gain when the hypothesis space
isHGNN (Theorem 4.1). We then propose valid confidence sets that utilize GNNs in Theorem 4.2.
These theorems may be of independent interest, as they can be used towards bounding the regret
for a variety of bandit algorithms on graphs. Lastly, we introduce the GNN-PE algorithm, together
with its regret guarantee.

4.1 Information Gain

In bandit tasks, the learner seeks actions that give a large reward while, at the same time, provide
information about the unknown reward function. The speed of learning about f∗ is commonly
quantified via the maximum information gain. Assume that the learner chooses a sequence of actions
(G1, . . . , GT) and observes noisy rewards, where the noise is i.i.d. and drawn from a zero-mean
sub-Gaussian distribution with a variance proxy λ. The information gain of this sequence calculated
via the GNTK is

I(G1, . . . , GT ; kGNN) =
1

2
log det(I + λ−1KGNN,T)

with the kernel matrix KGNN,T = [kGNN(Gi, Gj)]i,j≤T . The maximum information gain (MIG)
[37] is then defined as:

γGNN,T = max
(G1,··· ,GT)
∀t:Gt∈G

I(G1, · · · , GT ; kGNN). (5)

In Section 4.3, we express regret bounds in terms of this quantity, as common in kernelized and
neural bandits. In Theorem 4.1 we obtain a data-independent bound on the MIG. The proof is given
in Appendix B.
Theorem 4.1 (GNTK Information Gain Bound). Suppose the observation noise is i.i.d., and drawn
from a zero-mean sub-Gaussian distribution, and the input domain is G. Then the maximum informa-
tion gain associated with kGNN is bounded by

γGNN,T = O
(
T

d−1
d log

1
d T
)
.

5

We observe that the obtained MIG bound does not depend on N the number of nodes in the graphs.
To highlight this advantage, we compare Theorem 4.1 to the equivalent bound for the vanilla neural
tangent kernel which ignores the graph structure. We consider the neural tangent kernel that operates
on graphs through the Nd-dimensional vector of aggregated node features h̄G,

κNN(G,G′) = κNN

(
h̄G
N
,
h̄G′

N

)
. (6)

For κNN the maximum information gain scales as γNN,T = O(T (Nd−1)/Nd log1/Nd T), where
N appears in the exponent [25]. This results in poor scalability with graph size in the bandit
optimization task, as we further demonstrate in Section 4.3. Table 1 summarizes this comparison.

4.2 Confidence Sets

Quantifying the uncertainty over the reward helps the learner to guide exploration and balance it
against exploitation. Confidence sets are an integral tool for uncertainty quantification. Conditioned
on the history Ht−1 = (Gi, yi)i<t, for any G ∈ G, the set Ct−1(G, δ) defines an interval to which
f∗(G) belongs with a high probability such that,

P (∀G ∈ G : f∗(G) ∈ Ct−1(G, δ)) ≥ 1− δ. (7)

An approach common to the kernelized bandit literature is to construct sets of the form Ct−1(G, δ) =
[µt−1(G)± βtσt−1(G)] where βt depends on the confidence level δ. The center of the interval, char-
acterized by µt−1(·), is the estimate of the reward, and the width βtσt−1(·), reflects the uncertainty.
In this work, we utilize GNNs for construction of such sets. To this end, we train a graph neural
network to estimate the reward. We use the gradient of this network at initialization to approximate
the uncertainty over the reward, as in [45]. Let fGNN(G;θ

(J)
t−1) be the GNN trained with gradient

descent for J steps and by using learning rate η on the loss

L(θ) =
1

t

∑

i<t

(
fGNN(Gi,θ)− yi

)2
2

+mλ
∥∥θ − θ0

∥∥2
2
,

where λ is the regularization coefficient, and θ0 the network parameters at initialization. We propose
confidence sets of the form

Ct−1(G, δ) = [µ̂t−1(G)± βtσ̂t−1(G)],

where the center and width of the set are calculated via,

µ̂t−1(G) := fGNN(G;θ
(J)
t−1),

σ̂2
t−1(G) :=

gTGNN(G;θ0)√
m

(
λI +

1

t

t−1∑

i=1

gGNN(Gi;θ
0)gTGNN(Gi;θ

0)

m

)−1 gGNN(G;θ0)√
m

.
(8)

Here gGNN(G;θ0) = ∇θfGNN(G;θ0) denotes the gradient at initialization. Moreover, we use
λ0 := λmin(KGNN) > 0 to denote the minimum eigenvalue of the kernel matrix calculated for the
entire domain, i.e.,KGNN = [kGNN(G,G′)]G,G′∈G . Theorem 4.2 shows that this construction gives
valid confidence intervals, i.e., it satisfies Eq. (7), when the reward function lies inHGNN and has a
bounded RKHS norm.
Theorem 4.2 (GNN Confidence Bound). Set δ ∈ (0, 1). Suppose f∗ ∈ HkGNN with a bounded norm
‖f∗‖kGNN

≤ B. Assume that the random sequences (Gi)i<t and (εi)i<t are statistically independent.
Let the width m = poly

(
t, L,B, |G|, λ, λ−10 , log(N/δ)

)
, learning rate η = C(Lm+mλ)−1 with

some universal constant C, and J ≥ 1. Then for all graphs G ∈ G, with probability of at least 1− δ,

|f∗(G)− µ̂t−1(G)| / βtσ̂t−1(G),

where µ̂t−1 and σ̂t−1 are defined in Eq. (8) and

βt ≈
√

2B +
σ√
λ

√
2 log 2|G|/δ.

The "≈" notation in Theorem 4.2 omits the terms that vanish with t, i.e., are o(1). An exact version
of the theorem without the aforementioned approximations is given in Appendix C.1.

6

Setting MIG Bound, γT Cumulative Regret (Phased Elimination)

Neural O
(
T

Nd−1
Nd log

1
Nd T

)
Õ
(
T

2Nd−1
2Nd log

1
2Nd T

)

Graph Neural O
(
T

d−1
d log

1
d T
)

Õ
(
T

2d−1
2d log

1
2d T

)

Table 1: Summary of main bounds for the NN and GNN approaches. Here T denotes the bandit
horizon, N the number of nodes in each graph, and d the dimension of node features. The GNN
guarantees are independent of N .

4.3 Bandit Optimization with Graph Neural Networks

The developed confidence sets can be used to assist the learner with controlling the growth of regret.
In this section, we give a concrete example on how our GNN confidence sets (Equation 8) can be
used by an algorithm to solve bandit optimization tasks on graphs.

We introduce GNN-Phased Elimination (GNN-PE; see Algorithm 1) that consists of episodes of pure
exploration over a set of plausible maximizer graphs, similar to [7, 30]. Each episode is followed
by an elimination step, that makes use of GNN confidence bounds to shrink the set of plausible
maximizers. More formally, at step t during an episode e, the learner selects actions via Ge,t =
arg maxG∈Ge σ̂e,t−1(G), where Ge is the set of graphs that might maximize f∗ according to the
learner’s current knowledge. Once the episode is over after Te steps, the set Ge is updated to contain
graphs that still have a chance of being a maximizer according to the confidence bounds [µ̂e,Te

(G)±
βTe

σ̂e,Te
(G)] where µ̂e,Te

and σ̂e,Te
are only computed based on the points within episode e.

Theorem 4.3 shows that GNN-PE incurs a sublinear control over the cumulative regret. We provide
the proof in Appendix C. We use Õ(·) notation to hide polylog(T) factors.

Theorem 4.3. Set δ ∈ (0, 1). Suppose f∗ ∈ HkGNN
with a bounded norm ‖f∗‖kGNN

≤ B. Let the
width m = poly

(
t, L,B, |G|, λ, λ−10 , log(N/δ)

)
, learning rate η = C(Lm + mλ)−1 with some

universal constant C, and J ≥ 1. Then with probability at least 1− δ, GNN-PE satisfies

RT = Õ
(√

TγT,GNN

(
B +

σ√
λ

√
log |G|/δ

))
.

We can observe the benefit of working with a graph neural network by comparing the bound in
Theorem 4.3 with the regret for a structure-agnostic algorithm. Recall κNN the vanilla NTK, defined
over the concatenated feature vectors (Equation 6). For the sake of this comparison, we ignore the
geometric structure and assume that f∗ ∈ HNN. Swapping out kGNN for κNN, and respectively the
GNN with an NN as defined in Eq. (A.1), we obtain NN-PE, the neural network counterpart of
GNN-PE. This algorithm accepts Nd-dimensional input vectors as actions. Similar to Theorem 4.3,
we can show that NN-PE can satisfy a guarantee of O

(
T (2Nd−1)/2Nd log1/2Nd T

)
for the regret.

This bound suggests that as N grows, finding the optimal graph can become more challenging for the
learner. Working with kGNN to encode the structure of the bandit problem, and consequently using the
GNN to solve it, removes the dependency on N in the exponent. This result is summarized in Table 1.

We provide some intuition on why working with a permutation invariant model is beneficial for bandit
optimization on graphs. Confidence sets which are constructed for member ofHNN are larger, and
result in sub-optimal action selection. Further, training the neural network is a more challenging task,
since permutation invariance is not hard coded in the network architecture and has to be learned from
the data. This results in less accurate reward estimates. We refer the reader to Appendix A.3 for a
more rigorous discussion. There we compareHGNN andHNN, the hypothesis spaces corresponding
to the two models, through the Mercer decomposition of their kernels.

5 Experiments

We create synthetic datasets which may be of independent interest and can be used for evaluating
and benchmarking machine learning algorithms on graph domains. Each dataset is constructed from
a finite graph domain together with a reward function. The domains are generated randomly and

7

differ in properties of the member graphs that influence the problem complexity, e.g., number of
nodes and edge density. Each domain Gp,N consists of Erdős-Rényi random graphs, where each
graph has N nodes, and between each two nodes there exists an edge with probability p. The node
features are i.i.d. d = 10 dimensional standard Gaussian vectors. We choose N ∈ {5, 20, 100},
p ∈ {0.05, 0.2, 0.95}, and thereby sample a total of 9 different domains each containing 10000
graphs. For instance, G0.05,5 denotes the domain with sparse and small graphs, while G0.95,100 is the
domain of dense graphs with many nodes. For every domain, we sample a random reward function
f : Gp,N → R that is invariant to node permutations. We use GP(0, kGNN) as a prior, and sample f
from its posterior GP. The posterior is calculated using a small random dataset (Gi, yi)i≤5, where yi
are drawn independently from N (0, 1) and Gi are randomly chosen from Gp,N . The corresponding
dataset is then Dp,N = {(Gi, f(Gi)) |Gi ∈ Gp,N}.
Experiment Setup. Every performance curve in the paper shows an average over 20 runs of the
corresponding bandit problem, each with a different action set sampled from Gp,N . The shaded
areas in all figures show the standard error across runs. In all experiments, the reward is observed
with a zero-mean Gaussian noise of variance σ = 10−2. We always set width m = 2048 and
layers L = 2, for every type of network architecture. Four algorithms appear in our experiments.
In addition to our main algorithm GNN-PE, we introduce GNN-UCB, which selects actions via
Gt = arg max µ̂t−1(G) + βtσ̂t−1(G), the classic UCB policy based on the GNN confidence sets.
The pseudo-code is given in Appendix D.3. NN-UCB, introduced by [45], is the neural counterpart
of GNN-UCB, and NN-PE as discussed in Section 4.3. To configure these algorithms, we only tune
λ and β = βt, and we do so by using the simplest dataset D0.05,5. We find that the algorithms are not
sensitive to domain configurations and work for all Dp,N out of the box. Therefore, the same values
for λ and β are used across all experiments. We include the complete result of our hyperparameter
search in Figure 5.

Lazy training. We initialize the graph neural networks (and the NNs) in the lazy regime as described
in Eq. (2) (and Eq. A.1). Training a network in this regime with gradient descent causes little change in
the weights. Consequently, it is challenging to effectively train a lazy network in practice. Therefore,
the stopping criterion for gradient descent plays a crucial role in achieving sublinear regret. Inaccurate
estimation of the reward function disturbs the balance of exploration and exploitation, and leads the
learner to poor optima. To prevent this issue, we devise a stopping criterion that depends on the history
Ht−1, such that, as t grows, the network is often trained for more gradient descent steps J . This
criterion can be employed by any neural bandit algorithm and may be of independent practical interest.
The details of training with gradient descent, stopping and batching are given in Appendix D.2.

Regret Experiments. We assess the performance of the algorithms on bandit optimiza-
tion tasks over different domains. In Figure 1, we show the inference cumulative regret
R̂T =

∑
t≤T f

∗(G∗)−maxG∈G µ̂t−1(G), for which we select graph domains with N = 20 nodes
and edge probability p = 0.2. Figure 6 shows the regret for all dataset configurations. To verify
scalability with |G|, we run the algorithms on action sets of increasing size |G| ∈ {200, 500, 1000}.
Figure 1 presents the results: GNN-PE consistently outperforms the other methods. It is evident that
the algorithms built with GNN confidence sets find the optimal graph, regardless of the size of the do-
main. The GNN algorithms exhibit competitive performance, and attain sublinear regret for all dataset
configurations. The neural methods however, may fail to scale and find the optima in limited time.

Scalability with Graph Size. In Section 4.3, we argue that using a neural network which takes
h̄G ∈ RNd as the input, causes the regret to grow with O(T (2Nd−1)/2Nd). The additive structure
of the GNN, however, allows the learner to work on a d-dimensional domain, independent of graph
size. Figure 2 reflects this behaviour. Fixing p = 0.2, and |G| = 200, we run the algorithm over
domains with two graph sizes N ∈ {20, 100}. GNN-PE achieves sublinear regret in both cases,
and manages to find a global maxima within roughly the same number of steps. This is in contrast to
NN-PE, which is more affected by increasing graph size. A similar comparison for all configurations
and algorithms is plotted in Figure 7, and the same behaviour is observed across all settings: the
performance of GNN methods scales well with N , while this is not the case for NN methods.

Effect of Graph Density. As a final observation, we discuss the effect of edge density. Consider
a complete graph G with

(
N
2

)
edges. The neighborhoods are symmetric and the aggregated node fea-

tures h̄G,i are identical for all i ≤ N . Permutations on this graph will not change the output of either
fGNN or fNN. Therefore, we expect that for dense graphs, i.e., large values of p, using a permutation
invariant model comes with fewer benefits for the learner. This is opposed to when the graph is sparse

8

0 100 200 300 400 500
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R t

| | = 200

0 100 200 300 400 500
t

0

1

2

3

4

5

| | = 500

0 200 400 600 800 1000
t

0.0

2.5

5.0

7.5

10.0

12.5

15.0
| | = 1000

GNN-PE GNN-UCB NN-PE NN-UCB

Figure 1: Regret R̂T over a time horizon of 500 and 1000 steps with N = 20 and p = 0.2. GNN-PE
consistently outperforms other algorithms and scales well with size of the action set |G|.

0 100 200 300 400 500
t

0

1

2

3

4

5

6

7

R t

GNN-PE - N = 20
GNN-PE - N = 100

NN-PE - N = 20
NN-PE - N = 100

Figure 2: Increasing N has little
effect on GNN-PE.

0 100 200 300 400 500
t

0.0

0.5

1.0

1.5
R t

GNN-UCB

0 100 200 300 400 500
t

0
1
2
3
4
5
6
7

NN-UCB

 p = 0.05 p = 0.2 p = 0.95

Figure 3: Increasing the edge density of the graphs reduces
the performance gap between GNN-UCB and NN-UCB.

and the neighborhoods are asymmetric. To verify this conjecture, we fix N = 20, |G| = 200, and run
the algorithm over domains with graphs of different edge probability p ∈ {0.05, 0.2, 0.95}. Figure 3
shows that while GNN-UCB always achieves sublinear regret, it takes longer to find the optima
when the graphs are more dense. NN-UCB however, improves as the edge probability p grows,
since, roughly put, the graphs in the domain are becoming invariant to permutations. Therefore
Figure 3 confirms that the performance gap between the two method is reduced for graphs that are
more dense. In Figure 8, we plot the effect of graph density for other dataset configurations and
bandit algorithms. This behaviour is observed predominantly for the UCB algorithms.

6 Conclusion

We analyze the use of graph neural networks in bandit optimization tasks over large graph domains.
The main takeaway is that encoding the natural structure of the environment into the model, reduces
the complexity of the task for the learner. By selecting a kernel that embeds invariances, we introduce
structure into the algorithm in a principled manner. Importantly, we propose key structural assump-
tions on the graph reward function and establish a novel connection between additive permutation
invariant kernels and the GNTK. We construct valid graph neural network confidence sets, and use it to
build a GNN bandit algorithm that achieves sublinear regret. While all node features contribute to the
graph’s reward, our bounds are independent of the number of nodes. This result holds for GNNs with
a single convolutional layer and graphs with node feature representation. An immediate next step is
to generalize this approach to other more complex graph neural network architectures and representa-
tions (e.g., by including information about graph edges) and investigating their effectiveness for bandit
optimization. Our analysis opens up two avenues of future research. The proposed kernel and the
graph confidence sets may be used in other algorithms for sequential decision-making tasks on graphs.

9

Additionally, our approach of embedding the environment’s permutation invariant structure into the
algorithm may inspire further work on structured bandit optimization in presence of invariances.

Acknowledgments and Disclosure of Funding

We thank Jonas Rothfuss for his valuable suggestions regarding the experiments. We acknowledge
Deepak Narayanan’s effort on an earlier version of the code. We thank Nicolas Emmenegger and
Scott Sussex for their thorough feedback, and lastly, we thank Alex Hägele for fruitful discussions
regarding the writing. This research was supported by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and Innovation Program Grant agreement no. 815943.

References
[1] Eric Anderson, Gilman D Veith, and David Weininger. SMILES, a line notation and computer-

ized interpreter for chemical structures. US Environmental Protection Agency, Environmental
Research Laboratory, 1987.

[2] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. Advances in Neural Information
Processing Systems, 2019.

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 2002.

[4] Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement
learning. Advances in Neural Information Processing Systems, 2008.

[5] Alberto Bietti and Francis Bach. Deep equals shallow for ReLU networks in kernel regimes. In
International Conference on Learning Representations, 2021.

[6] Alberto Bietti, Luca Venturi, and Joan Bruna. On the sample complexity of learning under
geometric stability. Advances in Neural Information Processing Systems, 2021.

[7] Ilija Bogunovic and Andreas Krause. Misspecified Gaussian process bandit optimization. In
Advances in Neural Information Processing Systems, 2021.

[8] Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, and Volkan Cevher. Truncated variance
reduction: A unified approach to Bayesian optimization and level-set estimation. In Advances
in Neural Information Processing Systems, 2016.

[9] Ilija Bogunovic, Zihan Li, Andreas Krause, and Jonathan Scarlett. A robust phased elimination
algorithm for corruption-tolerant Gaussian process bandits. In Advances in Neural Information
Processing Systems, 2022.

[10] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide
and deep neural networks. Advances in Neural Information Processing Systems, 2019.

[11] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable program-
ming. Advances in Neural Information Processing Systems, 2019.

[12] Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In International
Conference on Machine Learning, 2017.

[13] Emile Contal, David Buffoni, Alexandre Robicquet, and Nicolas Vayatis. Parallel gaussian
process optimization with upper confidence bound and pure exploration. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 2013.

[14] Nando De, Alex Smola, and Masrour Zoghi. Exponential regret bounds for Gaussian process
bandits with deterministic observations. In International Conference on Machine Learning,
2012.

10

[15] Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and
Keyulu Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels.
Advances in Neural Information Processing Systems, 2019.

[16] Vladimir Gligorijević, P Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman, Daniel
Berenberg, Tommi Vatanen, Chris Chandler, Bryn C Taylor, Ian M Fisk, Hera Vlamakis,
et al. Structure-based protein function prediction using graph convolutional networks. Nature
communications, 2021.

[17] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central science, 2018.

[18] Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained Bayesian optimization
for automatic chemical design using variational autoencoders. Chemical science, 2020.

[19] Quanquan Gu, Amin Karbasi, Khashayar Khosravi, Vahab Mirrokni, and Dongruo Zhou.
Batched neural bandits. arXiv preprint arXiv:2102.13028, 2021.

[20] Kai Guo and Markus J Buehler. A semi-supervised approach to architected materials design
using graph neural networks. Extreme Mechanics Letters, 2020.

[21] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems,
2018.

[22] Dejun Jiang, Zhenxing Wu, Chang-Yu Hsieh, Guangyong Chen, Ben Liao, Zhe Wang, Chao
Shen, Dongsheng Cao, Jian Wu, and Tingjun Hou. Could graph neural networks learn better
molecular representation for drug discovery? a comparison study of descriptor-based and
graph-based models. Journal of cheminformatics, 2021.

[23] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International Conference on Machine Learning, 2018.

[24] Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. High dimensional Bayesian
optimisation and bandits via additive models. In International Conference on Machine Learning.
PMLR, 2015.

[25] Parnian Kassraie and Andreas Krause. Neural contextual bandits without regret. In International
Conference on Artificial Intelligence and Statistics, 2022.

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[27] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

[28] Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos,
Jeff Schneider, and Eric Xing. Chembo: Bayesian optimization of small organic molecules
with synthesizable recommendations. In International Conference on Artificial Intelligence and
Statistics, 2020.

[29] Andreas Krause and Cheng Ong. Contextual Gaussian process bandit optimization. In Advances
in Neural Information Processing Systems, 2011.

[30] Zihan Li and Jonathan Scarlett. Gaussian process bandit optimization with few batches. In
International Conference on Artificial Intelligence and Statistics. PMLR, 2022.

[31] Xiuyuan Lu and Benjamin Van Roy. Information-theoretic confidence bounds for reinforcement
learning. Advances in Neural Information Processing Systems, 2019.

[32] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Learning with invariances in random
features and kernel models. CoRR, 2021.

11

[33] Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-
Dickstein, and Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks
in Python. In International Conference on Learning Representations, 2020.

[34] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch, 2017.

[35] Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. High-dimensional
Bayesian optimization via additive models with overlapping groups. In International Conference
on Artificial Intelligence and Statistics, 2018.

[36] Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. Mathematics
of Operations Research, 2014.

[37] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process opti-
mization in the bandit setting: No regret and experimental design. In International Conference
on Machine Learning, 2010.

[38] Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton
Greenside, and Andrew Gordon Wilson. Accelerating Bayesian optimization for biological se-
quence design with denoising autoencoders. In International Conference on Machine Learning,
2022.

[39] William R Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 1933.

[40] Sattar Vakili, Nacime Bouziani, Sepehr Jalali, Alberto Bernacchia, and Da shan Shiu. Optimal
order simple regret for gaussian process bandits. In Advances in Neural Information Processing
Systems, 2021.

[41] Sattar Vakili, Kia Khezeli, and Victor Picheny. On information gain and regret bounds in
Gaussian process bandits. In International Conference on Artificial Intelligence and Statistics,
2021.

[42] Michal Valko, Nathan Korda, Rémi Munos, Ilias Flaounas, and Nello Cristianini. Finite-time
analysis of kernelised contextual bandits. In Conference on Uncertainty in Artificial Intelligence,
2013.

[43] Michal Valko, Rémi Munos, Branislav Kveton, and Tomáš Kocák. Spectral bandits for smooth
graph functions. In International Conference on Machine Learning, 2014.

[44] Weitong ZHANG, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural Thompson Sampling.
In International Conference on Learning Representations, 2021.

[45] Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with UCB-based
exploration. In International Conference on Machine Learning, 2020.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We often refer to the Theorem or section number when
making a claim about the contribution of the paper.

(b) Did you describe the limitations of your work? [Yes] Section 2 explains the theoretical
setting for which our result is valid. Any remaining assumption is stated in the theorem
statements.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] The
impact is primarily theoretical.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Section 2

explains the theoretical setting for which our result is valid. Section 3 and Section 4
spell out the scope of our algorithm. Any remaining assumption is stated in the theorem
statements.

(b) Did you include complete proofs of all theoretical results? [Yes] Appendix A contains
the proof to Proposition 3.1 and Proposition 3.2. Appendix B present the proof of
Theorem 4.1, and lastly Appendix C the proof to Theorem 4.2 and Theorem 4.3.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Appendix D.2
includes the practical details and the instructions required to produce the results. We
use random synthetic data which we generate ourselves, instruction to create similar
random datasets is also given.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] This is covered in Section 5 and Appendix D.2.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All experiments are run for 20 random seeds. All plots
report the standard error across the runs.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] About 5 hour per CPU core on 100
internal cluster nodes.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use the Neural

Tangents and PyTorch libraries. Both cited.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

Supplementary Material:
Graph Neural Network Bandits

A The Neural Tangent Kernel and its Connection to the GNTK

Let f(x;θ) : Rd → R be a fully-connected network, with L hidden layers of equal width m, and
ReLU activations, recursively defined as follows:

f (1)(x) = W (1)x,

f (l)(x) =

√
2

m
W (l)σrelu

(
f (l−1)(x)

)
∈ Rm, 1 < l ≤ L

fNN(x;θ) =
√

2W (L+1)σrelu
(
f (L)(x)

)
∈ R.

(A.1)

The weights W (i) are initialized to random matrices with standard normal i.i.d. entries, and θ0 =
(W (i))i≤L+1. Consider the first order approximation of fNN(x,θ) around the initial parameters θ0,
i.e.,

f̃NN(x;θ) = gTNN(x,θ0)(θ − θ0),

since the network is defined to be zero at initialization. By considering a fixed dataset and a square
loss, training with the linear model f̃NN(x,θ), is equivalent to regression with the tangent kernel
[21], defined as

k̃NN(x,x′) = gTNN(x;θ0)gNN(x′;θ0). (A.2)

The tangent kernel is random since it depends on θ0. Jacot et al. [21] show that in the infinite width
limit, k̃NN(G,G′) converges to a deterministic kernel, which they call the Neural Tangent Kernel
(NTK),

lim
m→∞

k̃NN(x,x′)/m = kNN(x,x′).

The NTK satisfies the Mercer condition and has the following Mercer decomposition [5],

kNN(x,x′) =

∞∑

r=0

λr

M(d,r)∑

s=1

Ys,r(x)Ys,r(x
′), (A.3)

where {Ys,r}s≤M(d,r) form an orthonormal basis for V (d, r) the space of degree-r polynomials on
Sd−1. They eigenvalues λr decay at a r−d rate [5]. The eigenfunction Ys,r is the s-th spherical
harmonic polynomial of degree r, andM(d, r) = dim(Vd,r) gives the total count of such polynomials,
where

M(d, r) =
2k + d− 2

r

(
r + d− 3

d− 2

)
.

The NTK adopts a recursive definition (see Appendix A.2). Its properties and connections to
infinite-width fully-connected networks are studied in detail [2, 5, 10].

A.1 Properties of GNN and GNTK

We first note the connection between fGNN and fNN.

Lemma A.1 (GNN as sums of NNs). Consider fGNN the graph neural network defined in Eq. (2),
and the feedforward network fNN as given in Eq. (A.1). Then,

fGNN(G,θ) =
1

N

N∑

j=1

fNN(h̄G,j ,θ).

14

Proof of Lemma A.1. According to Eq. (A.1), the two layer NN with width m decomposes as:

fNN(x;θ) =
√

2

m∑

j=1

w
(2)
j σrelu

(
〈w(1)

j ,x〉
)
, (A.4)

wherew(1)
j ∈ Rd are weights in the first layer andw(2)

j ∈ R are weights in the second layer. Similarly,
the two layer GNN (see Eq. (2)) is given by:

fGNN(G;θ) =

√
2

N

N∑

i=1

m∑

j=1

w
(2)
j σrelu

(
〈w(1)

j , h̄G,i〉
)

(A.5)

=
1

N

N∑

i=1

fNN(h̄G,i;θ), (A.6)

where Eq. (A.6) follows from Eq. (A.4). The relation in Eq. (A.6) holds trivially for arbitrary L.

We are now ready to show the permutation invariance property.

Lemma A.2 (Geometric Invariance of fGNN). The graph neural network fGNN is invariant to node
permutations, i.e., for all G ∈ G and c ∈ PN ,

fGNN(G;θ) = fGNN(c ·G;θ)

Proof of Lemma A.2. Consider any permutation c ∈ PN . By Lemma A.1,

fGNN(c ·G;θ) =
1

N

N∑

j=1

fNN(h̄G,c(j);θ) =
1

N

N∑

i=1

fNN(h̄G,i;θ) = fGNN(G;θ). (A.7)

Since the summation over fNN(h̄G,c(j);θ) for all j, contains the same terms as a sum over
fNN(h̄G,i;θ) for all i.

We now prove that kGNN as defined in Section 2, is deterministic and can be written as a double sum
of kNN’s evaluated on h̄G,j aggregated features of different nodes of the graph.

Proof of Proposition 3.1. For any θ0 we first show that,

k̃GNN(G,G′) =
1

N2

N∑

j,j′=1

k̃NN(h̄G,j , h̄G′,j′), (A.8)

where k̃NN(·, ·) is from Eq. (A.2). Then, we take the m→∞ limit. Starting from the definition of
k̃GNN (see Section 3) and by omitting θ0 for simplicity of notation, we have:

k̃GNN(G,G′) = gTGNN(G)gGNN(G′)

Lemma A.1
=



N∑

j=1

1

N
gTNN(h̄G,j)






N∑

j′=1

1

N
gNN(h̄G′,j′)




=
1

N2

N∑

j,j′=1

gTNN(h̄G,j′)g
(j)
NN(h̄G′,j)

A.2
=

1

N2

N∑

j,j′=1

k̃NN(h̄G,j , h̄G′,j′).

15

The chain of equations above prove Eq. (A.8). Plugging in the definition of the GNTK, we obtain:

kGNN(G,G′) = lim
m→∞

k̃GNN(G,G′)/m

= lim
m→∞

1

N2

N∑

j,j′=1

k̃NN(h̄G,j , h̄G′,j′)/m

=
1

N2

N∑

j,j′=1

lim
m→∞

k̃NN(h̄G,j , h̄G′,j′)/m

=
1

N2

N∑

j,j′=1

kNN(h̄G,j , h̄G′,j′),

where the second equality holds since k̃NN is continuous, and for continues functions, limit of finite
sums is equal to sum of the limits. This concludes the proof.

Proof of Proposition 3.2. From Proposition 3.1, we have

kGNN(G,G′) =
1

N2

N∑

j,j′=1

kNN(h̄G,j , h̄G,j′).

It then suffices to show that k̄(G,G′) (as defined in Eq. (1)) is equal to the right hand side of
the above equation. Consider PN the set of permutations of N elements. Every permutation
c ∈ PN gives a mapping from (1, · · · , j, · · · , N) to (c(1), · · · , c(j), · · · , c(N)), where c(j) ∈ [N]
denotes the element that is placed at the j-th position. We define a restricted set of permutations
PN |j→i = {c ∈ PN : c(j) = i}, such that

PN =

N⋃

i=1

PN |j→i. (A.9)

Moreover, for any 1 ≤ j ≤ N , {PN |j→i}Ni=1 are disjoint sets and the cardinality of each restricted
permutation set is ∣∣PN |j→i

∣∣ = (N − 1)!, (A.10)
which implies that the mapping j → i is repeated (N − 1)! times across the elements of PN . Back to
definition of k̄(G,G′) we may decompose PN and write

k̄(G,G′) =
1

N !

∑

c′∈PN


 1

N !

∑

c∈PN

1

N

N∑

j=1

kNN(h̄G,c(j), h̄G′,c′(j))




=
1

N !

∑

c′∈PN


 1

N !

1

N

N∑

j=1

∑

c∈PN

kNN(h̄G,c(j), h̄G′,c′(j))




Eq. (A.9)
=

1

N !

∑

c′∈PN


 1

N !

1

N

N∑

j=1

N∑

i=1

∑

c∈PN|j→i

kNN(h̄G,c(j), h̄G′,c′(j))


 .

Now, by definition of PN |i, we have c(j) = i for all c in this set. Therefore,

k̄(G,G′) =
1

N !

∑

c′∈PN


 1

N !

1

N

N∑

j=1

N∑

i=1

∑

c∈PN|j→i

kNN(h̄G,i, h̄G′,c′(j))




Eq. (A.10)
=

1

N !

∑

c′∈PN


 1

N !

1

N

N∑

j=1

(N − 1)!

N∑

i=1

kNN(h̄G,i, h̄G′,c′j))




=
1

N !

∑

c′∈PN


 1

N2

N∑

j=1

N∑

i=1

kNN(h̄G,i, h̄G′,c′(j))


 .

16

Now, we consider the restricted permutations PN |j → i′ and repeat a similar treatment for c′ ∈ PN ,

k̄(G,G′) =
1

N2

N∑

j=1

1

N !

∑

c′∈PN

N∑

i=1

kNN(h̄G,i, h̄G′,c′(j))

=
1

N2

N∑

j=1

1

N !

N∑

i′=1

∑

c′∈PN |j→i′

N∑

i=1

kNN(h̄G,i, h̄G′,c′(j))

=
1

N2

N∑

j=1

1

N !

N∑

i′=1

∑

c′∈PN |j→i′

N∑

i=1

kNN(h̄G,i, h̄G′,i′)

=
1

N2

N∑

j=1

1

N !

N∑

i′=1

(N − 1)!

N∑

i=1

kNN(h̄G,i, h̄G′,i′)

=
1

N2

1

N !

N∑

i′=1

N !

N∑

i=1

kNN(h̄G,i, h̄G′,i′)

=
1

N2

N∑

i′=1

N∑

i=1

kNN(h̄G,i, h̄G′,i′).

Lemma A.3 (Mercer Decomposition of the GNTK). The GNTK is Mercer and can be decomposed as

kGNN(G,G′) =

∞∑

r=0

λr

M(d,r)∑

s=1

Zs,r(h̄G)Zs,r(h̄G′)

where λk are identical to eigenvalues of kNN. The algebraic multiplicity of each λr is M(d, r). The
eigenfunctions {Zs,r}s≤M(d,r) are degree-r polynomials with the permutation invariant additive
structure

Zs,r(h̄G) :=
1

N

N∑

j=1

Ys,r(h̄G,j).

where Ys,r are degree-r spherical harmonics.

Proof of Lemma A.3. Plugging in the Mercer decomposition of kNN as given in Eq. (A.3) into
Proposition 3.1 we get,

kGNN(G,G′) =
1

N2

N∑

j,j′=1

∞∑

r=0

λr

M(d,r)∑

s=1

Ys,r(h̄G,j)Ys,r(h̄G′,j′)

=

∞∑

r=0

λr

M(d,r)∑

s=1


 1

N

N∑

j=1

Ys,r(h̄G,j)




 1

N

N∑

j′=1

Ys,r(h̄G′,j′)




=

∞∑

r=0

λr

M(d,r)∑

s=1

Zs,r(h̄G)Zs,r(h̄G′).

(A.11)

A.2 Recursive Expression for the NTK

For the sake of completeness, we provide a closed-form expression for the NTK function used in
Eq. (4) (for more details, see Section 2.1 in [5]). We limit the input space to Sd−1 since, by the
definition, our feature vectors are always normalized, i.e., ‖h̄u‖2 = 1 for every u ∈ V (G). For a
ReLU network with L layers considered in Eq. (A.1) with inputs on the sphere (by taking appropriate

17

limits on the widths), the corresponding kNN(x,x′) ([21]) depends on ∠(x,x′) and is given by
kNN(x,x′) = κ

(L)
NN (xTx′) where κ(L)NN (·) is defined recursively as follows:

κ
(1)
NN(u) = κ(1)(u) = u,

κ(l)(u) = κ1
(
κ(l−1)(u)

)
,

κ
(l)
NN(u) = κ

(l−1)
NN (u) · κ0

(
κ(l−1)(u)

)
+ κ(l)(u) for 2 ≤ l ≤ L,

(A.12)

where

κ0(u) =
1

π

(
π − arccos(u)

)
,

κ1(u) =
1

π

(
u(π − arccos(u)) +

√
1− u2

)
.

Finally, we note that κ(L)NN (1) = 1 (Bietti and Bach [5]), and hence kNN(x,x′) ≤ 1 for all
x,x′ ∈ Sd−1.

A.3 Effect of Structure on the Hypothesis Space

In Section 4, we demonstrated that the additive permutation invariant structure of kGNN help produce
tighter bandit regret and information gain bounds, when the reward function is also permutation
invariant. We now characterize how this invariance alters the hypothesis space, independent of
the bandit setup. Bietti and Bach [5] give the Mercer decomposition of an NTK defined on a
Nd-dimensional sphere. Applying their result we may decompose κNN as

κNN(G,G′) =

∞∑

r≥0

λNN,r

N(Nd,r)∑

s=1

Ys,r,Nd(h̄G)Ys,r,Nd(h̄G′)

where Ys,r : SNd−1 → R is the s-th degree-r spherical harmonic polynomial. Each eigenvalue
λNN,r corresponds to the eigenspace VNd,r, the space of degree-r spherical harmonics, defined on an
Nd-dimensional domain. The algebraic multiplicity of each eigenvalue is M(Nd, r) and equal to
the dimension of its eigenspace,

dim(VNd,r) = M(Nd, r) =
2k + d− 2

r

(
r + d− 3

d− 2

)
= crNd−2.

Lastly, the eigenvalues decay at a λNN,r ' c(Nd,L)r−Nd rate. The dependence of c(Nd,L) on Nd
is exponential, but linear in L, as shown by [5].

We compare this kernel to the GNTK, which has the invariances encoded in its construction. In
Lemma A.3 we show that it may be written as

kGNN(G,G′) =

∞∑

r≥0

λGNN,r

N(d,r)∑

s=1

Zs,r,Nd(h̄G)Zs,r,Nd(h̄G′),

where the eigenvalues λGNN,r decay at a c(d, L)r−d rate, and have an algebraic multiplicity of
M(d, r) ' crd−2. The eigenvectors Zs,r are degree-r polynomials with the permutation invariant
additive structure

Zs,r,Nd(h̄G) :=
1

N

N∑

j=1

Ys,r,d(h̄G,j).

where Ys,r,d are degree-r spherical harmonics, defined on Sd−1. Let V̄Nd,r be the eigenspace
corresponding to λGNN,r the r-th eigenvalue. Due to the specific structure of the Zs,r,Nd polynomials,
there exists a bijection between V̄Nd,r and Vd,r the space of degree-r spherical harmonics defined
on Sd−1. The two vector spaces are isomorphic and thus have the same (finite) dimensionality,
dim(V̄Nd,r) = dim(Vd,r). This implies that the r-th eigenspace of the GNTK is smaller than the
r-th eigenspace of the NTK

dim(V̄Nd,r)

dim(VNd,r)
=

dim(Vd,r)

dim(VNd,r)
≤ rd

rNd
=

1

rd(N−1)
.

Further, note that Vd,r (VNd,r. This connection is shown in Figure 4.

18

Vd,r

(
H̄NN

)

VNd,r (HNN)

V̄Nd,r (HGNN)

isomorphic

Figure 4: Relation between the GNN and NN hypothesis space

B Information Gain Bounds

In this section, we present a bound for the maximum information gain (defined in Eq. (5)) of
the graph neural tangent kernel using the fact that a GNTK can be decomposed as an average of
lower-dimensional NTKs (see Eq. (4)).

Proof of Theorem 4.1. We follow a similar technique as in Vakili et al. [41]. Consider an arbitrary
sequence of graphs (Gi)i≤T , where each Gi ∈ G. Let KGNN ∈ RT×T denote the corresponding
GNTK matrix where

[KGNN]i,j = kGNN(Gi, Gj) =
1

N2

N∑

u,u′=1

∞∑

r=0

λr

M(d,r)∑

s=1

Ys,r(h̄Gi,u)Ys,r(h̄Gj ,u′),

holds by Lemma A.3. We decompose kGNN(Gi, Gj) into kD(Gi, Gj) + kO(Gi, Gj) where

kD(Gi, Gj) =
1

N2

N∑

u,u′=1

∑

r≤D

λr

M(d,r)∑

s=1

Ys,r(h̄Gi,u)Ys,r(h̄Gj ,u′),

kO(Gj , Gj) =
1

N2

N∑

u,u′=1

∑

r≥D+1

λr

M(d,r)∑

s=1

Ys,r(h̄Gi,u)Ys,r(h̄Gj ,u′).

The kernel kD is reproducing forHkD , a finite-dimensional subspace ofHkGNN
that is spanned by the

eigenfunctions corresponding to the first D distinct eigenvalues. The kernel KO is reproducing for
HkO which is orthogonal toHkD . Moreover kD(Gi, Gj) = φTD(Gi)φD(Gj) where the concatenated
feature vector φD(G) is defined as

φD(G) =



(√

λ0
N

N∑

u=1

Ys,0(h̄G,u),

)

s≤N(d,0)

, · · · ,
(√

λD
N

N∑

u=1

Ys,D(h̄G,u)

)

s≤N(d,D)


 .

Here, φD(G) ∈ RD̃ where

D̃ =

D∑

r=0

M(d, r) ' C
D∑

r=0

rd−2 ≤ C (D + 1)d−1

D − 1
, (B.1)

since by Stirling’s approximation M(d, r) grows with rd−2 [5].

Recall that the information gain is I(yT ;fT) = 1
2 log det(I + λ−1KGNN). DefiningKD andKO

such that [KD]i,j = kD(Gi, Gj) and [KO]i,j = kO(Gi, Gj), we get KGNN = KD + KO and
therefore,

I(yT ;fT) =
1

2
log det(I + λ−1(KD +KO))

=
1

2
log det(I + λ−1KD) +

1

2
log det(I + (I + λ−1KD)−1KO).

(B.2)

19

We bound each term separately, starting with the first term.

Consider the T × D̃ feature matrix ΦD = [φD(G1), · · · ,φD(GT)]. Then KD = ΦDΦT
D and by

the Weinstein-Aronszajn identity,
1

2
log det(I + λ−1KD) =

1

2
log det(I + λ−1ΦT

DΦD).

For positive definite matrices P ∈ Rn×n, we have log detP ≤ n log tr(P /n). Applying this
identity we get,

1

2
log det(I + λ−1KD) ≤ 1

2
D̃ log

(
1 +

λ−1

D̃
tr
(
ΦT
DΦD

))

=
1

2
D̃ log

(
1 +

λ−1

D̃

T∑

t=1

φTD(Gt)φD(Gt)

)

=
1

2
D̃ log

(
1 +

λ−1

D̃

T∑

t=1

||φD(Gt)||22

)

≤ 1

2
D̃ log


1 +

λ−1

D̃

T∑

t=1

D∑

r=0

λr
N2

M(d,r)∑

s=1

(
N∑

u=1

Ys,r(h̄Gt,u)

)2



≤ 1

2
D̃ log


1 +

λ−1

D̃

T∑

t=1

N∑

u,u′=1

D∑

r=0

λr
N2

M(d,r)∑

s=1

Ys,r(h̄Gt,u)Ys,r(h̄Gt,u′)




=
1

2
D̃ log

(
1 +

λ−1

D̃

T∑

t=1

kD(Gt, Gt)

)

≤ 1

2
D̃ log

(
1 +

T/λ

D̃

)
.

(B.3)

The last inequality holds since by definition, kGNN is uniformly bounded by 1 on the unit sphere
(this holds since kNN is also uniformly bounded by 1 on the same domain; see Appendix A.2).

For bounding the second term, we again use the log detP ≤ n log tr(P /n) inequality and write,

1

2
log det(I + (I + λ−1KD)−1KO) ≤ T

2
log

(
1 +

tr
(
(I + λ−1KD)−1KO

)

T

)

≤ T

2
log (1 + tr (KO) /T) .

The second inequality holds due to (I +λ−1KD)−1 being positive definite, with eigenvalues smaller
than 1. To bound tr(KO), note that

[KO]i,j =
1

N2

N∑

u,u′=1

∑

r≥D+1

λr

M(d,r)∑

s=1

Ys,r(h̄Gi,u)Ys,r(h̄Gj ,u′)

=
1

N2

N∑

u,u′=1

∑

r≥D+1

λrM(d, r)Pr(〈h̄Gi,u, h̄Gj ,u′〉)

≤ 1

N2

N∑

u,u′=1

∑

r≥D+1

λrM(d, r)

≤
∑

r≥D+1

λrM(d, r)

The second equality follows from
∑M(d,r)
s=1 Ys,r(x)Ys,r(x

′) = M(d, r)Pr(x
Tx′), where Pr is

the degree-r Legendre polynomial [5]. The Legendre basis is bounded in [0, 1], resulting in the

20

first inequality. By Bietti and Bach [5, Corollary 3], there exists a constant c1(d, L) such that
λr ≤ c1(d, L)r−d. Stirling’s approximation states that n! ∼

√
2πn(n/e)n. Therefore, there exists

a constant c2 such that M(d, r) ≤ c2rd−2. Therefore, there exists a constant c(d, L) such that,

[KO]i,j ≤
∑

r≥D+1

λrM(d, r) ≤ c(d, L)
∑

r≥D+1

r−2 ≤ c(d, L)

D

where the second inequality comes from
∑

r≥D+1

r−2 ≤
∫ ∞

D

z−2dz =
1

D
.

Therefore, we may bound the second term of the information gain as follows,

1

2
log det(I + (I + λ−1KD)−1KO) ≤ T

2
log

(
1 +

c(d, L)

D

)
(B.4)

From Eq. (B.2), Eq. (B.3) and Eq. (B.4),

I(yT ;fT) ≤ 1

2
D̃ log

(
1 +

Tλ−1

D̃

)
+
T

2
log

(
1 +

c(d, L)

D

)
. (B.5)

For the first term to dominate the second, D̃ has to be set to

D̃ =
⌈(c(d, L)T

log(1 + T/λ)

) d−1
d ⌉

.

This results in

γT = O



(

T

log(1 + T
λ)

) d−1
d

log


1 +

T

λ

(
log(1 + T

λ)

T

) d−1
d




 ,

that is itself O(T
d−1
d log

1
d T), therefore concluding the proof.

C Proof of Theorem 4.2 and Theorem 4.3

Proof of Theorem 4.3. The proposed algorithm GNN-PE (see Algorithm 1) is a variant of the
Phased GP Uncertainty algorithm proposed in [7]. The following analysis closely follows the one of
[7] (but ignores misspecification), with important differences pertained to the introduction of GNN es-
timator and GNTK analysis. The algorithm runs in episodes of exponentially increasing length Te, and
maintains a set of potentially optimal graphs Ge. To compute the set of potentially optimal graphs after
every episode, it uses the confidence bounds from Theorem 4.2. The total number of episodes is de-
noted withE, and it holds thatE ≤ dlog2 T e, since the length of the episode is growing exponentially.

To bound the regret of GNN-PE, we make use of the finite-dimensional tangent kernel. With
a slightly different notation from Section 3, we set k̂GNN(·, ·) = gTGNN(·;θ0)gGNN(·;θ0)/m,
where gTGNN(·;θ0) denotes the gradient of the GNN at initialization. We argued in the main
text that this kernel can well approximate kGNN. The feature map corresponding to this kernel,
φ̂(G) = gGNN(G)/m can be viewed as a finite-dimenional approximation of φGNN, the (infinite
length) feature map of the GNTK.

Throughout the proof, we denote the posterior mean and variance calculated via GP(0, k̂GNN) by
µ̂t−1 and σ̂t−1, respectively. Recall that the posterior mean and variance function after observing
the data (Gi, yi)i<t is calculated via

µ̂t−1(G; k̂GNN) = k̂Tt−1(G)(K̂t−1 + λI)−1yt−1,

σ̂2
t−1(G; k̂GNN) = k̂GNN(G,G)− k̂Tt−1(G)(K̂t−1 + λI)−1k̂t−1(G),

(C.4)

where the constant λ is the variance proxy for observation noise. Here yt−1 = [yi]i<t is the vector
of observed values, k̂t−1(x) = [k̂GNN(x,xτ)]i<t, and K̂t−1 = [k̂GNN(xi,xj)]i,j<t is the kernel
matrix.

21

Algorithm 1: GNN PHASED ELIMINATION (GNN-PE)
Input: m, J, η, λ, T
Set episode index e = 1, episode length Te = 1, and set of potentially optimal graphs Ge = G
Initialize network parameters to a random θ0.
for t = 1, . . . , Te do

For all G ∈ G, calculate σ̂t−1(G) as defined in Eq. (8).
Select

Gt = arg max
G∈Ge

σ̂2
t−1(G) (C.1)

end
Receive {y1, . . . , yTe}, such that

yt = f∗(Gt) + εt for t ∈ {1, . . . , Te}

Calculate θ(J)e = TrainGNN
(
m,J, η, λ,θ0, (Gt, yt)

Te
t=1

)

Use β and ε as defined in Equation (C.7) and Equation (C.8) and update

Ge+1 ←
{
G ∈ Ge : fGNN(G;θ(J)e) + βσ̂Te

(G) + 2ε ≥ max
G∈Ge

(
fGNN(G;θ(J)e)− βσ̂Te

(G)
)}
,

(C.2)
Set Te+1 ← 2Te, e← e+ 1 and return to the Initialize step
Output: Terminate after T total evaluations (E total episodes) and return

ĜT = arg max
G∈G

fGNN(G;θ
(J)
E−1) (C.3)

Algorithm 2: TrainGNN
Input: m, J, η, λ, θ0, (Gi, yi)i<t

Define L(θ) = 1
t

∑
i<t

(
fGNN(Gi;θ)− yi

)2
+mλ

∥∥θ − θ0
∥∥2
2

Initialize θ(0) = θ0

for j = 1, . . . , J do
θ(j) = θ(j−1) − η∇L(θ(j−1))

end
Output: θ(J)

We note that GNN-PE uses σ̂t−1 as the variance estimate, while instead of µ̂t−1, the algorithm
makes use of the GNN predictions, i.e., fGNN(G;θ

(J)
t) for the center of the confidence set.

As will become clear soon, since GNN-PE uses σ̂t−1, this yields a regret bound depending on γ̂T ,
the information gain corresponding to the approximate kernel k̂GNN. Lastly, in Lemma C.1, for
appropriately set width m, we bound γ̂T with γGNN,T (maximum information gain corresponding
to the exact GNTK). We use this result in our steps bellow.

Step 1 (Max variance bound) Consider any fixed episode e, and recall that Te denotes the episode
length. By the exploration policy of GNN-PE (Equation (C.1)), at any step t (within an episode)
and for any graph G ∈ Ge, we have σ̂t−1(G) ≤ σ̂t−1(Gt). From Eq. (C.4), since the covariance
matrix is positive definite, conditioning on a larger set of points reduces the posterior variance
and thus σ̂Te

(G) ≤ σ̂t−1(G), for all G ∈ Ge and t ≤ Te. Putting the two inequalities together,
σ̂Te

(G) ≤ mint≤Te
σ̂t−1(Gt), which gives

σ̂2
Te

(G) ≤ 1

Te

Te∑

t=1

σ̂2
t−1(Gt).

For any s ∈ [0, 1/λ], it holds that

s2 ≤ 1

λ log(1 + 1/λ)
log(1 + s2).

22

For any Gt, we have σ̂2
t−1(Gt)/λ ≤ k̂GNN(Gt, Gt)/λ ≤ 1/λ. Therefore,

σ̂2
t−1(Gt) ≤

1

log(1 + 1/λ)
log(1 + λ−2σ̂2

t−1(Gt)).

From Srinivas et al. [37, Lemma 5.3], we can conclude that,

Te∑

t=1

log(1 + λ−1σ̂2
t−1(Gt)) = 2I(G1, · · · , Gt; k̂GNN) ≤ 2γ̂Te ,

where γ̂Te, is the maximum information gain corresponding to this episode and the kernel k̂GNN.
This inequality allows us to bound the posterior variance at the end of episode e as follows. For
any G ∈ Ge,

σ̂2
Te

(G) ≤ 2γ̂Te

Te log(1 + λ−1)
. (C.5)

Step 2 (Confidence bounds) Consider an episode e, and let δ̃ = δ/(3E), where E ≤ log T is the
number of episode. From Theorem C.2, for all G ∈ G, with probability at least 1− δ̃,

|fGNN(G;θ(J)e)− f∗(G)| ≤ βσ̂Te
(G) + ε, (C.6)

where for simplicity we use

β :=
√

2B +
σ√
λ

√
2 log 2|G|/δ̃ +

√
2B

mηλ

(√
2 + (1−mηλ)J/2

)
, (C.7)

ε := C̃L3

(
B

mλ

)2/3√
m logm. (C.8)

Applying the union bound Eq. (C.6) holds for every G ∈ G and e ∈ [E] with probability at least
1− δ/3. Finally, by using δ̃ = δ/3 in Lemma C.1 and by applying the union bound, we have that
both events in Lemma C.1 and in Eq. (C.6) hold jointly with probability at least 1 − 2δ/3. In the
rest of the proof, we condition on the joint event holding true. This implies that G∗ ∈ Ge for every
e ∈ [E], i.e., according to the rule in Eq. (C.2), the algorithm will not eliminate G∗.

Step 3 (Cumulative Regret) We use Re to denote the episodic regret, and write

RT =

E∑

e=1

Re ≤ m1B +

E∑

e=2

Te∑

t=1

(
f∗(G∗)− f∗(G(e)

t)
)
. (C.9)

The first inequality follows since kGNN is uniformly bounded by 1 and the RKHS norm of f∗ is
bounded by B. We also add an additional superscript e in G(e)

t , to denote a graph selected in episode
e at time step t.

Consider any episode e, the following holds due to Eq. (C.6):

f∗(G∗)− f∗(G(e)
t) ≤ fGNN(G∗;θ

(J)
e−1) + βσ̂Te−1(G∗) + 2ε

−
(
fGNN(G

(e)
t ;θ

(J)
e−1)− βσ̂Te−1

(G
(e)
t)
)
.

Moreover, we use the elimination rule in Eq. (C.2) to obtain:

f∗(G∗)− f∗(G(e)
t) ≤

(
fGNN(G∗;θ

(J)
e−1)− βσ̂Te−1

(G∗)− ε)
+ 2βσ̂Te−1

(G∗) + 4ε

−
(
fGNN(G

(e)
t ;θ

(J)
e−1) + βσ̂Te−1(G

(e)
t) + ε

)

+ 2βσ̂Te−1
(G

(e)
t)

≤ 4βTe−1+1 max
G∈Ge−1

σ̂Te−1
(G) + 4ε. (C.10)

23

Next, we combine Eq. (C.10) and Eq. (C.9) and write:

RT ≤ m1B +

E∑

e=2

Te∑

t=1

4βTe−1+1 max
G∈Ge−1

σ̂Te−1(G) + 4ε (C.11)

≤ m1B +

E∑

e=2

4Teβ

√
2γ̂Te−1

Te−1 log(1 + λ−1)
+ 4Teε (C.12)

= m1B +

E∑

e=2

8β

√
2Te−1γ̂Te−1

log(1 + λ−1)
+ 4Teε (C.13)

≤ m1B +

E∑

e=2

8β

√
2T γ̂T

log(1 + λ−1)
+ 4Teε (C.14)

≤ m1B + 8(log(T) + 1)
(
β
√

2T γ̂T
log(1+λ−1) + 4Tε

)
(C.15)

≤ m1B + 8(log(T) + 1)
(
β
√

2T (γT+ε(m))
log(1+λ−1) + 4Tε

)
, (C.16)

where Eq. (C.12) follows since T > me for every e and Eq. (C.5) and Eq. (C.13) since Te = 2Te−1.
To obtain Eq. (C.14), we use that T > Te−1 and γ̂T ≥ γ̂Te−1. Finally, Eq. (C.15) follows since the
number of episodes E ≤ dlog T e, and Eq. (C.16) follows from Lemma C.1.

Step 4 (Putting everything together) Plugging in the expressions for β and e we obtain

RT ≤8
√

2(log T + 1)
√

2T (γT+ε(m))
log(1+λ−1)

(
B + σ√

λ

√
log |G|(log T+1)

δ

√
B
mηλ

(√
2 + (1−mηλ)J/2

))

+B + 32(log T + 1)C̃TL3

(
B

mλ

)2/3√
m logm

Since m = poly(t) and η ∼ 1/m, the last term and ε(m) vanishes with T at a o(1) rate, and the
gradient descent error term becomes a constant factor. Then we obtain with probability at least 1− δ

RT = O
(
√
TγT

(
B +

σ√
λ

√
log
|G| log T

δ

))
. (C.17)

Lemma C.1 (Bounding MIG with its approximation). Set δ ∈ (0, 1). If m =
poly

(
t, L, |G|, λ,B, λ−10 , log(N/δ)

)
, then with probability at least 1− δ,

γ̂T ≤ γT + ε(m),

where γT is the maximum information gain of the GNTK over G as defined in Eq. (5), and ε(m) =
o(m−1/4).

Proof of Lemma C.1. The proof follows from Lemma C.6, by repeating the technique given in
Lemma D.5, [25]. Here we repeat it for the sake of completeness.

Consider an arbitrary sequence of graphs (Gt)t≤T . Consider the feature map φ̂(G) =

gGNN(G;θ0)/
√
m. For the kernel k̂GNN, which corresponds to this feature map, the information

gain after observing T samples is

ÎT =
1

2
log det

(
I + λ−1ḠT Ḡ

T
T /m

)
,

24

where ḠT = [ḡ(Gt)]
T
t≤T . Let [KGNN]i,j≤T = kGNN(Gi, Gj) with k the NTK function of the

fully-connected L-layer network.

ÎT =
1

2
log det

(
I + λ−1KGNN + λ−1(ḠT Ḡ

T
T /m−KGNN)

)

(a)

≤ 1

2
log det

(
I + λ−1KGNN

)
+ 〈(I + λ−1KGNN)−1, λ−1(ḠT Ḡ

T
T /m−KGNN)〉

≤ IT + λ−1
∥∥(I + λ−1KGNN)−1

∥∥
F

∥∥ḠT Ḡ
T
T /m−KGNN

∥∥
F

(b)

≤ IT + λ−1
√
T
∥∥ḠT Ḡ

T
T /m−KGNN

∥∥
F

(c)

≤ IT + λ−1T
√
Tε

(d)

≤ γT + ε(m).

(C.18)

Inequality (a) holds by concavity of log det(·). Inequality (b) holds since I 4 I + λ−1KGNN.
Inequality (c) holds due to Lemma C.6. Finally, inequality (d) uses the polynomial choice of m, and
requires that m grows with at least O(T 6). Equation C.18 holds for any arbitrary context set, thus it
also holds for the sequence which maximizes the information gain.

C.1 Proof of Theorem 4.2

We first present the formal version of Theorem 4.2.
Theorem C.2 (GNN Confidence Bound, Formal). Set δ ∈ (0, 1). Suppose f∗ ∈ HkGNN with a
bounded norm ‖f∗‖kGNN

≤ B. Samples of f are observed with zero-mean σ2-sub-Gaussian noise.
Assume that the random sequences (Gi)i<t and (εi)i<t are statistically independent. Set J > 1,
choose the width m = poly

(
t, L, |G|, λ, λ−10 , log(N/δ)

)
, and learning rate η = C(Lm+mλ)−1

with some universal constant C. Then for all graphs G ∈ G, with probability of at least 1− δ,

|f∗(G)− µ̂t−1(G)| ≤ βσ̂t(G) + C̃L3

(
B

mλ

)2/3√
m logm

where

β =
√

2B +
σ√
λ

√
2 log (2|G|/δ) +

√
2B

mηλ

(√
2 + (1−mηλ)J/2

)

for some constant C̄.

To prove the theorem, first we state the necessary lemmas.
Lemma C.3 (Confidence interval for fGNN around µ̂t−1). Assume history Ht = {(Gi, yi)}i≤t
with (Gi)i≤t and (εi)i≤t statistically independent. Let m = poly

(
t, L, λ, log(|G|N/δ)

)
. There

exists C1, such that for any δ > 0, if the learning rate is picked η = C1(Lm + mλ)−1, then for a
graph G ∈ G, with probability of at least 1− δ,

|fGNN(G;θ(J))− µ̂t(G)| ≤ σ̂t(G)

√
2B

mηλ

(√
2 + (1−mηλ)J/2

)
+ C̃L3

(
B

mλ

)2/3√
m logm

for some constant C̄, where µ̂t and σ̂t are as defined in Eq. (C.4).

Proof of Lemma C.3. We define Z := λI + ḠT Ḡ/(Tm) and b =
∑
i≤t yiḡ(Gi)/(T

√
m). Recall

that ḠT = [ḡ(Gt)]
T
t≤T . Let the sequence (θ̃(j))Jj=1 denote the gradient descent updates on the

following loss function

L̃(θ) =
1

t

∑

i≤t

(
〈ḡ(Gi),θ − θ0〉 − yi

)2
2

+mλ
∥∥θ − θ0

∥∥2
2
.

Note that θ̃0 = θ0 and θ̃(j) also depends on t the number of data points. We omit the t index, for
simplicity of the notation during the proof of this lemma.

25

By Lemma C.7,
∥∥Ḡ
∥∥
F
≤ C
√
TLm and we have,

Z
w.h.p

4 (λ+ CL)I 4
1

mη
I, (C.19)

since η is set such that η ≤ C(mλ+ Lm)−1. Therefore, for any x ∈ Rp, ‖x‖Z ≤ 1√
mη‖x‖2. Now

consider x,x′ ∈ Rp, using Eq. (C.19) together with Cauchy-Schwarz implies,

〈x,x′〉 ≤ ‖x‖Z‖x′‖Z−1

w.h.p

≤ 1√
mn
‖x‖2‖x′‖Z−1 . (C.20)

Applying the inequality above, we may write

〈ḡ(G),θ(J) − θ0〉 = 〈ḡ(G),θ(J) − θ̃(J)〉+ 〈ḡ(G), θ̃(J) − θ0〉
w.h.p

≤ 1√
mη
‖ḡ(G)‖Z−1

∥∥∥θ(J) − θ̃(J)
∥∥∥
2

+ 〈ḡ(G), θ̃(J) − θ0〉

w.h.p

≤ 2

∥∥∥∥
ḡ(G)√
m

∥∥∥∥
Z−1

√
B

mηλ
+ 〈ḡ(G), θ̃(J) − θ0〉

(C.21)

For the last inequality of Eq. (C.21) we have used Lemma C.8. Decomposing the second term of the
right hand side in Eq. (C.21) gives,

〈ḡ(G), θ̃(J) − θ0〉 = 〈ḡ(G),
Zb√
m
〉+ 〈ḡ(G), θ̃(J) − θ0 − Zb√

m
〉

w.h.p

≤ ḡT (G)Zb√
m

+
1√
η

∥∥∥∥
ḡ(G)√
m

∥∥∥∥
Z−1

∥∥∥∥θ̃(J) − θ0 −
Zb√
m

∥∥∥∥
2

w.h.p

≤ ḡT (G)Zb√
m

+

∥∥∥∥
ḡ(G)√
m

∥∥∥∥
Z−1

√
2B

mηλ
(1− ηmλ)J/2

(C.22)

where the first inequlity is a consequence of Eq. (C.20). The second inequality follows from the
convergence of GD on the proxy loss L̃, given in Lemma C.8. By the definition of posterior mean
and variance (Eq. C.4) when the regularization parameter is set to λ← tλ we have,

µ̂t(G) =
ḡT (G)Zb√

m
,

σ̂t(G) =

∥∥∥∥
ḡ(G)√
m

∥∥∥∥
Z−1

.

The final upper bound on fGNN(G;θ(J)) − µ̂t(G) follows from plugging in Equation C.22 into
Equation C.21, and applying Lemma C.10. Similarly, for the lower bound we have,

−fGNN(G;θ(J))
w.h.p

≤ 〈ḡ(G),θ0 − θ(J)〉+ C̃L3

(
B

mλ

)2/3√
m logm (C.23)

〈ḡ(G),θ0 − θ̃(J)〉
w.h.p

≤ −µ̂t(G) + σ̂t(G)

√
2B

mηλ
(1− ηmλ)J/2 (C.24)

〈ḡ(G),θ0 − θ(J)〉
w.h.p

≤ 2σ̂t(G)

√
B

mηλ
+ 〈ḡ(G), θ̃(J) − θ0〉 (C.25)

Where inequality C.23 holds by Lemma C.7, and the next two inequalities are driven similarly to
equations C.21 and C.22. The lower bound results by putting together equations C.23-C.25, and
this concludes the proof. Note that we are implicitly taking a union bound over the 6 inequalities
that all hold with high probability. The conditions of the used lemmas require that m is picked at a
poly(log(N/δ)) rate, and a constant number of union bounds do not affect this rate.

The next lemma gives a confidence interval over members ofHkGNN
.

26

Lemma C.4 (RKHS Confidence Interval from Vakili et al. [40]). Let f∗ ∈ Hk with ‖f∗‖k ≤ B, and
the observation noise to be sub-gaussian with parameter σ2. Assume Ht = {(xτ , yτ)} with (xτ)τ≤t
and (ετ)τ≤t statistically independent. Then for a fixed input x, with probability greater than 1− δ,

|f∗(x)− µt(x)| ≤ (B +
σ√
λ

√
2 log(2/δ))σt(x).

The following lemma shows that members of HkGNN are well described by the first-order Taylor
approximation of a GNN around initialization.

Lemma C.5 (Approximation by a linearized GNN). Let f be a member ofHkGNN with bounded
RKHS norm ‖f‖kGNN

≤ B. Set δ ∈ (0, 1) and let N denote an upper bound on the possible number
of nodes for a graph. If m = O

(
L6|G|4/λ40 log(|G|2LN/δ)

)
, then with probability greater than

1− δ, there exists θ∗ ∈ Rp such that for all G ∈ G

f(G) = 〈gGNN(G;θ0),θ∗〉, √
m‖θ∗‖2 ≤

√
2B.

Proof of Lemma C.5. The proof follows the technique for Lemma 5.1 Zhou et al. [45] with some
modifications.

From Eq. (C.30) proof of Lemma C.6, for m = O(L6/ε4 log(LN/δ)), and for Gi and Gj in the
domain, ∣∣kGNN(Gi, Gj)− gTGNN(Gi;θ

0)gGNN(Gj ;θ
0)
∣∣ ≤ (L+ 1)ε

with probability greater than 1 − δ. Let Kfull be the GNTK matrix calculated for all G ∈ G and
Ḡfull = [gTGNN(G;θ0)]G∈G . Then applying a union bound over all G ∈ G, and setting δ ← δ/|G|2,
if m = O(L6/ε4 log(|G|2LN/δ)) , then

∥∥Kfull − ḠT
fullḠfull/m

∥∥
F
≤ |G|ε

with probability greater than 1− δ. Now applying this inequality when ε = λ0/2|G|, we get that if

m = O(L6|G|4/λ40 log(|G|2LN/δ))
then

∥∥Kfull − ḠT
fullḠfull/m

∥∥
F
≤ λ0/2, with probability greater than 1 − δ. Via the Triangle

inequality we get that

ḠT
fullḠfull/m <Kfull −

∥∥Kfull − ḠT
fullḠfull/m

∥∥
F
<Kfull −

λ0
2

<Kfull/2 � 0. (C.26)

Since λ0 > 0, Ḡfull is positive definite and may be decomposed as Ḡfull = PAQT , where
P ∈ Rp×|G|, P ∈ R|G|×|G| are unitary and A � 0. Let f = [f(G)]G∈G be the vector of function
values. We show that θ∗ = PA−1QTf satisfies the statement of the lemma. By definition of θ∗,

ḠT
fullθ

∗ = QAP TPA−1QTf = f

which implies for all G ∈ G, 〈gGNN(G;θ0),θ∗〉 = fGNN(G). As for the norm of θ∗ we may write,

‖θ∗‖22 ≤ fTQA−2QT = fT (ḠT
fullḠ

T
full)
−1f ≤ 2

m
fTK−1fullf ≤

2B2

m

where the next to last inequality holds due to Eq. (C.26), and the last inequality follows from
‖f‖2kGNN

≤ B2.

We are now ready to present the proof of our main confidence interval bound.

Proof of Theorem 4.2. Consider Lemma C.4, when the kernel function is k̃(G,G′) =
ḡT (G)ḡ(G′)/m and choose the regularization parameter tλ. Subsequently, the posterior mean
and variance after observing t samples will be µ̂t(G) and σ̂t(G). Then this lemma states that for
f ∈ Hk̃ with a norm bounded by B, with probability greater than 1− δ/2,

|f(G)− µ̃t(G)| ≤ σ̂t
(
B +

σ√
λ

√
2 log 4/δ

)
.

27

By Lemma C.5, for m large enough the reward function can be written as

f∗(G) = 〈gGNN(G;θ0),θ∗〉, √
m‖θ∗‖2 ≤

√
2B.

for all G ∈ G, indicating that f∗ ∈ Hk̂GNN
with ‖f‖k̂GNN

≤
√

2B. Therefore, following Lemma C.4
with probability greater than 1− δ/2,

|f∗(G)− µ̂t(G)| ≤ σ̂t
(√

2B +
σ√
λ

√
2 log 4/δ

)

for some fixed G. Further, Lemma C.3 bounds the difference between µ̂t−1(·) and µ̂t−1(·) with
probability higher than 1− δ/2. Plugging in µ̂t−1 and σ̂t−1 gives,

|µ̂t−1(G)− f∗(G)| ≤ σ̂t(G)

[
√

2B+
σ

λ

√
2 log 4/δ +

√
2B

mηλ

(√
2 + (1−mηλ)J/2

)
]

+ C̃L3

(
B

mλ

)2/3√
m logm

with probability greater than 1 − δ. Setting δ ← δ/|G| and taking a union bound over all G ∈ G
concludes the proof of Theorem C.2. The informal version of the theorem is achieved by considering
that m = poly(t) and omitting all the terms that are o(t−1) with t.

C.2 GNN Helper Lemmas

Lemma C.6 (Norm concentration of Gram matrix and GNTK matrix at initialization). Set
ε > 0, δ ∈ (0, 1), and let N = |V (G)| denote the number of nodes for every graph G ∈ G. For width
m = Ω

(
L6/ε4 log(LNT 2/δ)

)
in Eq. (2), the following holds with probability at least 1− δ:
∥∥KGNN − ḠT Ḡ/m

∥∥
F
≤ Tε.

Proof of Lemma C.6. We make use of the connection between the GNN as defined in Eq. (2) and a
fully-connected neural network. In particular, let fNN(x;θ) : Rd → R be a fully-connected network,
with L hidden layers of equal width m, and ReLU activations as defined in Eq. (A.1). Then, we have

fGNN(G;θ) =
1√
N

∑

v∈V (G)

fNN(h̄v;θ).

Let Ḡ be a matrix with T columns where each column i ∈ [T] contains gradient vector gGNN(Gi;θ
0).

Then, the matrix ḠT Ḡ is a T × T matrix and represents the Gram matrix of the network for the
parameters θ0. For all i, j ≤ T , we have

[ḠT Ḡ]i,j =
1

N

N∑

v=1

gT (h̄v)g(h̄v′), (C.27)

where g(x) = ∇θfNN(x;θ0) denotes the gradient of fNN at initialization. It follows by the definition
of the neural tangent kernel that

kGNN(Gi, Gj) =
1

N

N∑

v=1

kNN(h̄v, h̄v′). (C.28)

For some fixed ε > 0 and δ ∈ (0, 1), the result of Arora et al. [2, Theorem 3.1] states that when
m = Ω(L6/ε4 log(L/δ)), the following holds for any x,x′ with unit norms and probability at least
1− δ: ∣∣kNN(x,x′)− gT (x)g(x′)/m

∣∣ ≤ (L+ 1)ε. (C.29)
Next, by using equations C.28 and C.27, and the triangle inequality for any two input graphs Gi,
Gj we get

∣∣kGNN(Gi, Gj)− gTGNN(Gi;θ
0)gGNN(Gj ;θ

0)
∣∣ ≤ 1

N

N∑

v=1

∣∣kNN(h̄v, h̄v′)− gT (h̄v)g(h̄v′)
∣∣.

(C.30)

28

Then, since h̄v ∈ Sd−1 for every node v irrespective of the corresponding graph, we can use
Eq. (C.29) together with the union bound over all (h̄G,u, h̄G′,u) pairs andm = Ω(L6/ε4 log(LN/δ)),
to obtain that for any Gi and Gj with probability at least 1− δ:∣∣kGNN(Gi, Gj)− gTGNN(Gi;θ

0)gGNN(Gj ;θ
0)/m

∣∣ ≤ (L+ 1)ε.

To arrive at the main result we consider the difference in the Frobenius norm:
∥∥KGNN − ḠT Ḡ/m

∥∥
F

=

√∑

i,j≤T

(
kGNN(Gi, Gj)− gTGNN(Gi;θ0)gGNN(Gj ;θ0)/m

)2
.

By setting ε ← ε/(L + 1) and again applying the union bound over each (Gi, Gj) pair, for
m = Ω(L6/ε4 log(LNT 2/δ)), the following holds with probability at least 1− δ:∥∥KGNN − ḠT Ḡ/m

∥∥
F
≤ Tε.

Lemma C.7 (Gradient descent norm bounds). Consider the fixed set {Gi}i≤t of inputs. Let
Ḡ = [gTGNN(Gi;θ

0)]Ti≤t be the matrix of gradients at initialization and Ḡ(j) = [gTGNN(Gi;θ
(j))]Ti≤t.

The vector of network outputs after the j-th update is denoted by f (j)
GNN = [fGNN(Gi;θ

(j))]i≤t.

Assume τ is set such that ||θ(j) − θ0||2 ≤ τ for all j ≤ J . If m = poly
(
t, L, λ−1, log(N/δ)

)
, then

with probability greater than 1− δ, ∥∥Ḡ
∥∥
F
≤ C1

√
tmL (C.31)

∥∥∥Ḡ− Ḡ(j)
∥∥∥
F
≤ C2τ

1/3L7/2
√
tm logm (C.32)

∥∥∥f (j)
GNN − Ḡ(j)(θ(j) − θ0)

∥∥∥
2
≤ C3τ

4/3L3
√
tm logm (C.33)

for some constants C1, C2, C3.

Proof of Lemma C.7. We follow the recipe introduced in Zhou et al. [45], and reproduce gradient
norm bounds for when the network is a GNN.

From Lemma B.3 Cao and Gu [10], we get
∥∥gGNN(Gi;θ

0)
∥∥
2
≤ C̄
√
mL with probability of at least

1− δ/3. By the definition of Frobenius norm, it follows,
∥∥Ḡ
∥∥
F
≤
√
tmax
i≤t

C
∥∥gGNN(Gi;θ

0)
∥∥
2

w.h.p

≤ C
√
tmL.

For Eq. (C.32) we may write,∥∥∥Ḡ(j) − Ḡ
∥∥∥
F
≤
√
tmax
i≤t

∥∥∥gGNN(Gi;θ
(j))− gGNN(Gi;θ

0)
∥∥∥
2

≤
√
t

N
max
i≤t

∑

u∈V (Gi)

∥∥∥g(h̄v;θ
(j))− g(h̄v;θ

0)
∥∥∥
2

w.h.p

≤
√
t

N
max
i≤t

∑

u∈V (Gi)

C̃2τ
1/3L3

√
logm

∥∥g(h̄v;θ
0)
∥∥
2

w.h.p

≤ C2τ
1/3L7/2

√
tm logm

with probability greater than 1− δ/3, where the next to last inequality holds by Lemma B.5 Zhou
et al. [45] and the last inequality follows directly from Lemma B.6 Zhou et al. [45].

As for Eq. (C.33), by definition of the single-BLOCK GNN and Lemma B.4 Zhou et al. [45],∥∥∥f (j)
GNN − Ḡ(j)(θ(j) − θ0)

∥∥∥
2
≤
√
tmax
i≤t

∣∣∣fGNN(Gi;θ
(j))− 〈gGNN(Gi;θ

(j)),θ(j) − θ0〉
∣∣∣

≤
√
t

N
max
i≤t

∑

u∈V (Gi)

∣∣∣f(h̄v;θ
(j))− 〈g(h̄v;θ

(j)),θ(j) − θ0〉
∣∣∣

w.h.p

≤ C3τ
4/3L3

√
tm logm

with probability greater than 1− δ/3.

29

Lemma C.8 (Convergence properties of the proxy optimization problem). Let the sequence
(θ̃(j)) denote the gradient descent updates on the following loss function,

L̃(θ) =
1

t

∑

i≤t

(
〈gGNN(Gi;θ

0),θ − θ0〉 − yi
)2
2

+mλ
∥∥θ − θ0

∥∥2
2
.

then if m = poly(T, L,B, |G|, λ−10 , λ−1, log(N/δ)) and the learning rate η ≤ C(mL+mλ)−1

∥∥∥θ̃(j) − θ0
∥∥∥
2
≤
√
B/mλ,

∥∥∥θ̃(j) − θ0 −
(
λI + ḠT Ḡ/(tm)

)−1
ḠTy/(tm)

∥∥∥
2
≤ (1− ηmλ)j/2

√
2B/mλ.

Proof of Lemma C.8. This lemma adapts Lemma D.8 Kassraie and Krause [25] to our setting. We
repeat the proof for the sake of completeness. Note that L̃ is mλ-strongly convex, and C(mL+mλ)-
smooth, since

∇2L̃ =
2ḠT Ḡ

t
+ 2mλI ≤ 2(

∥∥Ḡ
∥∥2
F

t
+mλ)I ≤ C(mL+mλ)I,

where the second inequality follows from Lemma C.7. Strong Convexity of L̃ guarantees a monotonic
decrease of the loss if the learning rate is smaller than the smoothness coefficient inversed. Therefore,

mλ
∥∥∥θ̃(j) − θ̃0

∥∥∥
2

2
≤ mλ

∥∥∥θ̃(j) − θ̃0
∥∥∥
2

2
+

1

t

∥∥∥Ḡ(θ̃(j) − θ̃0)− y
∥∥∥
2

2

≤ mλ
∥∥∥θ̃0 − θ̃0

∥∥∥
2

2
+

1

t

∥∥∥Ḡ(θ̃0 − θ̃0)− y
∥∥∥
2

2

≤ ‖y‖
2
2

t
≤ B

From the RKHS assumption, the true reward is bounded by B and hence the last inequality follows
since the size of the training set is t.

Gradient descent on smooth and strongly convex functions converges to optima if the learning rate is
smaller than the smoothness coefficient inversed. Under this condition the minima of L̃ is unique and
has the closed form

θ̃∗ = θ0 +
(
λI + ḠT Ḡ/(mt)

)−1
ḠTy/(mt)

Having set η ≤ C(mL+mλ)−1, we get that θ̃(j) converges to θ̃∗ with the following exponential rate,
∥∥∥θ̃(j) − θ0 −

(
λI + ḠT Ḡ/(mt)

)−1
ḠTy/(mt)

∥∥∥
2

2
≤ (1− ηmλ)(j)

2

mλ

(
L̃(θ0)− L̃(θ̃∗)

)

≤ 2(1− ηmλ)j

mλ

‖y‖22
t

≤ 2B(1− ηmλ)j

mλ
.

Lemma C.9 (Gradient descent parameters bound). Let the sequence θ(J) denote the J-th gradient
descent update on the GNN loss,

L̃(θ) =
1

t

∑

i≤t

(
fGNN(Gi;θ

0)− yi
)2
2

+mλ
∥∥θ − θ0

∥∥2
2
.

If m = poly(T, L,B, |G|, λ−10 , λ−1, log(N/δ)) and η ≤ C(mL + mλ)−1 for some C, then with
probability greater than 1− δ,

∥∥∥θ(J) − θ0
∥∥∥
2
≤ 2
√
B/mλ.

30

Proof of Lemma C.9. Following Zhou et al. [45] we introduce the sequence (θ̃(j)) which denotes
the gradient descent updates on the following proxy loss,

L̃(θ) =
1

t

∑

i≤t

(
〈gGNN(Gi;θ

0),θ − θ0〉 − yi
)2
2

+mλ
∥∥θ − θ0

∥∥2
2
.

By Lemma C.8,
∥∥∥θ̃(J) − θ0

∥∥∥
2
≤
√

B

mλ

It remains to show that ||θ(J) − θ̃(J)||2 ≤
√
B/mλ, which concludes the proof due to triangle

inequality. By writing out the gradient descent updates of the two sequences we get,
∥∥∥θ(j+1) − θ̃(j+1)

∥∥∥
2

=

∣∣∣∣
∣∣∣∣(1− ηmλ)(θ(j) − θ̃(j))− η

t
(Ḡ(j) − Ḡ)T (f

(j)
GNN − y)

− η

t
ḠT
(
f
(j)
GNN − Ḡ(θ(j) − θ0) + Ḡ(θ(j) − θ̃(j))

)∣∣∣∣
∣∣∣∣
2

≤ η

t

∥∥∥(Ḡ(j) − Ḡ)
∥∥∥
2

∥∥∥(f
(j)
GNN − y)

∥∥∥
2

+
η

t

∥∥Ḡ
∥∥
2

∥∥∥f (j)
GNN − Ḡ(θ(j) − θ0)

∥∥∥
2

+
∥∥I − η

(
mλI + ḠḠT /t

)∥∥
2

∥∥∥θ(j) − θ̃(j)
∥∥∥
2

We bound each term separately. In the rest of the proof, Lemma C.7 is always used with τ =
√
B/mλ.

Lemma C.3 Zhou et al. [45] directly holds for fGNN, and states that ||f (j)
GNN − y||2 ≤ (B + 1)

√
t.

Then Eq. (C.32) Lemma C.7 gives,

η

t

∥∥∥(Ḡ(j) − Ḡ)
∥∥∥
2

∥∥∥(f
(j)
GNN − y)

∥∥∥
2

w.h.p

≤ ηC1

(
B

mλ

)1/6

L7/2(B + 1)
√
m logm.

Recall that fGNN(G;θ0) = 0 by design. Then for the second term, using Equations C.31 and C.33
from Lemma C.7,

η

t

∥∥Ḡ
∥∥
2

∥∥∥f (j)
GNN − Ḡ(θ(j) − θ0)

∥∥∥
2

w.h.p

≤ ηC2

(
B

mλ

)2/3

L7/2m
√

logm.

As for the last term, first note that by Eq. (C.31) Lemma C.7, with high probability

η
(
mλI + ḠḠT /t

) w.h.p

4 η(mλI + C1mLI) 4 I

where the last inequality holds since η is chosen to be small enough. Therefore,

∥∥I − η
(
mλI + ḠḠT

)∥∥
2

∥∥∥θ(j) − θ̃(j)
∥∥∥
2

w.h.p

≤ (1− ηmλ)
∥∥∥θ(j) − θ̃(j)

∥∥∥
2
.

We put the three terms back together and unroll the recursive inequality. Then if m is picked to be
large enough at the above stated polynomial rate,

∥∥∥θ(j) − θ̃(j)
∥∥∥
2

w.h.p

≤
√

B

mλ
.

The next lemma shows that the first order approximation of a GNN at initialization can still describe
the network after it has been trained with gradient descent for J steps.
Lemma C.10 (Taylor approximation of a trained GNN). If m =
poly(T, L,B, |G|, λ−10 , λ−1, log(N/δ)) and for some constant C, η = C(mL+mλ)−1, then

∣∣∣fGNN(Gt;θ
(J))− fGNN(Gt;θ

0)− 〈gGNN(Gt;θ
0),θ(J) − θ0〉

∣∣∣ ≤ C̃L3

(
B

mλ

)2/3√
m logm

with some constant C̃ and any t ≤ T , with probability greater than 1− δ.

31

Proof of lemma C.10. By Lemma 4.1 Cao and Gu [10], if m =
poly(T, L,B, |G|, λ−10 , λ−1, log(1/δ)) and η is set according to the statement of the lemma,
then for a fixed x with probability greater than 1− δ,

∣∣∣fNN(x;θ(J))− fNN(x;θ0)− 〈g(x;θ0),θ(J) − θ0〉
∣∣∣ ≤ Cτ4/3L3

√
m logm

where
∥∥θ(J) − θ0

∥∥
2
≤ τ . We use this inequality with x = (h̄

(i)
v) for all u ∈ V (Gi). Setting

δ ← δ/2N and applying the union bound gives
∣∣∣∣∣
∑

u∈V (Gi)

fNN(h̄(i)
v ;θ(J))−

∑

u∈V (Gi)

fNN(h̄(i)
v ;θ0)−〈

∑

u∈V (Gi)

g(h̄(i)
v ;θ0),θ(J) − θ0〉

∣∣∣∣∣

≤ CNτ4/3L3
√
m logm

Therefore, if m = poly(T, L,B, |G|, λ−10 , λ−1, log(N/δ))) with probability greater than 1− δ,
∣∣∣f(Gi;θ

(J))− f(Gi;θ
0)− 〈gGNN(Gi;θ

0),θ(J) − θ0〉
∣∣∣ ≤ Cτ4/3L3

√
m logm (C.34)

It remains to bound ||θ(J)−θ0||2 in order to calculate η in Equation C.34. From Lemma C.9, we have
||θ(J) − θ0||2 ≤ 2

√
B/mλ. Setting δ ← δ/T and taking a union bound over all t ≤ T concludes

the proof. Note that the added log T term from union bound does not change rate for m, since it is
already growing polynomially with T .

D Experiments

We include the details of the experiments in Section 5, together with the supplementary plots.

D.1 Synthetic Permutation Invariant Datasets

To test our permutation invariant additive model, we pick the GNTK as the kernel function and create
18 datasets that inherit this structure. As explained in Section 5, each dataset consists of a finite
domain of size G = 10000 together with a reward function, both of which are generated randomly.
The domains are sets of Erdős-Rényi random graphs, where each graph has N nodes, and between
each two nodes there exists an edge with probability p. The node features are i.i.d. d-dimensional
standard Gaussian vectors.

For every domain, we sample a random reward function. We use GP(0, kGNN) as a prior, and sample
f from its posterior GP. The posterior is calculated using a small random dataset (Gi, yi)i≤5, where
yi are drawn independently from N (0, 1) and Gi are randomly chosen from Gp,N . We choose the
posterior GP over the prior as it produces somewhat smoother samples. We note that functions drawn
from this GP do not reside inHGNN. Table 2 shows the characteristics of the datasets, which will be
released together with the code to generate them from scratch.

N = 5 N = 20 N = 100
p = 0.05 d ∈ {10, 100} d ∈ {10, 100} d ∈ {10}
p = 0.2 d ∈ {10, 100} d ∈ {10, 100} d ∈ {10, 100}
p = 0.95 d ∈ {10, 100} d ∈ {10, 100} d ∈ {10, 100}

Table 2: Parameters of the synthetic datasets

D.2 Practical Details

The python code to our algorithms, bandit environment, and experiments will be released.

Algorithm. There are some differences between how we utilize the algorithm in practice and the
pseudo-code inAlgorithm 1. We list these modifications for transparency.

• When calculating σ̂t−1 we approximate K̂t−1 with its diagonal so that the matrix inversion
takes o(t) operations.

32

• GNN-PE suggests to discard data from previous episodes, so that the decisions are non-
adaptive. In practice we keep the history for training the network.

• We set all Te = 1.
• Only from t ≥ T2 = 80 we follow Eq. (C.2) and intersect the sets of plausible maximizers.

For the first T2 steps construct them via

Ge+1 ←
{
G ∈ G : fGNN(G;θ(J)e)+βTe

σ̂Te
(G) ≥ max

G∈G

(
fGNN(G;θ(J)e)−βTe

σ̂Te
(G)
)}
.

Network Architecture. We set the width of all architectures to m = 2048 and depth to L = 2.
This combination is picked primarily to keep computations light, while somewhat adhering to the
theoretical setup. To calculate σ̂t−1 we approximate the gram matrixGTG with its diagonal, which
gets worse as the number of network parameters grow. The picked values for m and L producing a de-
scriptive network, and allow us to use this diagonal approximation with a negligible cumulative error.

Graph Neural Tangent Kernel To implement this kernel function, we use the NTK class from the
Neural Tangents library [33], and sum the base NTK via Eq. (4). This library offers the tangent
kernels of every network architecture, however it is unclear how the kernel is derived for a GNN,
therefore we use our own expression.

Initialization. We initialize the networks by directly following the definition of Eq. (2). The scaling
with 1/

√
m is crucial in activating networks in the lazy regime. If this condition is not met, the

confidence sets [fGNN(·;θ)± σ̂t−1(·)] may not be valid, since σ̂t−1 no longer accurately describes
the posterior variance of fGNN.

Training. When analyzing the training dynamics of fGNN, we consider SGD on the `2-regularized
loss. In practice, however, we train the network with the Adam optimizer [26] from PYTORCH
[34], and without weight decay. The learning rate is set to η = 0.001. We allow T0 = 40 steps of
random exploration, to mimic some form of pre-training. The random exploration steps are included
in our regret plots. For the first T1 = 100 steps, we train the network from scratch (using the same
initialization θ0) at every step t, as described by the algorithm, and then in batches of TB = 20 just
to keep computations light. At every step t we run the Adam optimizer for Jt gradient descent steps,
where Jt is calculated via the following stopping criteria

Jt = min J

s.t. L(θ
(J)
t−1) ≤ L0 or,

∆L(J−1)
t−1 −∆L(J)

t−1

∆L(J−1)
t−1

≤ δ0

where we set L0 = 10−4, δ0 = 10−3, and

∆L(J)
t−1 := L(θ

(J)
t−1)− L(θ

(J−1)
t−1).

The above criterion targets both value of the loss function and the rate at which it is decaying.
Effectively, this rule stops training if either the loss is lower than a threshold L0, or if the loss has
plateaued, i.e. the relative change in the the loss is lower than a threshold δ0. Roughly put, the two
conditions on value and decay of the loss, cause the training algorithm to run longer for larger t and
prevent over-fitting when t is small. The hyperparameters of the optimizer, i.e., η, δ0,L0, TB , T0, and
T1 are selected by hand and not automatically tuned.

D.3 GNN-UCB & NN-UCB

In Section 5, we compare GNN-PE with NN-PE, GNN-UCB and NN-UCB as baselines. The
pseudo-code is laid out in Algorithm 3 and Algorithm 4.

33

Algorithm 3: GNN-UCB
Input: m, J, η, λ, βt, T
Initialize network parameters to a random θ0, and K̂0 = σ2I .
for t = 1 · · ·T do

for G ∈ G do
σ̂2
t−1(G)← gTGNN(G;θ0)K̂−1t−1gGNN(G;θ0)/m

UG,t ← fGNN(G;θ
(J)
t−1) + βtσ̂t−1(G)

end
Gt = arg maxG∈G UG,t
Select Gt and append the rewards vector yt by the observed reward.
Set K̂t ← λI +

∑
i≤t gGNN(Gi;θ

0)gTGNN(Gi;θ
0)/mt

Calculate θ(J)t = TrainGNN
(
m,J, η, λ,θ0, (Gi, yi)i≤t

)

end

Algorithm 4: NN-UCB
Input: m, J, η, λ, βt, T
Initialize network parameters to a random θ0, and K̂0 = σ2I .
for t = 1 · · ·T do

for G ∈ G do
σ̂2
t−1(G)← gTNN(h̄G;θ0)K̂−1t−1gNN(h̄G;θ0)/m

UG,t ← fNN(h̄G;θ
(J)
t−1) + βtσ̂t−1(G)

end
Gt = arg maxG∈G UG,t
Select Gt and append the rewards vector yt by the observed reward.
Set K̂t ← λI +

∑
i≤t gNN(h̄Gi

;θ0)gTNN(h̄Gi
;θ0)/mt

Calculate θ(J)t = TrainNN
(
m,J, η, λ,θ0, (h̄Gi

, yi)i≤t
)

end

Algorithm 5: TrainNN

Input: m, J, η, λ, θ0, (h̄Gi , yi)i<t

Define L(θ) = 1
t

∑
i<t

(
fNN(h̄Gi

;θ)− yi
)2

+mλ
∥∥θ − θ0

∥∥2
2

Initialize θ(0) = θ0

for j = 1, . . . , J do
θ(j) = θ(j−1) − η∇L(θ(j−1))

end
Output: θ(J)

34

0 100 200 300 400
0

2

4

6

8

10

GNN-UCB

0 100 200 300 400
0.0

2.5

5.0

7.5

10.0

12.5

15.0

NN-UCB

0 100 200 300 400
0.0

2.5

5.0

7.5

10.0

12.5

15.0

GNN-PE

0 100 200 300 400
0

5

10

15

20

NN-PE

= 0.00189 = 0.00372
= 0.00250 = 0.00023
= 0.00215 = 0.08830
= 0.00019 = 0.86631
= 0.00005 = 0.00072
= 0.01967 = 0.34049
= 0.00708 = 0.00004
= 0.01843 = 0.08452
= 0.00189 = 0.00372
= 0.00250 = 0.00023
= 0.00215 = 0.08830
= 0.00019 = 0.86631
= 0.01967 = 0.34049
= 0.00005 = 0.00072
= 0.00708 = 0.00004
= 0.01843 = 0.08452
= 0.03680 = 0.00003

= 0.00000 = 0.00000
= 0.00136 = 3.51492
= 0.00019 = 0.00000
= 0.00002 = 0.00000
= 1.43812 = 0.00001
= 0.00640 = 0.00000
= 0.00003 = 5.58151
= 0.14768 = 0.00000
= 0.04175 = 0.51265
= 0.00000 = 0.49125
= 0.00000 = 0.00001
= 0.05427 = 0.35258
= 3.71116 = 0.00164
= 0.02082 = 0.00000
= 0.00001 = 0.00000
= 6.72544 = 0.00000

= 0.13430 = 0.37864
= 0.00000 = 0.22242
= 0.00297 = 0.00036
= 0.00177 = 0.12669
= 0.00000 = 0.62805
= 0.00017 = 0.00000
= 0.03972 = 0.42046
= 0.00024 = 0.00045
= 0.03680 = 0.00003
= 0.00000 = 0.00000
= 0.00136 = 3.51492
= 0.00019 = 0.00000
= 0.00002 = 0.00000
= 1.43812 = 0.00001
= 0.00640 = 0.00000
= 0.00003 = 5.58151

= 0.14768 = 0.00000
= 0.04175 = 0.51265
= 0.00000 = 0.49125
= 0.00000 = 0.00001
= 0.05427 = 0.35258
= 3.71116 = 0.00164
= 0.02082 = 0.00000
= 0.00001 = 0.00000
= 6.72544 = 0.00000
= 0.13430 = 0.37864
= 0.00000 = 0.22242
= 0.00297 = 0.00036
= 0.00177 = 0.12669
= 0.00000 = 0.62805
= 0.03972 = 0.42046
= 0.00024 = 0.00045

Figure 5: Results of hyper-parameter search for all algorithms. The GNN methods then to perform
well for many configurations of λ and β.

35

0 200 400
0

5

10

15
N = 5, p = 0.05

0 200 400
0

5

10

15
N = 5, p = 0.2

0 200 400
0

5

10

15

N = 5, p = 0.95

0 200 400
0

1

2

N = 20, p = 0.05

0 200 400
0

1

2

3
N = 20, p = 0.2

0 200 400
0

2

4

6

N = 20, p = 0.95

0 200 400
0

1

2

3

4

N = 100, p = 0.05

0 200 400
0

2

4

6

N = 100, p = 0.2

0 200 400
0

2

4

6
N = 100, p = 0.95

GNN-UCB GNN-PE NN-UCB NN-PE

Figure 6: Comparing performance of GNN-PE, GNN-UCB, NN-PE, and NN-UCB for all dataset
configurations. The GNN methods consistently outperform NN methods. Hyper-parameter tuning is
done only for N = 5, p = 0.05 and the same is used across all setting.

36

0 200 400
GNN-UCB, p = 0.05

0

1

2

3

0 200 400
GNN-UCB, p = 0.2

0

2

4

0 200 400
GNN-UCB, p = 0.95

0

2

4

0 200 400
GNN-PE, p = 0.05

0

1

2

3

0 200 400
GNN-PE, p = 0.2

0

2

0 200 400
GNN-PE, p = 0.95

0

2

4

6

0 200 400
NN-UCB, p = 0.05

0

5

10

0 200 400
NN-UCB, p = 0.2

0

5

10

0 200 400
NN-UCB, p = 0.95

0

2

4

6

0 200 400
NN-PE, p = 0.05

0

5

10

15

0 200 400
NN-PE, p = 0.2

0

5

10

15

0 200 400
NN-PE, p = 0.95

0

5

10

15

 N = 5 N = 20 N = 100

Figure 7: Effect of graph size on performance of GNN-PE, GNN-UCB, NN-PE, and NN-UCB.
GNN methods perform well regardless of value of N . Inference on sparse small graphs is challenging
since the random graphs tend to have very few edges.

37

0 200 400
0

2

4

GNN-UCB

0 200 400
0.0

0.5

1.0

1.5

2.0

GNN-UCB

0 200 400
0.0

0.5

1.0

1.5

GNN-UCB

0 200 400
0

2

4

6
GNN-PE

0 200 400
0

1

2

3

GNN-PE

0 200 400
0

1

2

GNN-PE

0 200 400
0

5

10

NN-UCB

0 200 400
0

1

2

3

NN-UCB

0 200 400
0

2

4

6

NN-UCB

0 200 400
0

5

10

15

NN-PE

0 200 400
0

2

4

6

NN-PE

0 200 400
0

2

4

6

NN-PE

 p = 0.05 p = 0.2 p = 0.95

Figure 8: Effect of edge density on performance of GNN-PE, GNN-UCB, NN-PE, and NN-UCB.
The NN algorithms tend to improve as p grows.

38

	Introduction
	Problem Statement
	Graph Neural Networks
	GNN Bandits
	Information Gain
	Confidence Sets
	Bandit Optimization with Graph Neural Networks

	Experiments
	Conclusion
	The Neural Tangent Kernel and its Connection to the GNTK
	Properties of GNN and GNTK
	Recursive Expression for the NTK
	Effect of Structure on the Hypothesis Space

	Information Gain Bounds
	Proof of and
	Proof of
	GNN Helper Lemmas

	Experiments
	Synthetic Permutation Invariant Datasets
	Practical Details
	GNN-UCB & NN-UCB

