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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Dataset details. The quantity of images from all datasets utilized in our experiment is detailed in
Tab. 1. We utilize the ImageNet-1K (Deng et al., 2009) as the training dataset for class-to-image
controllable generation, encompassing a total of 1,000 classes. The canny edge detector (Canny,
1986) is employed to acquire the canny edge map, and the depth map is obtained using Midas (Ranftl
et al., 2020). In the context of text-to-image controllable generation, ADE20K (Zhou et al., 2017)
and COCOStuff (Caesar et al., 2018) are harnessed for training the segmentation control task, while
MultiGen-20M is utilized for training the edge map and depth control generation.

Table 1: Details of different dataset.
ImageNet-1K ADE20K COCOStuff MultiGen-20M

Training Samples 1281188 20210 118287 2810616
Evaluation Samples 50000 2000 5000 5000

Evaluation details. To assess the conditional consistency of the generated images, we have de-
vised various metrics tailored to each specific task. In the context of segmentation control gener-
ation, we employ a segmentation model to evaluate the mean Intersection over Union (mIoU) of
the generated images. Specifically, we reference ControlNet++ to examine the results of the valida-
tion set generation on ADE20K using Mask2Former (Cheng et al., 2022), and on COCOStuff using
DeepLabv3 (Chen, 2017). For canny edge control generation, we utilize the canny edge detector
with thresholds of (100, 200) to derive the canny edge of the results, and subsequently calculate the
F1-Score in relation to the input control. In the case of hed and lineart edge, we follow the approach
outlined in ControlNet to obtain control images and compute the Structural Similarity Index (SSIM).
Regarding depth map control generation, we calculate the Root Mean Square Error (RMSE).

Table 2: Training details of different tasks.
Seg. Canny Hed Lineart Depth

ADE20K COCOStuff MultiGen-20M

Batch size 96 96 96 88 88 96
GPU hours 55 80 340 160 110 370

Training details. We use 8 Nvidia A100 80G GPUs to complete text-to-image controllable gener-
ation experiments based on LlamaGen-XL (Sun et al., 2024). The batch size settings and GPU hours
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during training can be found in Tab. 2. We use the edge extraction model to obtain the hed edge and
lineart edge of the image during the training process, which takes up some memory, so the batch
size is slightly smaller than the other tasks. It should be noted that since the ADE20K dataset has
less training data, we first merge the ADE20K and COCOStuff datasets together to train the model,
which requires roughly 50 GPU hours. Because the segmentation map labelling is inconsistent be-
tween the two datasets, we fine-tuned 2k iterations on ADE20K and 20k iterations on COCOStuff,
respectively. The additional 2k iteration on ADE20K results in a mIoU improvement of 1.15.

A.2 MORE EXPERIMENTAL EXPLORATIONS

Comparison with recent work. We have added some quantitative comparative results with recent
work including OmniGen (Xiao et al., 2024) and Lumina-mGPT (Liu et al., 2024), as shown in the
Tab. 3. The results for segmentation task are measured on the validation set of ADE20K (Zhou et al.,
2017), and the results for canny, hed and depth are measured on the validation set of MultiGen-
20M (Qin et al., 2023). OmniGen uses iterative denoising diffusion for image generation, while
lumina-mGPT uses autoregressive prediction. Although Lumina-mGPT has a much larger number
of parameters than our ControlAR, it does not perform particularly well on the controllable genera-
tion task. Our ControlAR provides a good solution for autoregressive controllable image generation
and our method does not require any adjustments to the structure of the generative network or mod-
ifications to the length of the sequences, which means that we can easily migrate our ControlAR to
other autoregressive image generation models, such as Lumina-mGPT.

Table 3: Quantitative comparison with recent works.
Method Param. Seg.(mIoU↑) Canny(F1-Score↑) Hed(SSIM↑) Depth(RMSE↓)

OmniGen 3.8B 44.23 35.54 82.37 28.54
Lumina-mGPT 7B 25.02 29.99 78.21 55.25
Ours 0.8B 39.95 37.08 85.63 29.01

Adjustable control strength. Given the diversity of image structures, we sometimes do not want
the spatial structure of the generated image to be identical to the input control. To achieve this, it is
only necessary to skip the operation of fusing the control condition token with the image token with
a probability of 50% when training ControlAR. Such an approach ensures ControlAR’s generative
capability in the absence of control image inputs. At the same time, multiplying the control condition
token by a control strength factor α during inference changes the degree of control of the generated
result. When α is 1, ControlAR will generate an image exclusively based on the control condition,
while when α is 0, the generated results will be related only to the text prompt. Fig. 1 shows the
visualizations using edges as the control image and adjusting the control strength.

Arbitrary-Resolution Generation Without Condition Image. We conduct a more in-depth ex-
ploratory study on resolution control in the absence of specific condition image. We can generate
a grayscale map of the corresponding resolution according to the desired height and width, this
grayscale map consists of a number of 16 × 16 small squares, and the grayscale value of each row
decreases from left to right, the left most 255, the right most 0. This grayscale image is the condi-
tion image that determines the resolution. Thanks to the strong positional dependence of the control
decoding strategy between the image token and the control condition token, the model only needs
to generate a sequence as long as the control condition sequence. And since the grayscale value
of each row is decreasing from left to right, the model can easily know when it is necessary to
switch to the next row. We have verified the feasibility of this approach on a small experimental
scale. We show some visualization results in Fig. 2. Using resolution-aware prompts to control
the resolution as in Lumina-mGPT requires the constant generation of <end-of-line> tokens
during the prediction of the image and the eventual prediction of <end-of-image> token. This
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Condition Generated Images

α=1 α=0.8 α=0.6 α=0.4 α=0.2 α=0

A stuffed animal 
sitting on 
a blanket

A soldier 
equipped 

with high-tech 
equipment

A vivid 
eye drawing,
 with a few 

pencils nearby

Figure 1: Visualization with different control strength factor α.

approach requires the model to make its own decisions about where to make line breaks and where
to end generation, but our ControlAR is directly telling the model where to make line breaks and
end generation. We only need to fine-tune the weights based on LlamaGen-XL (512×512) on about
1M text-image paired data for 30k steps to achieve a good arbitrary resolution generation capability
without specific control image. This proves that our ControlAR can be a very effective strategy for
controlling resolution.

A.3 DISCUSSION

Limitation. We have shown in our experiments that updating the parameters of the generative
model can achieve better results than freezing it completely. However, this approach is still not
as convenient as ControlNet in terms of model portability. In addition, our method does not cur-
rently support scenarios where multiple control images are input simultaneously. Processing multi-
ple control images simultaneously using a control encoder with a small number of parameters can
be challenging.

512×768

A blue Porsche 356 parked in front of a yellow brick wallA cowboy riding a horse across a river

1024×512

A two-story modern villa by the sea

640×640

Figure 2: Arbitrary-Resolution generation without condition image. The grayscale map on the
left is the condition image generated according to the desired resolution.
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Failure Cases. ControlAR performs well on the conditional consistency of controllable genera-
tion of spatial structures. But because of this, the generated images are sometimes less controlled by
the text prompt, especially when the textual prompt conflicts with the spatial structure of the control
image. We use depth-to-image and canny-to-image as examples in Fig. 3. When there is a large
difference between the text prompt and the original image, it might fail to generate images accord-
ing to the text prompt. In ControlAR, we can use the control factor to adjust the strength of spatial
control, thereby aligning the generated results with the text and mitigating this conflict. However,
the conflict between text prompts and spatial controls is a common issue in current control-to-image
generation models, including ControlNet (Zhang et al., 2023) and ControlNet++ (Li et al., 2024).
As shown in Fig. 3, neither ControlNet nor ControlNet++ can generate images that strictly follow
the text prompts. Moreover, ControlNet++ introduces additional supervision to facilitate alignment
between the generated image and spatial controls, which weakens the influence of the text prompt
as shown in the case of canny-to-image. This phenomenon reflects that there may be some con-
frontation between the structural freedom of the generated image and the conditional consistency.
The examples in Fig. 3 reflect the possible contradiction between structure diversity and conditional
consistency. We acknowledge that structure diversity is a meaningful and challenging problem for
controllable image generation. We extend ControlAR by introducing a control α to dynamically
adjust the strength of control. This allows the model to balance structural consistency and diver-
sity, enabling the generated images to align with the input geometric controls while also introducing
variations to produce richer and more diverse structures. Although this is an exploratory attempt,
we believe that ControlAR has the potential to achieve this balance. Specifically speaking, in order
to improve the diversity of generated images, we believe that we need to explore suitable training
strategies to achieve the effect of being able to adjust the intensity of control during the inference
phase, and to resolve the possible contradiction between text alignment and conditional consistency,
which are important directions in future research.

Image Condition
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ControlAR (α=1) ControlAR (α=0.4) ControlNet v1.1 ControlNet++

A man with 
glasses

Figure 3: Failure cases of current ControlAR. When the text prompt conflicts with the control
image, the generated result tends to ignore the text prompt. Adjusting the control strength factor α
can alleviate this problem.

Future work. We will use more data to try more kinds of conditional control generation, such as
human pose and bounding box. At the same time, in order to improve the migratability of the model
we will consider focusing the parameter update on the control encoder and keep the parameters of
the generated model itself unchanged. In addition to this, how to use one control encoder to process
different control image inputs simultaneously is also a direction worth exploring.

A.4 MORE VISUALIZATIONS

More visualization results under different conditions of control are shown in Fig. 4 5 6 7 8. We
alse show some visualization comparison of ControlAR and MR-ControlAR at different resolution
in Fig. 9 and Fig. 10.
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Condition Generated Images

Figure 4: Segmentation mask control generation visualization.
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Condition Generated Images

Figure 5: Canny edge control generation visualization.
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Condition Generated Images

Figure 6: Hed edge control generation visualization.
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Condition Generated Images

Figure 7: Lineart edge control generation visualization.
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Condition Generated Images

Figure 8: Depth map control generation visualization.
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Condition MR-ControlAR
(SSIM：86.98)

ControlAR
(SSIM：79.21)

Figure 9: visualization comparison of MR-ControlAR and ControlAR at the resolution of
1024× 512.
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Condition

MR-ControlAR
(SSIM：83.38)

ControlAR
(SSIM：78.82)

Figure 10: visualization comparison of MR-ControlAR and ControlAR at the resolution of
576× 1024.
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