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Abstract

We present the task of “Social Rearrangement”,
consisting of cooperative everyday tasks like
setting up the dinner table, tidying a house or
unpacking groceries in a simulated multi-agent
environment. In Social Rearrangement, two
robots coordinate to complete a long-horizon
task, using onboard sensing and egocentric obser-
vations, and no privileged information about the
environment. We study zero-shot coordination
(ZSC) in this task, where an agent collaborates
with a new partner, emulating a scenario where
a robot collaborates with a new human partner.
Prior ZSC approaches struggle to generalize in
our complex and visually rich setting, and on
further analysis, we find that they fail to generate
diverse coordination behaviors at training time.
To counter this, we propose Behavior Diversity
Play (BDP), a novel ZSC approach that encour-
ages diversity through a discriminability objective.
Our results demonstrate that BDP learns adaptive
agents that can tackle visual coordination, and
zero-shot generalize to new partners in unseen
environments, achieving 35% higher success and
32% higher efficiency compared to baselines.

1. Introduction

Consider a human-robot or robot-robot team, collaborating
at everyday tasks like unloading groceries, preparing dinner
or cleaning the house. Such an assistive robot should coordi-
nate with its partner to efficiently complete the task, without
getting in their way. For example, while tidying the house,
if its partner starts cleaning the kitchen, the robot could
start cleaning the living room to maximize efficiency. If the
robot notices its partner loading the dishwasher, it should
prioritize bringing dirty dishes from the living room to the
kitchen, instead of rearranging cushions. The robot should
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be able to reason about its embodiment to avoid getting in
the way of its partner while acting to effectively assist them.
There are several challenges in building such a collaborative
system. (1) The robot needs to adapt to preferences of its
partner, which might be unobserved, and change over time.
For example, its partner might do a different part of the
task in different situations, and the robot must adapt to such
changes. (2) The environment and the partner are partially
observed through the robot’s egocentric cameras, making
both inferring the state of the partner and the environment
challenging. (3) The tasks are complex and long-horizon,
with feasibility constraints that affect both the robot’s and
its partner’s actions. For example, once the robot infers
that its partner is loading dishes, it must bring dishes to the
kitchen to enable its partner to succeed. All of these chal-
lenges make multi-agent collaboration in visually-realistic,
long-horizon tasks challenging.

Zero-shot coordination (ZSC) (Lanctot et al., 2017; Strouse
etal., 2021) — a two-stage learning framework that first trains
a diverse population of agents (typically enforced through
random policy initializations), and then trains a coordination
agent to collaborate with this population — has been used to
study such problems. However, so far ZSC approaches have
only been applied to simplistic environments and tasks, with
complete (privileged) information, like Overcooked (Carroll
et al., 2019). Instead, real-world coordination requires deal-
ing with partial information, and high-dimensional, continu-
ous observations like images. Such a visually-rich setting
requires bulky policy architectures, and the naive strategy
of random policy initializations for generating different be-
haviors (Strouse et al., 2021) is not enough. As a result, we
observe that most agents in the population exhibit similar
behaviors, like always reaching for the bowl when setting
the dinner table. A coordination agent trained with such a
population is not adaptive to other partner preferences, like
reaching for the fruit. To solve this problem, we propose a
novel approach for ZSC — Behavior Diversity Play (BDP) —
which uses a shared policy architecture and a discriminabil-
ity objective to encourage behavioral diversity. Specifically,
we train a discriminator network to distinguish the popu-
lation behaviors given a history of states, encouraging the
population behaviors to be distinct. For example, when
setting a dinner table, different agents in the population at-
tempt to do different parts of the task, like reach for the
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Task: Household object Rearrangement

Train with a diverse population using
egocentric observations

Zero-shot evaluation with unseen partners

Figure 1: Overview. (Left) Task: Rearranging two objects from a start to a goal location. (Middle) The blue robot learns to
coordinate to rearrange the objects as efficiently as possible, with diverse red partners. The robots operate from egocentric
visual and proprioceptive observations. (Right) The blue robot now coordinates with an unseen green robot zero-shot.

fruit or the bowl. A coordination agent trained with this
population is robust to either behavior at test-time, making
it adaptive to unseen partners. Moreover, our shared policy
architecture allows sample-efficient learning of bulky visual
encoders, and parameterizes populations using a behavior
latent space instead of random policy initialization. This ar-
chitecture makes ZSC scalable for multi-agent collaboration
in realistic, high-dimensional environments.

Our second contribution is a realistic multi-agent collab-
oration environment “Social Rearrangement”, consisting
of everyday tasks like setting up the dinner table, tidying
a house or unpacking groceries. Social Rearrangement is
simulated in AI Habitat (Savva et al., 2019; Szot et al.,
2021) — a high-throughput physics-enabled photo-realistic
3D simulator. Two Fetch robots (Fetch, 2020) are instanti-
ated in a fully-furnished apartment from the ReplicaCAD
dataset (Szot et al., 2021), and tasked with solving every-
day, long-horizon tasks (see Figure 1). The robots do not
have access to any privileged information, like a bird’s eye
view of the house, or actions of their partner, and must
operate entirely from onboard camera and proprioceptive
sensing. We treat robot-robot cooperation as a proxy for
human-robot cooperation and thus, don’t assume access to
the unobserved preferences or inner workings (policies) of
the partner. The agent must coordinate with new partners, as
observed through its egocentric cameras. Unseen partners
have (scripted or learned) task-specific preferences, some
might do only one part of the task, and others might do
nothing; the coordination agent must adapt to this range of
behavior.

We evaluate ZSC at Social Rearrangement, and observe that
state-of-the-art ZSC approaches have poor generalization
performance in this environment, due to a lack of behavior
diversity in their learned population. Instead, BDP learns di-
verse coordination behaviors in its population, with the help
of the discriminability objective which encourages agents

in the population to exhibit distinct behaviors, and in turn,
can be used to train an adaptive coordination agent. Our
experiments show BDP achieves 35% higher success and is
32% more efficient when coordinating with unseen agents
compared to the approach from (Jaderberg et al., 2019),
averaged over 3 tasks. Finally, we present approaches for
analysing population behavior and diversity, and show that
higher diversity results in stronger zero-shot coordination.

Overall, the key contributions of our work are: (1) We pro-
pose anovel ZSC approach — Behavior Diversity Play (BDP)
which outperforms prior ZSC approaches at visually-rich
tasks. (2) We present the Social Rearrangement task for col-
laborative embodied Al research, featuring realistic every-
day home tasks like tidying up a house. (3) We benchmark
ZSC approaches at complex, long-horizon tasks, against
unseen learned and scripted agents over 10,000 rearrange-
ment problems in 60 environments. All code is available at
https://bit.ly/43vNgFk.

2. Related Work

Visual Embodied Agents. Embodied Al has seen great
advancements in simulation platforms (Kolve et al., 2019;
Chang et al., 2017; Xia et al., 2018; Savva et al., 2019; Xia
et al., 2019; Weihs et al., 2020b; Xiang et al., 2020; Puig
et al., 2018; Szot et al., 2021) and new task specifications
(Savvaetal., 2019; Anderson et al., 2018; Batra et al., 2020b;
Chattopadhyay et al., 2021; Chaplot et al., 2020; Wani et al.,
2020; Chen et al., 2020; Gan et al., 2021). Object rearrange-
ment, where a robot must interact with the environment to
achieve a desired environment configuration is an important
task for home robotics (Batra et al., 2020a), and a variety
of simulators support it (Weihs et al., 2021a; Shridhar et al.,
2020; Padmakumar et al., 2021; Ehsani et al., 2021; Szot
et al., 2021). We utilize the Home Assistant Benchmark
(HAB) in AI Habitat proposed by (Szot et al., 2021), con-
sisting of home tasks like “tidy the house”, “set the table”,
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and “prepare the groceries”. Our Social Rearrangement task
extends the HAB to multi-agent setting.

Visual Deep Multi-Agent RL. Multi-agent RL (MARL)
deals with learning policies for multiple embodied agents
act to complete a task e.g., synchronized moving of furni-
ture, that necessarily requires two agents (Jain et al., 2019;
2020). Beyond collaborative tasks, competitive tasks like
hide-and-seek and soccer have been investigated (Chen et al.,
2019; Juliani et al., 2018; Weihs et al., 2021b; Kurach et al.,
2020). Visual MARL has been studied in the heterogeneous
setting — where embodied agents have different capabili-
ties (Thomason et al., 2020; Roman et al., 2020; Patel et al.,
2021) and teacher-student framework (Weihs et al., 2020a;
Jain et al., 2021). Visual MARL has also been deployed
to realistic, and procedurally-generated abstract environ-
ments (Jaderberg et al., 2019; Team et al., 2021). Prior work
on committed exploration for MARL (Mahajan et al., 2019)
shows basic adaptation to structural changes in environment
and task setup. Building on, but the above works, we learn
agents that can adapt to novel partners at evaluation time.
We make the choice to not model communication between
the agents and study coordination purely based on observing
the partner.

Adaptability in Multi-Agent RL. Ad-hoc teamwork (Stone
et al., 2010; Barrett et al., 2011) studies how agents can
adapt their behavior to join teams. Similarly, theory of
mind (Premack & Woodruff, 1978) studies how modeling
the behavior of partner agents improves coordination robust-
ness (Choudhury et al., 2019; Sclar et al., 2022). Previous
works (Puig et al., 2020; Carroll et al., 2019) study how
to coordinate with humans, but assume privileged informa-
tion about the partner in the form of a learned or planner-
based explicit model of the partner. The related problem
of zero-shot coordination (ZSC) (Hu et al., 2020) studies
how agents generalize to new partners, without any fine-
tuning. Overcooked (Carroll et al., 2019) is a simulated,
simplified kitchen benchmark for studying ZSC with a dis-
crete state and action space. Hanabi (Bard et al., 2020) is
another common benchmark for ZSC (Hu et al., 2020; 2021;
Lupu et al., 2021). In contrast to these low-dimensional
environments, we study ZSC in Social Rearrangement, a
complex, visually-realistic 3D environment. (Charakorn
et al., 2020; McKee et al., 2022) show that multi-agent RL
benefits from diversity over partners and environments. We
address diversity through a novel ZSC approach and bench-
mark it over 10,000 different rearrangement problems in 60
environments.

Zero-shot coordination (ZSC). Some ZSC methods rely
on known symmetries in the environment (Hu et al., 2020),
known environment models (Hu et al., 2021), or simplified
state spaces for manually defining coordination events (Wu
etal., 2021). Alternatively, population-play (Jaderberg et al.,

2017) is a two-stage ZSC framework which first trains a pop-
ulation of agents through random pairing, and next trains an
agent to coordinate with all agents in the population. Such
approaches strive for diverse policy distributions at train
time (Heinrich & Silver, 2016; Heinrich et al., 2015), which
results in an adaptable coordination agent (sometimes called
the “best response policy” in this literature). Fictitious co-
play (Strouse et al., 2021) extends this by incorporating
previous checkpoints in the population to represent varied
skill levels. These approaches rely on random network ini-
tializations and stochastic optimization to achieve behavior
diversity, which is not sufficient for diversity in our tasks.
Other works introduce auxiliary diversity objectives based
on action distributions (Lupu et al., 2021; Zhao et al., 2021;
Rahman et al., 2022), which are also not well-suited to em-
bodied tasks where different actions can lead to the same
states. Instead, we use a discriminability-based diversity
objective, conditioned on a history of states, with a new
policy architecture to aid learning in visual environments.
Specifically, we share policy parameters between agents of
a population, to enable scalable, sample-efficient population
training, and parametrize the population using a behavior
latent space.

Modeling Diverse Behaviors. Akin to quality diver-
sity (Pugh et al., 2016; Cully et al., 2015; Krause & Golovin,
2014), our method learns policies that are diverse and pro-
ficient at rearrangement. Prior work has explored low-
dimensional latent spaces for behaviors (Derek & Isola,
2021), though not in the context of ZSC. DIAYN (Eysen-
bach et al., 2018) learns diverse skills using an unsupervised
objective in single-agent settings. MAVEN (Mahajan et al.,
2019) uses latent spaces to learn diverse exploration strate-
gies in a multi-agent setting. (Wang et al., 2022) use a latent
space to learn diverse behaviors from a multi-agent dataset.
We also use a behavior latent space, and policies conditioned
on this space, but using RL, and in the context of ZSC.

3. Social Rearrangement

We introduce the task of Social Rearrangement where two
Fetch robots (Fetch, 2020) solve a long-horizon everyday
task (like tidying a house) in a realistic, visual 3D envi-
ronment. While both agents work together, they do not
know each other’s policy, similar to how assistive robots
must adapt to their partner’s behavior. The robots also do
not have access to any privileged information (like a bird’s
eye view of the house or actions of the partner) and must
operate entirely from an onboard egocentric camera and
proprioceptive sensing. At evaluation time, learned agents
coordinate with new partners in new environments with
new object placements and furniture layout. This emulates
realistic collaboration, where two agents complete a rear-
rangement task together, while implicitly inferring their
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partner’s state to aid or avoid getting in each other’s way.
This is a significantly more complex setting than previous
environments used to test multi-agent collaboration, like
Overcooked (Carroll et al., 2019), which assumes privileged
information about the environment (top-down map) and op-
erates in a low-dimensional, discrete state and action space.

In Social Rearrangement, the agents must move N objects
from known start to end positions, both specified by 3D
coordinates in each robot’s start coordinate frame. We build
on the Home Assistant Benchmark (Szot et al., 2021) in
the AI Habitat simulator (Savva et al., 2019) that studies
Rearrangement (Batra et al., 2020a). Social Rearrangement
extends Rearrangement to a collaborative setting, where
two agents coordinate to rearrange objects as efficiently as
possible. Both Fetch robots are equipped with the same
observation space: (1) a head mounted depth camera with
90° FoV and 256 x 256 pixel resolution, (2) proprioceptive
state measured with arm joint angles and (3) base egomotion
(providing relative distance and heading since the start of
the episode, sometimes called GPS+Compass). Agents
can also sense the relative distance and heading to their
partner. Note that this does not reveal the partner’s actions
and intents, or even the partner’s full state, like their arm
joint angles or visual observations, but enables the agents
to learn to avoid collisions, etc. Additionally, each agent
receives the distance and heading to the target objects’ start
and desired end positions, as a way of specifying the task. If
objects are in a closed receptacle, like a drawer or fridge, the
robot needs to reason that it must first open the receptacle,
before picking the object. Both agents move their base
through linear and angular base velocity (2D, continuous)
and move their arm by setting desired delta joint angle (7D,
continuous). Grasping is controlled by engaging a suction
gripper when in contact with an object (1D, binary).

The agents are rewarded for completing the task in as few
simulation steps as possible, and if they collide, the episode
ends with failure. Social Rearrangement consists of the
following three tasks adapted from (Szot et al., 2021):

* Set Table: Move a bowl from the fridge to the table, and
place a fruit from the fridge in the bowl. Both the fridge
and drawer are initially closed, and they must be opened
before removing the objects inside.

* Tidy House: Move two objects from initial locations
to target locations. The objects are spawned across six
open receptacles, and assigned a goal on one of the 6
receptacles, different from the starting receptacle.

* Prepare Groceries: Move one object from an open fridge
to the counter and another from the kitchen to the fridge.

The different tasks elicit different coordination strategies.
For example, in Set Table an agent might prefer to always
pick the bowl or always pick the fruit. On the other hand,
when tidying the house an agent might be indifferent to the

object type and always tidy the closest object first. These
everyday tasks study the ability of coordination agents to
perform complex, long-horizon tasks with unseen partners
and realistic sensing. While all tasks can be completed by
a single agent, coordinating with a team would result in
improved efficiency by dividing up the task. We follow the
standard dataset split in the ReplicaCAD (Szot et al., 2021)
scene dataset with YCB objects (Calli et al., 2015); agents
are evaluated in new layouts of the house with new object
placements. We train and evaluate policies for each task
independently. Details about the tasks are in Appendix A.

4. Behavior Diversity Play

Collaboration in everyday tasks requires adapting to unseen
partner behaviors. For example, a partner may choose to
do different parts of a task in different episodes and the
learned ‘coordination agent’ should adapt to such variations.
We propose a new method called Behavior Diversity Play
(BDP) which enables zero-shot coordination (ZSC) with
unseen partners. Like prior ZSC methods, BDP consists of
a two-stage training framework illustrated in Figure 2. It
first learns to generate task-relevant diverse behaviors and
then trains the coordination agent to coordinate with these
diverse partners. By coordinating with diverse partners at
training time, the coordination agent can generalize to un-
seen partners at test time. Specifically, in the first stage, we
train a behavior policy generator 7° capable of generating
diverse behaviors (Fig. 2, left). Next, the coordination agent
7¢ is trained to coordinate with the diverse behaviors gen-
erated by 7° (Fig. 2, middle), and finally evaluated against
unseen holdout policies IT" (Fig. 2, right). We first intro-
duce our notation and a formal description of ZSC. Next,
we detail the two stage training process and finally provide
practical details on implementing BDP.

BDP learns to generate diverse behaviors through a single
behavior generator 7° by conditioning on different behavior
latents, as opposed to prior works that learn independent
policies. This choice is conducive to our visually-rich set-
ting where policy architectures can be large, slow to train,
and difficult to fit multiple on GPUs. 7° shares weights
across different population agents, increasing training effi-
ciency. Moreover, unlike prior work (Strouse et al., 2021),
BDP does not rely on random initialization of policies to en-
sure diverse behaviors, and instead incorporates an explicit
diversity objective through a discriminator. This allows
BDP to train adaptive coordination agents across multiple
tasks and experimental scenarios.

4.1. Background and Notation

The goal of ZSC is to produce a coordination agent 7 that
can coordinate with unseen partners. For a given task, the
coordination agent is evaluated based on zero-shot perfor-
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Figure 2: Behavior Diversity Play. (Left) Stage 1: We train the behavior policy 7°, which models a diverse set of agent
behaviors, conditioned on the behavior latent z. A discriminator g, then encourages distinguishability between different z.
(Middle) Stage 2: A coordination agent 7¢ learns to coordinate with different behaviors generated by the behavior policy.
(Right) Stage 3: We evaluate the coordination agent at ZSC with unseen holdout agents 7.

mance when paired with agents from an unseen, holdout pol-
icy set, IT". Crucially, the policies in II" are never seen dur-
ing training. n agents solve the Social Rearrangement task,
which we formulate using a decentralized partially-observed
markov decision process (Dec-POMDP) consisting of the
tuple (S, A, O, R, P,~,n,T). In this work we use n = 2
agents, but our approach remains unchanged for n > 2. At
each time step ¢, the global environment state is denoted as
s¢ € S. Each agent i, receives an observation oi € O, takes
an action a’ € A, forming a joint action a; € A", resulting
in the next environment state s;1, following the transition
function P. This gets joint reward r; € R according to
the deterministic reward function R : S x A™ — R for an
episode of length T'. Agent i’s policy % maps its observa-
tions to a distribution over actions. To handle partial ob-
servability and history, policies are modeled with recurrent
neural networks. The combined expected return of policies
1.2 1.2\ _ T t
i, is J(rhm?) = Yo Bape(ntn2y [V R(st, a)].
The goal of the coordination agent 7° is to maximize
the average performance over the holdout population IT",
Ennomn [J(7€,7M)].

4.2. Stage 1: Behavior Policy Generator

We model diverse behaviors through a Behavior Policy Gen-
erator policy 7°(aq|ot, z), which conditioned on a behavior
latent z ~ p(z) generates distinct behaviors per z. The
behavior prior p(z) is modelled as a uniform categorical
distribution with K categories, where K is a hyperparam-
eter, analogous to a population size. We train 7° to max-
imize a joint task and diversity objective that encourages
agent trajectories to be distinct, while completing the task
at hand. Specifically, our training objective consists of two
components: (1) task performance, aimed to learn agents
that can solve the rearrangement task, and (2) diversity — a
discriminator-based reward to encourage distinct behaviors
per behavior latent. At the start of each episode, we sample
two latents 2%, 22 ~ p(z), one for each partner. For brevity,

we denote 7°(+|, z) as 7. Next, we optimize:
max J(ﬂgl , 71'22) + a Diversity (ﬂ'b) )

where J is the return described in Sec. 4.1 and Appendix A.
Diversity is a measure of how diverse of behaviors 7° can

produce, while « is weights the diversity objective.

By increasing diversity, we reduce the conditional entropy
of the latent z given the state history, while also increasing
the entropy of the policy. Minimizing the entropy of z given
the state history encourages z to be predictable from the
agent’s behaviors, making the different behaviors generated
by 7? distinct. Maximizing the entropy of the policy ensures
that different z are diverse enough to cover the space of pos-
sible behaviors. To optimize this objective, BDP learns a
trajectory discriminator qg that predicts which behavior
latent corresponds to an agent’s trajectory. Since the dis-
criminator is only used during training, it enjoys access to
each agent’s privileged state trajectories 78 = si,... sk,
which are not available during evaluation. Ideally, g, (z|7°),
should allocate high probability to behavior latent for agent
i,i.e, 2" € {1...K}. We adapt the skill diversity formu-
lation from (Eysenbach et al., 2018) for coordination by
conditioning on state trajectories, instead of states:

Diversity(7°) = —H (z|7) + H(alo, 2)
> ( I)E \ [log gy (=|7)] + H(alo, 2) )
z~p(z), Tl
where () is the entropy function and the second line
gives the variational lower bound on the diversity objective.
log g4 (2|7) is a discriminator loss that enforces distinguisha-

bility, and H(alo, z) is an entropy objective that encourages
the policies to cover a large space of behaviors.

Trajedi (Lupu et al., 2021) proposes an approach that en-
courages distinct action distributions induced by different
policies to achieve population diversity. Instead, we propose
to measure diversity in terms of induced state trajectories,
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which are more indicative of behaviors than actions. For ex-
ample, different actions can lead to the same state changes,
and hence result in the same high-level behaviors. See Ap-
pendix B for a detailed description of the difference in the
diversity objectives of BDP and Trajedi.

4.3. Stage 2: Learning the Coordination Policy

After stage 1, the behavior policy generator 7° can generate

diverse behaviors when conditioned on different latents z.
Next, we train a new policy coordination agent 7¢(a|o) to
coordinate with all behaviors produced by 7® from the first
stage (middle panel of Fig. 2), while keeping 7* fixed. 7°
is initialized randomly, and then trained to maximize task
performance J (¢, %) when paired with 7% for a randomly-
sampled z. It is hard for 7¢ to learn against a rapidly chang-
ing z as the behaviors it is paired with change constantly.
For this reason, we sample a new z only once every several
updates of 7¢. Exact training details for both stages are in
Appendix C.

Once trained, 7° is able to adapt to new partners zero-shot
since it was trained to coordinate with the diverse behaviors
from 7° (right panel of Fig. 2). Next, it is evaluated against
unseen partners from the holdout set IT"* to measure its
generalization performance.

While we describe the above sections assuming n = 2
agents collaborating, the approach remains unchanged for
n > 2 agents. For n > 2, during Stage 1 training, BDP
would sample n agents instead of 2 and use the same diver-
sity objective (Eq 2). In Stage 2 training, the coordination
agent would learn to collaborate with n — 1 partners gener-
ated by the behavior policy.

4.4. Implementation Details

We use a two-layer hierarchical policy architecture for all
baselines, where a high-level policy selects a low-level skill
to execute based on observations. This has shown to be
effective in rearrangement tasks (Gu et al., 2022). We con-
sider a known, fixed library of low-level skills, which can
achieve instructions like ‘navigate to the fridge’, or ‘pick
an apple’. These low-level skills directly interact with the
environment via low-level base and arm actions. The action
space of the learned high-level policy is a discrete selection
over all possible combinations of skill and object/receptacle
parameterizations allowed at all steps. For navigation, we
allow all possible furniture pieces to be navigable to, and
manipulation skills can interact with any articulated recep-
tacles, target objects, and goals. We also include additional
high-level navigation actions, like move-forward, turn-left,
turn-right, and no-op in the action space that facilitate coor-
dination between agents, like move out of the way, if it sees
its partner coming towards itself to avoid collision.

If the policy chooses to execute an infeasible action, like

pick an object when its not within reach (based on hand-
defined pre-conditions), the action results in a no-op and
no change to the environment. Since the focus of our work
is on high-level coordination, we assume access to perfect
low-level skills for all approaches. For manipulation skills,
this means kinematically applying the hand-defined post-
conditions of the skill, like attaching target objects in the
scene to the gripper after executing the pick skill. For the
navigation skill, we use a shortest path navigation module
which moves the robot from its current position to the de-
sired position (such as a receptacle or object), but does not
take the partner agent into account. Avoiding collisions and
coordination with the partner are dealt with by the high-level
policy. More details on the hierarchical policy, policy archi-
tecture, discriminator, and pseudocode are in Appendix C.
While we use a hierarchical policy architecture, BDP itself
is agnostic to the policy type. Prior works like (Szot et al.,
2021) have shown that such a policy architecture is well-
suited to learning long-horizon rearrangement tasks, and
hence the architecture used in our work. Additionally, we
make some simplifications to our simulation environment
by using a partially simulated physics engine that considers
collisions with objects like tables and the partner agent, but
ignores collisions with the fridge door. On the other hand,
aspects that are important for coordination, like colliding
with the partner, are fully simulated. More details on the
simulation can be found in Supp. A.

5. Experiments

In this section, we compare our approach (BDP) to state-
of-the-art (ZSC) methods. First, we introduce baselines,
metrics, and quantitative results, then analyze the learned
populations from the different approaches with a focus on
measuring diversity. Lastly, we run ablations on BDP to
quantify the contribution of the policy architecture and the
discriminator loss in the overall performance of BDP.

5.1. Baselines

We compare Behavior Diversity Play (BDP) to a range of
zero-shot coordination (ZSC) methods.

* Self-Play (SP) (Heinrich & Silver, 2016) learns a popu-
lation of size N by randomly initializing IV policies and
training them via self-play.

* Population-Based Training (PBT) (Jaderberg et al.,
2019) initializes N random policies, and pairs them ran-
domly during training. Both PBT and SP generate diver-
sity through random policy initializations.

* Fictitious Co-Play (FCP) (Strouse et al., 2021) uses SP
but adds earlier checkpoints from each policy to the popu-
lation when training the coordination agent.

* Trajectory Diversity (TrajeDi) (Lupu et al., 2021) adds
a diversity objective to population training that encourages



Adaptive Coordination for Social Embodied Rearrangement

PBT-State GT Coord SP PBT FCP TrajeDi BDP
(Oracle, No Vision)  (Oracle, No ZSC)  (Heinrich & Silver, 2016)  (Jaderberg et al., 2019)  (Strouse et al., 2021)  (Lupu et al., 2021) (Ours)
Set Table
Train-Pop Eval 70.74 +0.05 90.52 +0.05 57.74 + o001 46.67 +0.02 29.90 +0.07 43.24 +£0.09 74.81 £0.01
ZSC Eval 50.39 +0.09 17.97 004 30.34 +0.04 37.50 +0.04 32.52 +0.04 46.43 +0.08
Tidy House
Train-Pop Eval 74.90 +21.59 92.28 + 1.66 34.18 +6.05 36.13 + 098 12.04 +£228 39.65 +0.59 73.83 £7.03
ZSC Eval 68.08 +0.09 52.67 +0.06 56.88 +0.07 34.07 +0.09 63.58 +0.05 66.71 + 0.05
Prepare Groceries
Train-Pop Eval 85.74 +28 93.63 +0.28 47.07 £29.88 69.34 +1.76 44.40 + 638 34.56 +27.94 89.67 + 251
ZSC Eval 77.01 +0.05 - 56.04 +0.07 56.08 +0.09 30.00 +0.07 53.84 +0.08 75.85 £ 0.05

Table 1: Evaluation of Social Rearrangement with training population and ZSC with unseen agents. BDP outperforms prior
ZSC works and closes the gap to oracle methods (columns in gray). Average and standard error across 3 seeds.

diverse action distributions as opposed to the diverse state
distributions encouraged by BDP.

Implementation details are in Appendix D. All of the above
and BDP follow two-stage training and only differ in how
they obtain a population (the second stage of training the
coordination agent is identical between them). The policy
and environment setup for baselines is identical to the setup
for BDP described in Section 4.4. For BDP, we model the
behavior latent prior p(z) as a fixed 8-dimension uniform
categorical distribution. Likewise, all baselines train a popu-
lation of 8 agents . Additionally, we implement two ‘oracle’
baselines that have privileged information to disentangle the
two challenges of Social Rearrangement— high-dimensional
visual observations and zero-shot coordination.

* PBT-State (Oracle, No-Vision) To highlight the chal-
lenges of operating from visual input, we implement PBT
with ground-truth environment state (PBT-State), that cap-
tures the complete environment state (details of ground-
truth state in Appendix D.3). PBT-State operates in a fully
observable and low-dimensional environment, similar to
prior work like Overcooked (Carroll et al., 2019).

* GT Coord (Oracle, No-ZSC) To highlight the chal-
lenges of zero-shot coordination, we train two visual
policies together (GT Coord). GT Coord operates on high-
dimensional visual observations, but is trained together
with its partner agent, and hence has no ZSC challenges.

5.2. ZSC Evaluation

As introduced in Sec. 4.1, to evaluate the coordination agent
¢ trained using the different approaches, we task them to
coordinate with a set of holdout agents IT" unseen during
training. For each task, the holdout set consists of three
scripted and eight learned holdout agents, described below.
Further details of the holdout agents in Appendix D.1.

Scripted holdout agents execute a fixed sequence of hard-
coded task plans, for e.g., “navigate to the table, pick up the
object, navigate to the counter and drop the object”, exhibit-
ing different behavioral preferences. Note that the scripted
holdout agents are not reactive, i.e., they will not update
their plan based on the coordination agent’s actions, or even

try to avoid bumping into the coordination agent. This is out-
of-distribution for the coordination agent, since it is trained
with partners that react to its actions, making coordinating
with scripted holdout agents especially challenging.

Learned holdout agents are separately trained using GT
Coord and unseen during training. The coordination agent
needs to adapt to these unseen policies, which were trained
to expect a particular behavior from their partner.

Metrics. For the three tasks — Set Table, Tidy House, Pre-
pare Groceries — we compare the methods using the portion
of successful task completions (1) when paired with agents
from the training population (train population eval, or train-
pop eval for short), (2) and ZSC with unseen agents from
the holdout set (ZSC eval). We report mean and standard
deviation across 3 randomly seeded runs calculated on 100
episodes in unseen scene configurations.

5.3. ZSC Quantitative Analysis

Evaluation metrics. BDP outperforms prior ZSC baselines
(SP, PBT, FCP, TrajeDi) across all Social Rearrangement
tasks when comparing both train-pop eval and ZSC eval
success rate (Tab. 1). For Set Table, BDP improves train-
pop eval success rate by 17% (from SP’s 57.74% — BDP’s
74.81%). Looking closely, we find that SP is unable to
coordinate with holdout policies,achieving a low ZSC eval
success rate of 17.97% (while BDP can reach 46.63%).
Similar boosts in ZSC eval success rate of 3.1% (63.58%
— 66.71%) and 19.8% (56.08% —> 75.85%) are observed
in Tidy House and Prepare Groceries tasks, respectively

BDP bridges gap to oracle methods. Despite the use of
privileged information and assumptions by oracle methods,
BDP achieves comparable ZSC performance as them. In
Table 1, we see that BDP can reason about partner and en-
vironment state from it’s visual observations, and performs
close to PBT-State, BDP’s 46.43% vs. PBT-State’s 50.39%
for ZSC eval success rate in Set Table task. Unsurprisingly,
there is indeed a scope for improvement in the overall coor-
dination, since BDP’s performance is still lower than oracle
GT Coord (BDP’s 74.81% vs. GT Coord’s 90.52%). Ap-
pendix E.I contains further analysis of ZSC performance by
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breaking down ZSC by holdout agent type.

BDP coordinates efficiently. An interesting observation for
some baselines, like FCP at Set Table, is that their ZSC eval
success is higher than train-pop eval (37.50% vs. 29.90%).
This is because some of the ZSC eval agents are more adept
at solving the tasks than the ones learned in the training
population. As a result, it is important to look not just at
the task success, but also the cooperation efficiency gain of
solving the task as a pair (Tab. 2).

PBT-State Sp PBT FCP  TrajeDi BDP (Ours)

Set Table
Train-Pop Eval +84% +49%  +34% 28%  +36% +51%
ZSC Eval +58% =-30% -13% —-T% —1% +19%
Tidy House
Train-Pop Eval +85% +6%  +10% -28%  +21% +57%
ZSC Eval +57% +16%  +24% —11%  +30% +32%
Prepare Groceries
Train-Pop Eval +77% +26% +45% +18%  +12% +71%
ZSC Eval +52% +22%  +21%  —6%  +17% +44%

Table 2: Cooperation Efficiency Gain: BDP improves
efficiency for both the training population and in ZSC com-
pared to all baselines in all tasks. The oracle PBT-State
method takes privileged state information as input.

To calculate the cooperation efficiency gain of ZSC methods,
we compute the average number of steps it takes a single
agent to solve a task and compare it to the average number
of steps taken by 2 agent teams, where both agents can act
every single step. In Table 2, we observe that ZSC baselines
like PBT can actually make the partner slower, even if
the task completion rate is high. On the other hand, BDP
improves the efficiency of unseen partners (-13% using PBT
versus +19% using BDP on the Set Table task). Again, as
compared to the oracle PBT-State, we observe that BDP has
lower ZSC and train-pop efficiency, owing to not having
complete state information, and pointing towards scope for
improvement. This points towards scope for improvement,
but also an interesting future direction where cooperation
efficiency might be studied (and improved) over repeated
interactions with the same partner.

5.4. Qualitative Diversity Analysis

Characterizing the behaviors of a population is challenging,
and agent behavior itself consists of long trajectories and
diverse interactions, making existing diversity metrics not as
meaningful (McKee et al., 2022). We present a qualitative
diversity analysis approach, by pairing the same agent with
a population of agents. Specifically, we study the behavior
of the learned coordination agent when paired with agents
from the training population, and holdout set. Ideally, the co-
ordination agent exhibits diverse behaviors during training,
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Figure 3: Behavior of the coordination agent in the Tidy
House task with unseen partners during ZSC (top) and
training population partners (bottom). Columns correspond
to different partners for the coordination agent, rows are
different sub-goals, and the cells display the probability of
the sub-goal being completed by the coordination agent.

and adapts its behavior to unseen test partners.

To do this, we define sub-goals that occur in the successful
completion of a task, for example, to successfully complete
Tidy House, agents must rearrange 2 objects. We record the
portion of these sub-goals completed by the coordination
agent. If the coordination agent is biased towards only
doing some parts of the task, it will fail to coordinate with
partners who prefer the same portions of the task. Note
that this hand-designed task decomposition is only used
during evaluation, and not imposed during training, and
the observed behaviors emerge solely through our diversity
objective. See Appendix D.4 for more details.

BDP adapts to unseen partners. Figure 3 (top) shows
the probability of coordination agent completing different
sub-goals (rows), when paired with unseen holdout partners
(columns). The coordination agent trained with BDP (Fig. 3,
top left) performs different portions of the task, depending
on its partner. In contrast, coordination agent trained with
PBT (Fig. 3, top right) is biased towards a set of sub-goals,
and hence can’t coordinate with partners with the same bias.

BDP results in diverse population. Next, we study the
training population trained in stage 1 by both BDP and PBT.
Ideally, the coordination agent should exhibit diverse behav-
iors when paired with the training population, indicating
that the population agents themselves have diverse behav-
iors and the coordination agent learns to adapt to them. In
the bottom left of Figure 3, we see that when trained with
BDP the coordination agent is unbiased, and almost equally
likely to perform any sub-goal, making it highly adaptable.
In contrast, using PBT, the coordination agent only typically
picks the first object (Fig. 3, bottom right), implying that
the training population from PBT is biased towards picking
the second object, and hence the coordination agent does
not see diverse behavior during training.
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5.5. Ablation Experiments

We ablate the new diversity objective in BDP and show
that removing the discriminator objective adversely impacts
performance. Specifically, we implement the following vari-
ants of BDP: BDP - [Discrim] keeps the shared network
parameters and latent space, but we remove the discrimi-
nator objective. Diversity only comes from different input
z. BDP - [Discrim, Latent] uses a shared visual encoder,
but removes the latent space and diversity objective, instead
using random initializations for diversity. Finally, PBT has
neither a shared latent, discriminator objective, or shared
encoder. The results in Table 3 show BDP - [Discrim] suf-
fers in ZSC eval (even though train-pop eval performance
is high) since without the discriminator, there is nothing to
enforce different latents to have different behaviors, making
ZSC eval poor. Both BDP - [Discrim, Latent] and PBT rely
on different network parameters to achieve behavior diver-
sity, insufficient for our task, reinforcing the importance of
a shared latent and discriminator objective. Appendix E.2
contains policy architecture ablations.

BDP - [Discrim] BDP - [Discrim, Latent] PBT BDP

77.18 £ 0.00 42.16 £0.01 46.67 £0.02  74.81 +£0.01
22,92 +0.05 3320+ 0.04 30.34+0.04 46.43 +£0.08

Train-Pop Eval
ZSC Eval

Table 3: Ablations on the new diversity objective in BDP.

6. Conclusion

We present the Social Rearrangement task, consisting of
collaborative, everyday tasks like tidying a house, setting a
dinner table and preparing groceries. Social Rearrangement
is simulated using realistic, high-dimensional observations,
with no privileged information like top-down maps, or part-
ner actions. We present a novel approach Behavior Diversity
Play (BDP) for zero-shot coordination (ZSC) and evaluate
it on Social Rearrangement. BDP trains an adaptable co-
ordination agent that can collaborate with a set of unseen
holdout policies, and improves the efficiency of its partner
over solving the task alone. Through analysis and ablations,
we show that this improvement comes from a diverse train-
ing population obtained via BDP’s discrimibility objective.

While BDP is able to learn adaptive agents that can use
partial information about the environment and their partners
to coordinate, its performance is worse than oracles with
privileged state and partner information. This implies that
there is still scope for improvement for BDP at ZSC tasks.
Furthermore, Social Rearrangement deals with a limited set
of rearrangement tasks, with some simplifying assumptions
like clean visual inputs and simplified physics.

In the future, we hope to include more complex coordina-
tion tasks like furniture assembly or cooking a meal, which
might even require additional inputs like language. Future
work can also improve BDP by exploring how theory of

mind (ToM) can improve coordination by having the coor-
dination policy predict the behavior policy’s internal state
or future actions. Such a ToM objective can help BDP learn
representations that predict the other agent’s intentions, im-
proving generalization. We hope that Social Rearrangement
can serve as a realistic test-bed for multi-agent collaboration
research, and the approaches and analysis presented in our
work can enable future research on ZSC.
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Appendix

To view qualitative behavior, please view our supplemental
video. We structure the Appendix as follows:

A Additional details about the Social Rearrangement setup
including reward structure.

B Comparison of the diversity objective of the proposed
Behavior Diversity Play and prior work of Trajedi (Lupu

etal., 2021).

Necessary implementation details of Behavior Diversity
Play for reproducibility — training pipeline, policy archi-
tecture, and hyperparams.

Further description of evaluations we conducted for com-
paring Behavior Diversity Play, four previous works, and
privileged baselines.

New experimental results including a breakdown of Ta-
ble 1, more ZSC results, full results for Table 2, and new
ablations supplementing Table 3.

The source code can be found at: https://bit.ly/43vNgFk

A. Additional Social Rearrangement Details

We follow the same setup as the original Home Assistant
Benchmark (Szot et al., 2021) but with modifications for
multi-agent collaboration. We provide more details on So-
cial Rearrangement, particularly the episode setup, more
details of the three tasks, and reward structure. See Figure 4
for a visual overview of the tasks in Social Rearrangement.

Episode Setup: At the start of each episode, both agents
are randomly placed at a collision free location in the scene
such that both agents start at least 2 meters apart. The
episode is successful if all target objects are placed within
15cm of their locations. The episode fails if the agents
collide or if the maximum episode horizon of 750 time steps
is reached. We use the same ReplicaCAD scene split as
prescribed by the Home Assistant Benchmark (Szot et al.,
2021) and the Habitat Rearrangement Challenge (Szot et al.,
2022). For training in each task, we use 10,000 object
configurations across 60 layouts of furniture in the scene.
While there are only 10,000 rearrangement problems, the
agent is randomly spawned each episode, providing infinite
variety. At evaluation time, we use 100 object configurations
across 20 layouts of furniture in the scene, distinct from the
furniture layouts in training.

Set Table: The goal of this task is to remove a bowl from
a drawer, a fruit from the fridge, and place the fruit in
the bowl on the dinner table. Both the fridge and drawer
are initially closed, and the robot must open them before
removing objects. The fridge and the drawer are next to
each other in the kitchen area of the scene. The position of
the dinner table relative to the kitchen changes depending
on the scene.
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Tidy House: The goal of this task is to move 2 objects from
accessible initial locations to their target locations. The
objects are spawned across 6 open receptacles, and assigned
a goal from one of the 6 receptacles which is different from
the starting receptacle. The receptacles start in random
locations throughout the house and are always unobstructed
to the agent accessing them.

Prepare Groceries: The goal of this task is to move 1 object
from an open fridge to the counter and another object on the
kitchen table to the fridge. The counter and the fridge are
always close to each other. The vicinity of the table to the
counter and fridge varies depending on the episode.

Simulation: We partially simulate physics to check for colli-
sions between the robot and objects along with other robots.
We kinematically move the robot base with a navigation
mesh that defines the navigable regions of the scene accord-
ing to static obstacles like furniture. We do not allow the
robot to slide along obstacles. This setup has been shown
to transfer well to the real world (Kadian et al., 2020). The
robots are able to collide with each other on the navigation
mesh, which terminates the episode with failure.

Reward Structure: The reward function for each task pro-
vides a sparse reward for task success, intermediate sparse
rewards for completing subgoals, and a per time-step penalty.
This reward, described in Equation (3), is the same between
all three Social Rearrangement tasks.

R(St) =10 - Tgyecess + 0.5 - ]lsubgoal —0.01 3)
The first term, provides a +10 reward for overall task suc-
cess. We also provide a 0.5 reward for either of the agents
completing any sub-goal necessary for overall task success.
These subgoals include picking up the target object, placing
the target object at its goal, and for opening receptacles to
access the object if it is necessary for the task as in Set Table.
We also add a per time step negative penalty of —0.01 to
encourage more efficient solutions. The reward is shared
between both agents for a cooperative task.

B. Comparing to Trajedi’s Diversity Objective

Here we highlight the differences between the diversity ob-
jective from the prior work of Trajedi (Lupu et al., 2021)
and the proposed BDP. We assume both methods are la-
tent variable conditioned policies with a discrete N dimen-
sion latent space with uniform prior p(z). Let 7(7]z) =
Hz:o m(a¢| 7%, z) be the joint action probabilities for policy
«. The undiscounted Trajedi objective can be expressed as:

Diversity ™% (1) = JSD(7(7|21), ..., 7(7|2n))

xH (me) =Y H(n(r]2))

z
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Prepare Groceries

Tidy House

Set Table

Figure 4: Overview of the tasks from Social Rearrangement. Circles indicate a possible starting location for each object
and the arrows indicate the goal positions of where the objects should be moved to. Each task requires rearranging two
objects. In Prepare Groceries, an object must be moved from the fridge to the counter and an object from a receptacle into
the counter. In Tidy House, 2 objects starting on random receptacles throughout the house must be moved to a random goal
receptacle. In Set Table, a bowl from the drawer and an apple from the fridge must be moved to the table. Both the drawer
and fridge start closed in Set Table. We refer to (Szot et al., 2021) for detailed description and visualizations of the tasks.

Where the first term encourages the collective population to
cover a diverse joint action distribution and the second term
drives the individual policy joint action distribution to be as
compact as possible. Meanwhile the BDP objective is:

Diversity®™ () = —H(p(zs)) — % S H(r(alo, 2))

The first term encourages the policy ID to be predictable
from the state distributions generated by all policies. In the
second term, BDP encourages the opposite of Trajedi for
each policy to be diverse. This is because BDP does not
need to balance a diversity of the overall population, which
one policy could dominate.

In summary, Trajedi encourages diversity from the tension
between the 2 objective terms, the first encouraging cov-
erage of the trajectory space, while the second minimizes
overlap between the policies. BDP encourages diversity
over observed behaviors while Trajedi encourages diversity
over joint action distributions.

C. BDP Implementation Details

In this section we provide further details about hierarchical
policy training, policy architecture, and the BDP discrimi-
nator architecture.

C.1. BDP Pseudocode

Algorithm 1 presents the pseudocode for stage 1 and stage
2 training of BDP. Lines 1-5 initialize the behavior policy,
discriminator, discriminator data buffer, and hyperparamters
for training. Lines 7-11 train the behavior policy 7° by
randomly sampling latents and then pairing the behavior
policy with itself conditioned on these latents. Updating

7 requires computing both the task reward and the diver-
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sity Next, lines 12-14 random sample trajectories from the
discriminator data buffer and use them to update the dis-
criminator to better predict the latent. Then lines 17-19
update the coordination agent against the fixed 7°. Finally,
the coordination agent is evaluated in ZSC.

Algorithm 1 Behavior Diversity Play pseudocode

—

Initial behavior policy 7°
Initial discriminator network ¢4
Diversity objective weight
Discriminator data buffer 5 with 100k max size
Behavior latent prior p(z)
for each epoch in 7® training do
21 2%~ p(2)
Rollout out agent pair: (7%, 7%,)
Compute L; = J(7rlz’1 , 7722)
Compute £p = Diversity(7®) = Elogqy(z|7) +
H(alo, z)
Update 7° with PPO on objective Lp + aLp
Add (71, 2h), (72, z2) to B
Update ¢ with random batches from B
end for
Initial coordination policy 7¢
for each epoch in 7€ training do
z ~ p(2)
Rollout out agent pair (¢, 72)
Update 7¢ with PPO on objective on J(7¢, 7%)
end for
Evaluate 7¢ in zero-shot coordination.

PRI INRLR

,_
=4
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13:
14:
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C.2. Hierarchical Training

In this work, all methods learn a high-level policy that con-
trol low-level skills. The high-level policy selects a discrete
skill and a discrete parameterization for that skill. All the
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possible skills are: open, pick, place, and navigate. Each
skill is parameterized by which entity to apply the action to.
In Social Rearrangement, the possible entities are the target
objects (2 for all tasks), the goal positions (2 for all tasks),
and all possible receptacles in the scene (10 in total). All
tasks have the same action space. We compute all possible
actions given the compatibility of the action with the entity.
For example, the agent can never pick up the fridge so that
is not a possible action. This gives a 21 element discrete
high-level actions for each task and an additional 4 primitive
actions for no-op, move-forward, turn-left, and turn-right.
At each step the agent selects from each of the 25 possible
actions.

Training this high-level policy with on-policy RL requires
changes to the RL training pipeline due to the separation
between high-level actions and low-level robot actions. The
robot is executing low-level actions at every time step by
controlling the base, arm, and gripper, but the high-level
policy is not making decisions at every time step. We only
want to learn from the transitions where the high-level policy
is acting in the environment. Therefore, we change the
rollout collection in PPO to conditionally write the transition
to the rollout data storage if the high-level policy acted in
that time step. For example, when the robot is navigating, it
is only executing base actions and the high-level policy is
not acting These variable rollout sizes allow leveraging an
efficient vectorized environment rollout implementation.

C.3. Policy and Discriminator Network Architectures

We first describe the policy neural network architecture.
The ResNet18 (He et al., 2016) first encodes the 256 x 256
depth visual observation to a 512-dimension vector. Next,
these visual inputs are concatenated with an 18-dimension
state information vector which includes the joint angles (8D)
along with heading and distance to the object starts (4D),
goals (4D), and other agent (2D). These are then fed into
a 2-layer LSTM (Hochreiter & Schmidhuber, 1997) with
512 hidden units. This then produces a 512-dimensional
vector which is separately fed into separate policy and value
function networks. Each of these networks are a single layer
linear layer.

All policies are trained with PPO (Schulman et al., 2017).
DD-PPO (Wijmans et al., 2019) is used to distribute training
to 4 GPUs. Each GPU runs 32 parallel environments and
collects 128 simulation steps. We run on NVIDIA V100
GPUs. We train the behavior generator policy in for 100
million low-level steps and the coordination agent for an-
other 100 million steps. In the second stage, we initialize
the coordination agent, including the visual encoder, from
scratch.

The discriminator is modeled as an MLP with 2 hidden lay-
ers with 512 hidden units. For the privileged state trajecto-
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ries, the discriminator takes as input the robot x, y positions
and a list of actions executed in a window spanning the last
40 steps. In practice, it is difficult to tell the difference be-
tween different behavior latents from the first few time steps.
Therefore, we do not provide the discriminator reward for
the first 10% of maximum time steps in the trajectory. We
sample a new z', 22 pair once every 10 policy updates for
better training stability in both stages. The discriminator is
updated every policy update step with a buffer of at most
the last 100,000 agent samples.

C.4. Hyperparameter Selections

For all methods we use the same hyperparameters unless
stated otherwise. For PPO policy optimization parameters,
we use a learning rate of 0.0003, 2 epochs per-update, 2
mini-batches per-epoch, clip parameter of 0.2, an entropy
coefficient of 0.001, and clip the gradient norm to a max
value of 0.2. For return estimation, we use a discount factor
of v = 0.99, GAE with A = 0.95. For the discriminator in
BDP we also use a learning rate of 0.0003. BDP weighs the
diversity reward by 0.01 before adding it to the task reward.

D. Additional Evaluation Details

We include supplementary information about how evalua-
tion is conducted for Social Rearrangement. Particularly,
task plans for scripted holdout agents, how we implemented
baselines, what we gave as input to PBT-State, and how we
obtained qualitative results.

D.1. Scripted Holdout Agents

Here we detail the task plans that the scripted agents execute
for each task. For every task, we include a scripted agent
that only executes no-ops and two agents that execute a
fixed portion of the task. These two scripted agents will do
half of the task involving interactions with only 1 object.
For example, in the Set Table task, we have 1 scripted agent
that will only rearrange the fruit, and another scripted agent
that will only rearrange the bowl. For training the learned
coordination agents, we train them in two agent populations
in the same manner as GT Coord.

D.2. Baselines

We include the necessary details for implementing baselines.

Self-Play (SP) (Heinrich & Silver, 2016) and Population-
Based Training (PBT) (Jaderberg et al., 2017) only vary
in how they pair agents while training the population in
stage 1. SP only pairs the policies with themselves while
PBT pairs policies with other policies in the population. For
Fictitious Co-Play (FCP) we use 3 checkpoints from each
agent population from the start, middle and end of training
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to the final learned population from stage 1, as in (Strouse
et al., 2021). We then pair the coordination agent against
these older agents in stage 2 training. With Trajectory
Diversity (TrajeDi) (Lupu et al., 2021) we do not use any
discounting factor in the JSD objective.

We fix the policy size to be the same between the behavior
latent conditioned policy in BDP and each policy in the
population of the baselines which maintain a set of N dis-
tinct policies. While this increases the parameter count, we
sufficiently train all policies to convergence in both stages
with 100M steps of training experience per stage.

The hyperparameters are described in Appendix C.4.

D.3. Ground Truth State for PBT-State Baseline

Here we describe the priviliedged ground truth state that the
baseline PBT-State (Oracle, No-Vision) takes as input. This
ground truth state input consists of a set of binary predicates
including:

* robot_at(R, X) if robot R is at receptacle, object, or
goal X.

* is holding(R) if robot R is holding an object.

* object_at(X,Y) if the object X is at goal location or
receptacle Y.

The truth values are enumerated for all possible inputs. This
forms a 1D vector which is passed to the policy. Both agents
share the same fully observable state as input.

D.4. Qualitative Result Details (Supplements Figure 3)

Here we include details of how we created Figure 3, partic-
ularly, how we measured the portion of subgoals completed
by the coordination agent in Figure 3. Let E; denote the
Bernoulli random variable that represents if the coordina-
tion agent executed event ¢ when paired with a partner 7. 7
can belong to both the training population or the holdout
population set. We then record p(E; = 1|r) to analyze
how likely the coordination agent is to perform certain in-
teraction types when paired with 7, averaged over a 100
episodes. An agent biased towards an event £/; would have
a high p(E; = 1|m) for all partner agents. An adaptive
agent on the other hand, will have different p(E; = 1|n),
depending on its partner. Darker cells in Figure 3 indicate
a higher value for p(E; = 1|7), meaning the coordination
agent is more likely to achieve this subgoal.

E. Additional Experiments & Ablations

E.1. Extended ZSC Results (Supplements Table 1)

In this section we present a more detailed breakdown of
the ZSC results from Table 1. Specifically, we separately
show the ZSC performance between the scripted and learned
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unseen agents in the ZSC evaluation in Table 5. These
results indicate that in general ZSC is harder with scripted
vs. learned unseen agents. For example, in the Tidy House
task, BDP achieves 74.14% success rate when paired with
learned agents, but only 46.90% success rate when paired
with scripted unseen agents. This same also trend holds for
all other methods and tasks.

We experimented with the impact of different state inputs
on BDP’s performance. We compared a version of BDP,
which takes RGB instead of depth images as input. We
found that BDP’s performance remains mostly unchanged
on the Prepare Groceries task when using RGB instead of
depth images. The ZSC success rate of BDP is 70% with
RGB (averaged across 2 seeds) versus 76% with depth. We
also evaluated an oracle version of BDP, like PBT-State,
which takes the same privileged state information as input.
On Prepare Groceries, this method achieves an average ZSC
success rate of 80% (averaged across 2 seeds), compared
to PBT-State with 77% and non-privileged BDP with 75%
success rate.

E.2. Policy Architecture Ablation (Supplements Table 3)

In Table 3, we ablate the shared policy architecture in BDP.
The shared policy architecture lets BDP be more sample-
efficient by sharing weights, while generating behaviors
through a behavior latent space z. We create two versions
of BDP:

BDP - [Latent (Shared Enc)] replaces behavior latent space
z with separate policies per agent, initialized randomly, but
shares the visual encoder weights between all agents, to
enable sample-efficiency. Essentially, the policies share the
ResNets, but learn separate LSTM and MLP weights.

BDP - [Latent (Sep Enc)] replaces the shared policy archi-
tecture with entirely different networks per agent initialized
randomly, with no latent space, and no shared visual en-
coder. BDP - [Latent (Sep Enc)] is the same as PBT, but
trained with a discriminator diversity reward from BDP.

BDP - [Latent (Shared Enc)] BDP - [Latent (Sep Enc)]

50.09 £0.01 39.19 £ 0.00
33.40 £ 0.06 26.76 £ 0.06

BDP

74.81 £0.01
46.43 +0.08

Train-Pop Eval
ZSC Eval

Table 4: Ablations on the shared policy architecture in BDP.

Table 4 shows that both the training and ZSC evaluation per-
formance decrease as we decrease weight sharing through
the behavior latent space, implying that both are essential
for learning an adaptive coordination agent.
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PBT-State  GT Coord SP PBT FCP TrajeDi BDP
Set Table

Train-Pop Eval ~ 70.74 o000  90.52 +005  57.74 £001  46.67 002  29.90 +0.07 43.24 +009  74.81 £o01
ZSC Eval  50.39 +0.09 - 17.97 £004 3034 +004  37.50 +0.04 3252 +004  46.43 +0.08
Scripted Unseen  35.94 -+ 26.56 - 7.29 +£5.02 27.08 +7.47 32.81 +1.56 26.17 +005  37.50 +2.31
Learned Unseen  55.21 43849 - 21.53 +524 31.42 +495 38.28 +£5.09 34.64 +517 4792 +964

Tidy House
Train-Pop Eval 7490 +2150 9228 + 166 34.18 £605  36.13 £0.98 12.04 £228  39.65 +o0s59  73.83 £7.03
ZSC Eval  68.08 +0.09 - 52.67 006  56.88 £007  34.07 £009  63.58 +£0.05 66.71 + 0.05
Scripted Unseen ~ 43.26 + 1571 - 3572 914 3854 +1152 1735 +1129 39.95 8387 46.90 +9.11
Learned Unseen 77.39 + 10.11 - 59.02 +7.69 63.76 £875  41.04 £ 1080 72.44 +5.08 74.14 + 361

Prepare Groceries
Train-Pop Eval  85.74 +28  93.63 +028 47.07 +2988 6934 +176  44.40 +638  34.56 +2794  89.67 +251

ZSCEval 77.01 +005 - 56.04 +0.07 56.08 +0.09 30.00 +0.07 53.84 +0.08 75.85 +0.05
Scripted Unseen ~ 60.00 + 0.00 - 54.86 £1789  50.70 £1556  29.06 + 1263  42.09 + 1753  60.42 + 1576
Learned Unseen  83.38 +6.45 - 56.49 +7.18 5810 +1137  30.71 +7.31 58.25 +9.74 81.64 +352

Table 5: Detailed breakdown of the ZSC success rates from Table 1 by unseen agent type: scripted or learned. Across most
methods and tasks, methods achieve lower success rates when paired with unseen scripted agents.
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