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Figure 1: Real experiments showing regression scores as Pearson’s correlation coefficient of model
families on brain fMRI data with focus on video understanding models. (a) comparison of convolu-
tional vs. transformer-based amongst video based models. (b) comparison of fully vs. self supervised
amongst video understanding models. Statistical significance is shown in the bottom as ‘ns’ not
significant, ‘x, **, % % %’ significant with p-values < 0.05,0.01, 0.001, resp.

A ADDITIONAL RESULTS

A.1 ADDITIONAL REAL EXPERIMENTAL RESULTS

We add a study of the model subfamilies in terms of (a) convolutional vs. transformer based models
and (b) fully vs. self supervised models, but focused on video understanding models only excluding
models trained with single images. As shown in Figure|[I] (a) it shows consistently that convolutional
based models perform better in early layers as found earlier, where the first three regions show
statistically significant results. Moreover, Figure [T] (b) shows models trained in a self-supervised
learning manner tend to be worse than fully supervised ones. However, note that these results are
using a small number of self-supervised learning video understanding models. Thus, we leave it for
future work to expand on this further.

A.2 ADDITIONAL FINE-GRAINED ANALYSIS

In Fig. @] we compare instances of convolutional (i.e., Slow) and transformer (i.e., TimeSformer)
based models. It clearly shows that especially across the early-mid regions in the brain (i.e., V1-4),
the convolutional model tends to provide better regression scores. This confirms our previous insight
that convolutional models are better at capturing orientation and frequencies because of their early
local connections. In later regions in the brain (i.e., LOC, EBA, FFA, STS, PPA) convolutional model
(i.e., Slow) tends to act on-par or less than the transformer-based model (i.e., TimeSformer).

Moreover, we analyze the best and worst across the models trained on single images vs. videos
across both the simulated and real experiments. For the simulated experiments, Table [T|2 and [3]
shows the worst (Min) and best (Max) predictors from each category (Image vs. Video) for target
models I3D ResNet-50, ViT-B-16 and MViT-B 16x4, respectively. For I3D and ViT, it conveys a
simpler message that the best regressors are built with features extracted from architectures that
exhibit higher similarity to the target model (i.e., convolutional/transformer) from both Video and
Image understanding families. However, for MViT looking at Table 3| we see surprisingly the best in
the Image understanding models family is ResNet-50. Although this might seem counterintuitive, yet
MViT model with the addition of multiscale tends to perform similar to convolutional models not
only in the simulated but also in the real experiments in the early-mod regions as shown in Fig. 2 (b),
where the highest transformer based model predicting early-mid regions of the brain is MViT. Hence,
we believe this might be the reason behind ResNet-50 being the best from the Image understanding
models family. Additionally, we show the best and worst predictors in the real experiments with
the visual cortex regions as the target in Table ] It shows both SlowFast and MViT are the best
predictors from the Video understanding family across the brain regions, with the SlowFast better at
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Figure 2: Fine-grained analysis comparing instances of Convolutional (i.e., Slow) vs. Transformer
(i.e., TimeSformer) based models both trained on SSV2.

Min (Video) | Max (Video) Min (Image) | Max (Image)
B1 | stMAE SlowFast-R101 | Dino ResNet-18
B2 | stMAE C2D Dino ResNet-50
B3 | stMAE C2D Dino ResNet-50
B4 | stMAE C2D ViT-B-16 ResNet-18
B5 | stMAE R2+1)D ViT-B-16 ResNet-50
B6 | stMAE C2D ViT-B-16 ResNet-18
B7 | stMAE SlowFast-R101 | ViT-B-16 ResNet-50

Table 1: Fine-grained analysis of simulated experiments results in Fig. 1 (c) with target model 13D
ResNet-50 showing the worst (Min) and best (Max) source model from image & video understanding
models. B1-7: Blocks in the target model.

Min (Video) | Max (Video) Min (Image) | Max (Image)
Bl | stMAE OmniMAE-B-Fine | Dino ViT-B-32
B2 | stMAE OmniMAE-B-Fine | Dino ViT-B-32
B3 | stMAE OmniMAE-B-Pre Dino ViT-B-32
B4 | X3D-L MViT-B-32x3 Dino ViT-B-32

Table 2: Fine-grained analysis of simulated experiments results in Fig. 1 (b) with target model
ViT-B-16 showing the worst (Min) and best (Max) source model from image & video understanding
models. B1-4: Blocks in the target model.

Min (Video) | Max (Video) Min (Image) | Max (Image)
B1 | stMAE MViT-B-32x3 | ViT-B-16 ResNet-50
B2 | stMAE MViT-B-32x3 | ViT-B-16 ResNet-18
B3 | stMAE MViT-B-32x3 | ViT-B-16 ResNet-50
B4 | stMAE MViT-B-32x3 | ViT-B-16 ResNet-50
B5 | stMAE MViT-B-32x3 | Dino ResNet-50

Table 3: Fine-grained analysis of simulated experiments results in Fig. 1 (a) with target model MViT-
B 16x4 showing the worst (Min) and best (Max) source model from image & video understanding
models. B1-5: Blocks in the target model.

early regions similar to our previous findings as a two-stream and convolutional variant. It also shows
ResNets to be the best from the Image understanding family.

A.3 STATISTICAL SIGNIFICANCE RESULTS

Tables [5]l6] shows the pairs of models from Fig. 3 (a) [single-stream vs two-stream] and Fig. 3 (b)
[fully-supervised vs self-supervised] that exhibited a statistically significant result compared to each



Min (Video) Max (Video) Min (Image) | Max (Image)
V1 stMAE SlowFast-R50-8x8-Char | MAE ResNet-18
V2 OmniMAE-B-Pre | SlowFast-R50-8x8-Char | MAE ResNet-50
V3 OmniMAE-B-Pre | SlowFast-R50-8x8-K400 | MAE ResNet-50
V4 OmniMAE-B-Pre | SlowFast-R101 ViT-L-32 ResNet-50
LOC | OmniMAE-B-Pre | MViT-B-32x3 ViT-B-16 ResNet-50
EBA | OmniMAE-B-Pre | SlowFast-R101 ViT-B-16 ResNet-50
FFA | OmniMAE-B-Pre | SlowFast-R50-8x8-Char | ViT-B-16 ResNet-50
STS | OmniMAE-B-Pre | MViT-B-32x3 ViT-B-16 ResNet-50
PPA | OmniMAE-B-Pre | TimeSformer-SSv2 ViT-B-16 ResNet-50

Table 4: Fine-grained analysis of real experiments results in Fig. 2 (a) with target model the
visual cortex regions showing the worst (Min) and best (Max) source model from image & video
understanding models.

other. Table [5]confirms that two-stream models surpass the single-stream counterpart, across 8 of
the 9 visual cortex regions, with a statistically significant result. The table specifically shows that
the superiority of the two-stream is independent of the training dataset. In 5 of 9 brain regions, the
two-stream models were superior compared to single-stream models at two different model versions
that were matched based on their training dataset (K400 and Charades). On the other hand, Table E]
confirms that fully-supervised (i.e., OmniMAE Fine and TimeSformer) surpass the self-supervised
counterpart (i.e., OmniMAE Pre) across all the visual cortex regions with a statistically significant
result when the three models share the same architecture base (ViT-B) and training dataset (SSV2).
The table, in addition to Fig. 3 (b), shows that TimeSformer (trained solely using full-supervision)
achieved the highest regression scores followed by OmniMAE Fine (trained using both self- and
full-supervision) and finally OmniMAE Pre (trained solely using self-supervision). This result shows
that full-supervision training is better in predicting the visual cortex responses. Table|7|shows the
significance results between video understanding pairs of models. As shown in Table[/|and Fig. 3
(c), SlowFast is statistically better than I3D in 7 of the 9 brain regions, I3D is statistically better than
stMAE in 5 brain regions including 4 early regions of the visual cortex (V1 to V4), while SlowFast is
not statistically different than MViT in any of the regions.

A.4 ADDITIONAL SIMULATED EXPERIMENTAL RESULTS

Although our focus in the system identification is on the ability to differentiate image vs. video
understanding models, we provide additional results for other families of models. In Figure [3|(a-c),
we show the simulated results comparing convolutional vs. transformer based models for three
target models MViT-B 16x4, I3D ResNet-50 and ViT-B, respectively. For the target model I3D, the
figure clearly shows that convolutional models are better predictors than transformer-based ones
with statistical significance across all regions in the visual cortex. The target model MViT-B shows
a surprising result, that is confirming with previous findings in the real experiments as well as
detailed in Section[A.2] where convolutional models are better in regressing the multiscale variant
than transformer-based ones. This might be explained by the fact that the multiscale ViT tends to
act similarly to the convolutional models when predicting early-mid regions of the visual cortex.
However, for ViT-B both are comparable and we leave it for future work to explore the reason behind
this. Additionally, we report the fully vs. self supervised models for the three target models in Figure 3]
(d-f). It again shows that fully supervised is capable of modelling both MViT and I3D better than the
self-supervised ones (d,e). However, for the ViT-B target (f) it shows both are comparable. We believe
the comparable results of the ViT-B target model might be related to having less fully supervised
transformer models than the fully supervised convolutional ones, since half of the transformer source
models are self-supervised. For future work, we will focus on exploring the ViT-B target model by
using additional fully-supervised transformer-based models.

A.5 COMPARISON TO STATE-OF-THE-ART METHODS ON ALGONAUTS BENCHMARK

The focus of this work is to study video understanding models from a neuroscience perspective,
through a large-scale comparison of state-of-the-art deep video understanding models to the visual
cortex recordings. Nonetheless, we provide further comparison to the winner of the Algonauts



Stat. Sig.
\'2! SlowFast-Char, Slow-Char

V2 SlowFast-K400, Slow-K400
SlowFast-Char, Slow-Char

V3 SlowFast-K400, Slow-K400
SlowFast-Char, Slow-Char

V4 SlowFast-K400, Slow-K400

LOC | SlowFast-K400, Slow-K400
SlowFast-Char, Slow-Char

EBA | SlowFast-K400, Slow-K400
SlowFast-Char, Slow-Char

FFA | SlowFast-K400, Slow-K400
SlowFast-Char, Slow-Char

STS | SlowFast-K400, Slow-K400

Table 5: Statistical Significant of Slow vs. SlowFast (Fig. 3a), showing the pairs of models (.,.) that
exhibited statistical significance. K400: Kinetics 400, Char: Charades that were used as training
datasets.

challenge in 2021. Note that we do not have access to the test set and the challenge has been closed
with the accompanying evaluation server. Therefore, we evaluate on the validation set instead of the
four folds that were used throughout the above experiments and evaluate our top performing models.
Figure |4] shows the winning model results on the validation set, retrieved from the original report,
Yang et al. (2021) (Fig. 4 in the report), for their I3D and combined model. It is important to note that
our models’ backbones were not fine-tuned during the regression, since our original question is not to
win the challenge but to compare video understanding models as is, without fine-tuning. On the other
hand, the winning entry used an ensemble of models with multiple modalities (i.e., audio and optical
flow) and finetuned their backbones to the downstream task. Hence, it is unfair comparison with our
reported models. Nonetheless, our best models perform comparable without different modalities,
ensemble or finetuning of the backbones. Therefore, our experimental setup is sufficient to conclude
meaningful insights about these deep video understanding models.



Stat. Sig.

Vi OmniMAE Pre, OmniMAE Fine
OmniMAE Pre, TimeSformer

V2 OmniMAE Pre, OmniMAE Fine
OmniMAE Pre, TimeSformer

V3 OmniMAE Pre, OmniMAE Fine
OmniMAE Pre, TimeSformer

V4 OmniMAE Pre, OmniMAE Fine
OmniMAE Pre, TimeSformer

LOC | omniMAE Pre, TimeSformer

EBA | OmniMAE Pre, TimeSformer
FFA | OmniMAE Pre, TimeSformer

STS | OmniMAE Pre, TimeSformer

PPA | OmniMAE Pre, OmniMAE Fine
OmniMAE Pre, TimeSformer

Table 6: Statistical Significant of Self-supervised vs. Fully Supervised (Fig. 3b), showing the pairs of
models (.,.) that exhibited statistical significance.

Stat. Sig.

Vi SlowFast-R50-8x8, 13D
StMAE, I3D

V2 SlowFast-R50-8x8, 13D
stMAE, 13D

V3 SlowFast-R50-8x8, 13D
stMAE, I3D

V4 SlowFast-R50-8x8, I3D
stMAE, I3D

LoC | SlowFast-R50-8x8, 13D
StMAE, 13D

EBA | SlowFast-R50-8x8, 13D

PPA | SlowFast-R50-8x8, 13D

Table 7: Statistical Significant of video understanding models (Fig. 3c), showing two pairs of models
(.,.) that exhibited statistical significance.
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Figure 3: Simulated experiments showing regression scores as Pearson’s correlation coefficient of:
(a-c) convolutional (blue) vs. transformer (red) model families on all target models MViT-B 16x4,
I3D ResNet-50 and ViT-B respectively, (d-f) fully (blue) vs. self supervised (red) model families on
all target models MViT-B 16x4, I3D ResNet-50 and ViT-B respectively. Statistical significance is
shown at the bottom as ‘ns’ not significant, “x, *x, * % %’ significant with p-values < 0.05,0.01, 0.001,
respectively.
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Figure 4: Comparison to state-of-the-art model winning the Algonauts challenge 2021 but evaluated
on the validation set (i.e., I3D (SOA), Combined (SOA)). Winner results retrieved from their original
report, Yang et al. (2021).
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