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1 VECTORISATION OF THE LIKELIHOOD

The product in the second row in main-text-(7) is a probabilistic relaxation of main-text-(6). Since it always involves
comparisons between pairs of objects, it can be vectorized as follows:
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where there is a vector ak ∈R1×t for each pairs {xi,x j} ∈C(Ak) with xi ̸= x j. ak is a zero vector whose i-th and j-th elements
are equal to 1 and respectively, −1, and Φd is the CDF of d-dimensional standard multivariate Gaussian distribution.

The product in the last row in main-text-(7) is a probabilistic relaxation of main-text-(5). It cannot be easily vectorized
because ∏o∈C(Ak)

has a varying number of terms depending on k. To overcome this issue we assume, as usually done in
decision theory (see for instance [Parmigiani and Inoue, 2009, Sec.3.4.2]), the existence a worst object ω ∈ X , that is
an object such that ui(ω) =−∞ for each i = 1, . . . ,d. This allows us to compare any v ∈C(Ak) with the same number of
elements (either o ∈C(Ak) or ω).

Assume for instance that |Ak|= 5, R(Ak) = {v1,v2,v3} and C(Ak) = {o1,o2}, then the product in the last row in main-text-(7)
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For each v j, we can write each product as
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where ω ∈ X such that ui(ω) =−∞ for each i = 1, . . . ,d and X̃ = [X ,ω]⊤. bi ∈ R1×(t+1) for each compared pairs {xi,x j}
with xi ̸= x j, is a zero vector whose i-th and j-th elements are equal to 1 and respectively, −1,

2 LABEL SWITCHING PROBLEM

The Laplace Approximation (LA) cannot be applied due to the so-called ‘label switching’ problem, which is caused by
symmetry in the likelihood: any permutation of the labels i = 1, . . . ,d yields the same likelihood. For this reason, the Hessian
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of the log-likelihood w.r.t. u(X) is in general an indefinite matrix and LA is not well-defined.

Consider for instance the case where d = 2 and C(A1) = {xa,xb} is the only choice data we have, the likelihood is
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and it is symmetric to the switching of u1 and u2.

The Variational Approximation is also affected by this problem, but it is well-defined. It will simply converge to one of the
symmetric (to label switching) components of the distribution.

3 VARIATIONAL INFERENCE

We implemented our model using automatic-differentiation in Jax [Bradbury et al., 2018].

For the Variational Approximation (VA), we use the implementation in [Opper and Archambeau, 2009], which has 2t
parameters with t = |X |. In particular, we consider the covariance matrix in [Opper and Archambeau, 2009, Equation (10)].
This means we only need t parameters for the covariance matrix of the VA distribution. This is an approximation, but it
allows us reduce the computational load of ChoiceGP, which is composed by d GPs.

Indeed, by exploiting the above parametrisation and the factorised prior main-text-(8), our ChoiceGP model can be
implemented efficiently. We need storing and inverting d kernel matrices with dimension t × t.

We initialise the Variational Approximation with MAP estimate and then perform 5000 iterations.

4 INTERPRETATION OF THE PROBIT LIKELIHOOD

There are two ways to interpret the likelihood main-text-(2):

1. Limit of discernibility: Alice may make mistakes when comparing two objects xi,x j whose difference in utility is small
(e.g., errors are inversely proportional to the difference between the two utilities |u(xi)−u(x j)|).

2. Noise: the observed utility function differs from the true utility function due to disturbances (e.g., o(xi) = u(xi)+noise).

In this second case, it is well known that
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There is no correct interpretation – it depends on the “error-model” we assume to account for the inconsistencies in the
subject’s preferences.

For instance, for the computer example in Section 1, assuming that inconsistencies are due to a Gaussian noise model does
not make much sense. The features of the computer are observed exactly (without any noise). Instead, it is reasonable to
assume that two different computers, which only have slightly different characteristics, are indiscernible for Alice. For this
reason, she may state inconsistent preferences when comparing them.

Similarly, there may be cases where the utility is observed through a noisy measurement and, therefore, the second
interpretation is more correct in this case.

The issue arises when we compare the same objects multiple times. Assuming that Alice chooses o and discards the elements
in R(Ak), this leads to the following batch-likelihood∫ (
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As stated in Proposition 1 (see proof below), (6) is a lower bound for (5). This means that either

• assuming (5) when (6) is the true error-model, or
• assuming (6) when (5) is the true error-model

may lead to a biased posterior. We will further investigate the difference between these two models in future work.

Proposition 1. The likelihood main-text-(15) is a lower bound of the batch-preference likelihood:
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Proof. We are going to use the following results.

Result: If v = [v1, . . . ,vd ] are independent, then for any increasing functions h and g of n variables:

E[h(v)g(v)]≥ E[h(v)]E[g(v)].

The proof can be found in [Ross, 2013, Sec.9.9]

Consider the likelihood (7) ∫ (
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and note that inside the parenthesis we have a product of monotone increasing functions in wk. Therefore, we can exploit the
above result to derive that∫ (
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5 CHOICENN VS. CHOICEGP

We illustrate the issue with ChoiceNN considering the 1D utility function u(x) = cos(5x)+ exp
(
− x2

8

)
with x ∈ [−2.6,2.6]

in Figure 1.
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Figure 1: True utility function

We used u to generate choice data. We sampled 150 inputs xi at random in [−2.6,2.6]. We then generated m = 500 random
subsets {Ak}m

k=1 of the 500 points each one of size |Ak|= 2 and computed the corresponding choice pairs (C(Ak),Ak) based
on u.

We ran ChoiceNN with fixed latent dimension d = 1 The learned utility function is shown in Figure 2 (a), which is reasonably
consistent with the true utility.

We then ran ChoiceNN with fixed latent dimension d = 2 (the true latent dimension is one) and reported the estimated
utility functions, for two different random initialisation of the parameters of the NN, in Figure 2 (b) and, respectively (c). It
can be noticed that the model converged to two different local optima. In both cases, the learned utility functions are not
Pareto-consistent with the choice data. In other words, the model is not able to find a utility representation of the choice data



and, therefore, it is not able to make correct predictions. We have tried different NN architectures (number of layers and
number of nodes) as well as different values of the hyperparameters for ChoiceNN, but the issue remains.

The disadvantage of a nonlinear parametric method, like ChoiceNN, is the fact that the latent utility functions depend
nonlinearly on the parameters. Instead, in ChoiceGP, the utility functions (at the training data) are part of the the variational
parameters and, therefore, can be more easily optimised to satisfy the Pareto-consistency implied by the choice data.

Figure 3 shows the utilities learned by ChoiceGP with d = 2. They coincide. This shows that ChoiceGP is able to easily
understand that the true latent dimension is one. Moreover, the learned utility basically coincides with the true utility in
Figure 1 (apart from a scaling factor, which cannot be estimated from the data).
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Figure 2: Learned utilities via ChoiceNN
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Figure 3: Learned utilities via ChoiceGP



6 REAL-DATASETS

Table 1 displays the characteristics of the considered datasets.

Dataset #Features #Outputs
AM 6 3
EDM 4 3
jura 6 3
slump 7 3
vehicle 5 3

Table 1: Characteristics of the datasets.

The first 4 datasets are standard datasets used in multi-target regression. The “vehicle dataset” has been obtained from
the Vehicle Safety model1 using a latin-hypercube design of experiment. We have included the datasets in our repository
together with the code to replicate the experiments.

We have implemented GPGP, PGP and PairGP in GPy [GPy, since 2012]. For ChoiceNN, we use the implementation
provided by the authors Pfannschmidt and Hüllermeier [2020].

As shown in the average accuracy table in Section 4.3, ChoiceGP has a higher average accuracy than the other models. This
claim is also supported by a statistical analysis as we will show hereafter.

We have compared ChoiceGP against PGP, GPGP and PairGP for the majority-rule using the pairwise Bayesian hierarchical
hypothesis testing model [Corani et al., 2017]. The test accounts for the correlation between the paired differences of accuracy
due to the overlapping training sets built during cross-validation. This test declares two models practically equivalent when
the difference of accuracy is less than 0.01 (1%). The interval [−0.01,0.01] thus defines a region of practical equivalence
(rope) for the performance of the models. For instance for the pair (ChoiceGP,PGP), the test returns the posterior samples
of the probability vector [p(ChoiceGP > PGP), p(ChoiceGP ≈ PGP), p(ChoiceGP < PGP)] and, therefore, this posterior
can be visualised in the probability simplex (Figure 4). For all the pairwise comparisons, it can seen that the vast majority of
the samples are in the region at the right bottom of the triangle. This confirms that ChoiceGP is practically significantly
better than the other three methods. Note that, we have only statistically compared the methods in the majority-rule scenario,
because the differences are even larger in the random scenario.
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Figure 4: Posterior samples for the pairwise tests ChoiceGP vs. PGP, GPGP and, respectively, PairGP. This confirms that
ChoiceGP is practically significantly better than the other three methods.
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