
A Implementation Details

A.1 Unsupervised training of our framework

We provide a pseudo code for training our framework in pytorch [42] style. The proposed framework
is developed upon [6].

teacher model: f (backbone) + h_T (projection head) + L2 normalize
student model: g (backbone) + h_S (projection head) + L2 normalize
prototype: C #E×K
feature classifier: D (connected with a gradient reversal layer)
τ and ε are given

for x in loader:
x1, x2 ∼ RandomAugmentation(x) and
x̂1, . . . , x̂V ∼ RandomAugmentationSmallCrop(x)

embeddings
z = normalize(h_T(f(cat(x1, x2, x̂1, . . . , x̂V)))) #B(2+V)×E
w = normalize(h_S(g(cat(x1, x2, x̂1, . . . , x̂V)))) #B(2+V)×E
z̃ = normalize(Dropout(h_T(f(cat(x1, x2, x̂1, . . . , x̂V))))) #B(2+V)×E
w̃ = normalize(Dropout(h_S(g(cat(x1, x2, x̂1, . . . , x̂V))))) #B(2+V)×E

dot product of embedding and prototype #B(2+V)×K
scores_z , scores_ z̃ = mm(z, C), mm(z̃, C)
scores_w , scores_w̃ = mm(w, C), mm(w̃, C)

loss1 , loss2 = 0, 0
for i in [1,2]:

with torch.no_grad ():
out = scores_z[B*(i-1):B*i] # pick up scores
out = cat(mm(queue[i-1], C), out) # append features

#fill the queue
queue[i-1, B:] = queue[i-1, :-B].clone()
queue[i-1, :B] = z[B*(i-1):B*i]

#compute codes (use SwAV’s sinkhorn func)
q_i = sinkhorn(exp(out/ε))[-B:]

cluster prediction
subloss1 , subloss2 = 0, 0
for v 6= i and v ∈ {1, . . . , 2(V + 2)}:

p_z = Softmax(cat(scores_z , scores_ z̃)[B*(v-1):B*v]/τ)
p_w = Softmax(cat(scores_w , scores_w̃)[B*(v-1):B*v]/τ)
subloss1 -= mean(sum(q_i * log(p_z)))
subloss2 -= mean(sum(q_i * log(p_w)))

loss1 += subloss1 / (2*(2+V) -2) / 2
loss2 += subloss2 / (2*(2+V) -2) / 2

d_T , d_S = D(cat(z, z̃)), D(cat(w, w̃))
Note: feature label is 0 for teacher and 1 for student
loss = loss1 + loss2 + CrossEntropy(d_T , 0), CrossEntropy(d_S , 1)
loss.backward ()
update(f.params , g.params , D.params , h_T.params , h_S.params , C)

normalize prototypes
with torch.no_grad ():

C = normalize(C, dim=0, p=2)

Full implementation details are described as follows.

Training hyperparameters. We implement in our framework with the most of training hyperparam-
eters directly taken from small batch training of [6]. We train our model with stochastic gradient
decent using typical batches of 256. We distribute the batches over 4 V100 32GB GPUs, resulting

15

in each GPU processing 64 images. Synchronized batch norm layers implemented in pytorch are
used across GPUs. We apply a weight decay of 10−6, LARS [59] optimizer and a learning rate of 0.6
decayed to a final value of 0.0006 with cosine learning rate schedule.

Multi-view generation. We use the data augmentation strategy and default multi-crop setting
of [6]: 2 × 224 + 6 × 96, i.e., two 224 × 224 full resolution views and six additional 96 × 96
small crops. Dropout is applied to projection heads of both teacher and student networks for
multi-view generation. Each projection head consists of a linear layer of size 2048 (say, Linear1),
followed by batch-norm and ReLU layers and another linear layer of size 128 (say, Linear2). There-
fore, each embedding vector is 128-dimensional. We search over dropout rate combinations of
(0.0, 0.05), (0.1, 0.05), (0.1, 0.1), (0.2, 0.05), and (0.2, 0.1) at (Linear1,Linear2). We do not ex-
ploit more aggressive dropout rates as self-supervised training signals are already noisy and too much
information may be lost with higher rates. Finally, we use the best dropout rates of (0.1, 0.05) at
(Linear1,Linear2).

Feature classifier. The feature classifier consists of a hidden linear layer of size 100, followed by
batch normalization and ReLU layers, and an output linear layer of size 2. For both teacher and
student networks, the feature classifier is connected to the last layer of the projection head via a
gradient reversal layer [23] that scales the gradient by a certain negative constant α. The constant
α is computed using the current training step given by α = − 2

1+exp(−10n/N) + 1, where n is the
current training step and N is the maximum number of training steps.

Online clustering. A queue of stored embeddings of two full resolution images in 15 previous
batches is used from the 15th training epochs. The queue has a dimension of 2× 128× 3840 as we
work with a batch size of 256. As suggested in [6], we augment the stored features when solving the
code prediction problem. However, we only use the codes of the current batch for loss calculation.
We apply 3 iterations for computing codes online with Sinkhorn algorithm [18] and its regularization
parameter ε is set to 0.05. We train our framework with 3000 prototypes (i.e., K = 3000).

Other settings. The temperature parameter τ in equation (3) is set to 0.1. We train models for 100,
200, 400 and 800 epochs on ImageNet [19] training set.

A.2 Existing self-supervised methods

For self-supervised baselines, we re-implement 4 recent top-performing algorithms in pytorch
[42]: SimCLR [8], MoCo-v2 [11], BYOL [25], and SwAV [6]. We train them for 100, 200, 400
and 800 epochs with the same batch size of 256 on ImageNet [19] training set. For MoCo-v2 and
SwAV, we use their official implementation with authors’ hyperparameters. We reproduce BYOL
and SimCLR using unofficial implementation of OpenSelfSup (Apache 2.0 license) [16] and use
the same settings described in the corresponding paper. We train two versions of BYOL: one with
gradient accumulation (GA) upto 4096 samples (see Appendix G2 of [25] for details) and the other
without GA. For a fair comparison with other methods, we use the latter for label efficiency and
transfer performance evaluation as all other methods do not accumulate gradients.

A.3 Linear probe evaluation

We verify our method by linear evaluation on frozen features, following the protocol described
in [6]. We freeze the unsupervised pretrained final feature representation, and train a supervised
linear classifier that consists of a global average pooling layer and a fully-connected layer fol-
lowed by softmax. We apply standard spatial data augmentation with default parameter settings of
RandomResizedCrop(224) in torchvision library and random horizontal flips during training.
Therefore, the input image has a size of 224 × 224 for training. At inference time, we first resize
the image to 256× 256 along the shorter side and use its center crop of a size 224× 224. The linear
classifier is trained for 100 epochs using ImageNet [19] trainset with a batch size of 256, a learning
rate of 0.3, cosine learning rate decay, and a weight decay of 10−6. When training linear classifiers
of competing self-supervised models, we sweep over candidate hyperparameters provided by authors
and pick the best one.

16

A.4 Finetune with 1% or 10% labels

We reproduce the semi-supervised protocol of [6], and use the 1% and 10% splits of ImageNet [19]
trainset specified in the officially release of [8]. We train models for 20 epochs with a batch size
of 256, and we use different learning rates for feature weights and the classifier weights. For 1%
finetuning, we use a learning rate of 0.02 for the feature weights and 5 for the classifier weights.
For 10% finetuning, we set a learning rate of 0.01 for the feature weights and 0.2 for the classifier
weights. A learning rate decay factor is 0.2 at 12 and 16 epochs, and weight decay is not applied
during finetuning. Standard spatial data augmentation strategies (RandomResizedCrop(224) in
torchvision library and random horizontal flips) are applied for training. For evaluation, each
image is resized to 256× 256 along the shorter side, and its 224× 224-sized center crop is used. The
supervised baselines of 1% and 10% regimes are implemented following the settings in [61]. For
each top-performing self-supervised method, we use its optimal settings (for ResNet-50) provided by
authors.

A.5 PASCAL VOC object detection

We finetune ResNet-18 features using Faster R-CNN [46] object detector on VOC2007 dataset [21].
The training is conducted on the official VOC2007 trainvalset, and the test is performed on
the VOC2007 testset. As in [29], we use ResNet-18 up to conv4 stage backbone and the box
prediction head implemented in Detectron2 (Apache 2.0 license) [54] designed for ResNet-50 with
appropriately adjusted input channel dimensions. We follow the same finetuning protocol in [29].
That is, we keep the same base learning rate of 0.02, a batch size of 16, total training epoch of 24K,
and learning rate decay schedule of 18K and 22K with a decay factor of 0.1 for training. The results
are averaged over 5 random seed runs.

A.6 FCN semantic segmentation

We evaluate our method on VOC2012 [21] and Cityscapes [17] semantic segmentation tasks using
FCN [34] in Section 4.3 and B.4. For both experiments, we finetune on the official trainset
and report results on the valset. We use the default implementation settings in MMSegmentation
(Apache 2.0 license) [15]. The backbone consists of ResNet-18 convolutional layers. This is
followed by a decode head that consists of two Conv-BN-ReLU blocks with 128 channels. Here,
Conv-BN-ReLU block consists of a 3× 3 convolutional layer, followed by batch normalization and
ReLU activation layers. The output of the decode head is concatenated with the backbone features,
and it is followed by one Conv-BN-ReLU block with 128 channels and an 1 × 1 convolution for
per-pixel classification. An auxiliary head is used, and it consists of one Conv-BN-ReLU block with
64 channels connected to the conv4 stage backbone. This is followed by an 1 × 1 convolution
for per-pixel classification, and the standard per-pixel softmax cross-entropy loss is used for both
heads. For both datasets, we apply spatial data augmentations such as random scaling, cropping, and
horizontal flipping. The crop size is 512× 512 for VOC2012, and 512× 1024 for Cityscapes. We
use a batch size of 16, a weight decay of 0.0005 and a learning rate of 10−2 with linearly decayed to
10−4 for VOC2012 and 5× 10−3 for Cityscapes. As suggested in previous work of [29], VOC2012
results are averaged over 5 random seed runs.

A.7 Mask R-CNN instance segmentation and object detection

Architecture. We use Mask R-CNN [27] implemented in MMDetection (Apache 2.0 license) [7]
and follow the default resnet setups. We use ResNet-18 up to conv4 as a backbone and apply the
same structures with the ResNet-50-FPN for necks and heads except for the input channels of the
necks. In particular, we change the input channels to [64, 128, 256, 512] for ResNet-18.

COCO experiments. We follow the low-shot learning protocol of [28]. We perform finetuning
on randomly sampled five non-overlapping 1K and 10K train splits of COCO [33] dataset, and the
average performance on the validation set is reported. The total training epochs are 296 for 10K split
and 740 for 1K split, and we use stochastic gradient decent (SGD) optimizer with a learning rate of
0.02, a weight decay of 0.0001 and a momentum of 0.9. The learning rate is reduced at 200 and 264
epochs for 10K and 500 and 660 epochs for 1K with a decay factor of 0.1. We use 4 Tesla M40 GPUs

17

for training with a total batch size of 16 (4 images per GPU). The performance measure is AP50 for
detection and instance segmentation tasks.

Cityscapes experiments. We test transferability of pretrained features on Cityscapes [17] gtFine
dataset. We finetune the model using SGD optimizer with a learning rate of 0.02, a weight decay of
0.0001 and a momentum of 0.9. The learning rate is reduced at 8 and 11 epochs with a decay factor
of 0.1. We use 4 Tesla M40 GPUs for training with a total batch size of 8 (2 images per GPU).

A.8 Offline version of the proposed method

We provide implementation details of “offline version of the proposed method” in ablation studies
(Section 5.2). Our student ResNet-18 is learning on SwAV [6] framework while the target code
comes from SwAV’s (800-epoch ImageNet [19] pretrained) frozen ResNet-50 teacher. We freeze
teacher’s backbone and projection head, and prototype vectors while weights in student’s backbone
and projection head are updated according to gradients from student’s loss LS (see Section 3.1 and
Section 3.2 for LS). Random dropout is applied at linear layers in student’s projection head with
dropout rates of (0.1, 0.05) at (Linear1,Linear2). The distillation epoch is 130 following [31],
and we use 256 batches on 4 V100 32GB GPUs. The target code is computed using Sinkhorn-
Knopp algorithm [18] under an equi-partition constraint for each augmented mini-batch with stored
embeddings as described in A.1. Here, the embedding vectors are from teacher network. We use
the data augmentation and multi-crop strategy and training hyperparameters of OSS implementation
(A.1): a weight decay of 10−6, LARS [59] optimizer and a learning rate of 0.6 decayed to a final
value of 0.0006 with cosine learning rate schedule.

B Additional Results

B.1 Offline knowledge distillation methods

We compare our framework with various offline distillation methods that leverage self-supervised
teachers in [31] and [22]. We first summarize the techniques therein. CC [40] method is similar to
[57] that improves self-supervised learning by distilling quantized teacher’s representation. CRD
[52] directly compares the feature embeddings of teacher and student and maximizes the mutual
information. Reg-BN is a batch-norm augmented version of Reg [47] which regresses the embedding
features for distillation. l-2 Distance minimizes squared l-2 distance. K-Means and Online Clustering
indicate K-means clustering and its online version. “Binary Contr.” is a combination of CRD [52]

Table 9: Top-1 accuracy (%) of linear probe evaluation on ImageNet for ResNet-18, MobileNet-v2
and EfficientNet-B0 distilled from variants of self-supervised ResNet-50 (SimCLR[8], MoCo-v2[11],
and SwAV[6]). The results are collected from [31] and [22]. T and S denote teacher and student,
and * indicates distillation from ResNet-101 teacher. Our method outperforms all competing offline
compression techniques.

Distillation T T S
Method Top-1 Top-1

Student: ResNet-18 [26]

CC [40] [6] 75.6 60.8
CRD [52] [6] 75.6 58.2
Reg-BN [31] [6] 75.6 60.6
l-2 Distance [22] [11] 67.4 55.3
K-Means [22] [11] 67.4 51.0
Online Clustering [22] [11] 67.4 56.4
Binary Contr. [22] [11] 67.4 57.4
SEED [22] [8] 65.6 57.5
SEED [22] [11] 71.1 60.5
CompRess-2q[31] [6] 75.6 62.4
CompRess-1q[31] [6] 75.6 65.6
Ours OSS 73.0 68.3

Distillation T T S
Method Top-1 Top-1

Student: MobileNet-v2 [48]

CC [40] [11] 70.8 59.2
CRD [52] [11] 70.8 54.1
Reg [60] [11] 70.8 48.0
Reg-BN [31] [11] 70.8 62.3
CompRess-2q[31] [11] 70.8 63.0
CompRess-1q[31] [11] 70.8 65.8
Ours OSS 70.4 66.1

Student: EfficientNet-B0 [51]

SEED [22] [11] 67.4 61.3
SEED [22] [11] 70.3* 63.0
Ours OSS 70.9 64.1

18

Table 10: Top-1 accuracy (%) of linear probe evaluation on ImageNet for ResNet-18 distilled from
ResNet-50 using various distillation epochs. P-E/D-E represent the pretraining epochs of teacher and
distillation epochs, and * indicates distillation with additional small patches.

Teacher P-E D-E Student
Top-1

Distillation Method: SEED [22]

SwAV [6] 800 100 61.1
800 200 61.7
800 400 62.0

SwAV* [6] 800 200 62.6

Teacher P-E D-E Student
Top-1

Distillation Method: OSS

Ours 100 100 60.0
200 200 64.1
400 400 65.8
800 800 68.3

and contrastive loss. Recent top-performing methods are CompRess [31] and SEED [22], and their
training mechanism is similar. SEED maintains a memory bank (queue) for storing data samples’
encoding outputs from teacher. SEED calculates instance-level similarity scores between input
features extracted from the teacher encoder and all samples in the queue. Similarity scores for a
student model with all instances in the queue are computed in the same way, and the student is
trained to mimic teacher’s score distribution. On the other hand, CompRess decouples teacher and
student embeddings and maintain a separate queue for each. There are two implementation versions
of CompRess depending on the number of queues therein. If teacher’s queue is used in calculating
similarity scores for both teacher and student models (as in SEED), it is called CompRess-1q. If each
score distribution is computed from the corresponding queue, it is called CompRess-2q. The size of
queue in CompRess is 128,000, which is almost double than the size of SEED, 65,536. Comparison
results of aforementioned approaches on ResNet-18, MobileNet-v2 [48] and EfficientNet-B0 [51] are
illustrated in Tables 9. Overall, our student models outperform all the offline distilled networks even
from stronger teachers.

We further compare our method with SEED at various distillation epochs. For both SEED and
OSS, we consider a ResNet-50-ResNet-18 (teacher-student) pair, and the corresponding linear probe
results (top-1 accuracy) are taken from Figure 1 and SEED’s Table 3. As shown in Table 10, SEED
works slightly better at 100 epochs, but our model significantly outperforms SEED at 200 and 400
epochs. Also, SEED attains the best accuracy, 62.6%, at 200-epoch distillation using additional small
patches. However, this still does not match our 200-epoch performance (64.1%). Marginally worse
performance of our method at early stage of training (100 epochs) seems to be due to online joint
optimization of teacher and student while SEED is distilled from an already mature teacher. In short,
our student learns features a bit slowly at the beginning while eventual performance is significantly
better.

B.2 Transfer performance on other classification tasks

We test whether the features trained on ImageNet [19] with the proposed method are also useful in
different image domains via feature reuse. We evaluate our ResNet-18 representation by training a

Table 11: Top-1 accuracy (%) of linear probe evaluation for ResNet-18 on various datasets. ResNet-18
features are pretrained on ImageNet trainset, and a linear classifier on top of the frozen representation
is trained on CIFAR, SUN397, DTD, Places365 and STL10 datasets.

Method Top-1 Accuracy
CIFAR10 CIFAR100 SUN397 DTD Places365 STL10

Supervised 85.3 67.0 51.8 60.2 43.4 94.8

SimCLR [8] 79.0 54.9 50.8 63.2 42.8 89.8
MoCo-v2 [11] 69.8 33.6 31.3 48.1 37.5 89.4
BYOL [25] 60.8 25.1 24.1 48.8 33.6 84.8
SwAV [6] 81.4 61.4 59.3 69.9 46.6 94.8
OSS (ours) 82.9 61.6 60.2 70.0 46.5 96.1

19

Table 12: Transfer performance (%) of ImageNet
pretrained ResNet-18 features on Places365 low-shot
learning tasks. Mean ± std over 5 splits is given.

Method Top-1 Accuracy
1% 10%

Scratch 00.3 ±0.04 37.4 ±0.21
Supervised 00.4 ±0.11 45.4 ±0.07
SimCLR [8] 30.6 ±0.35 46.2 ±0.10
MoCo-v2 [11] 32.0 ±0.24 46.8 ±0.07
BYOL [25] 29.8 ±0.17 44.9 ±0.13
SwAV [6] 30.4 ±1.57 47.1 ±0.05
CompRess-1q [31] 34.0 ±0.15 47.1 ±0.06
OSS (ours) 35.1 ±0.25 47.1 ±0.07

Table 13: Transfer performance (%) of Im-
ageNet pretrained ResNet-18 features on
Cityscapes scene segmentation and instance
segmentation tasks.

Method mIoU APinst
50

Supervised 61.2 57.0

SimCLR [8] 60.8 58.6
MoCO-v2 [11] 61.0 57.0
BYOL [25] 60.4 55.5
SwAV [6] 58.0 58.2
CompRess-1q [31] 54.4 57.8
OSS (ours) 62.4 58.3

linear classifier on top of the frozen backbone network using 5 datasets, namely CIFAR [32], SUN397
[56], DTD [13], Places365 [63], and STL10 [14], following the procedure described in A.3. We work
with the official splits of training and validation except for DTD. For DTD dataset, we only use the
first split out of the total 10 splits as in previous studies [8, 25]. We use 800 epoch pretrained models
for all unsupervised methods, and results are summarized in Table 11 using the standard metric,
1-crop top-1 accuracy. We note that our ResNet-18 features even surpass the supervised frozen
features (trained on ImageNet) on all benchmarks except for CIFAR. Our approach outperforms
state-of-the-art self-supervised methods on most of benchmarks.

B.3 Data efficiency evaluation on Places365

We evaluate the performance obtained when finetuning (ImageNet [19] pretrained) ResNet-18 models
on Places365 [63] for classification with small subsets of trainset using labels. We first randomly
sample five non-overlapping 1% and 10% train splits. We then train ResNet-18 models on each split
and provide average top-1 accuracy (%) and the standard deviation (std) on Places365 validation
set in Table 12. OSS significantly surpasses top-performing self-supervised approaches and the
state-of-the-art offline knowledge distillation method CompRess-1q [31] (based on SwAV [6]’s
ResNet-50 teacher) on 1% split. With 10% split, our method also works best.

B.4 Transfer performance on Cityscapes

We transfer ImagNet [19] pretrained ResNet-18 representation on Cityscapes [17] instance segmenta-
tion with Mask-RCNN [27] and semantic segmentation with FCN [34]. We use 800-epoch pretrained
models, and full experimental details are described in A.7 and A.6. Results are reported in Table 13.
With Mask-RCNN, SwAV [6] works slightly better than our model. However, our method is the only
unsupervised approach that surpasses the supervised baseline in the scene segmentation task.

20

B.5 Sensitivity of train split selection on COCO low-shot transfer performance

In COCO transfer experiments of Section 4.3, models are trained on five non-overlapping data splits
of 1K and 10K examples, and the results on the validation set are averaged over the five runs. We
further provide the average performance (given in Table 3) along with standard deviations to verify
that the performance of our model is not sensitive to the selection of train examples. Table 14 shows
that OSS consistently outperforms state-of-the-art unsupervised methods regardless of train split
selection.

Table 14: Transfer performance (%) of ResNet-18 finetuned on 1K and 10K train splits of COCO
dataset for detection and instance segmentation tasks. Each experiment (1K and 10K) is performed on
five random non-overlapping train splits. The average AP50 over the five runs ± standard deviation
is reported, and the standard deviation is illustrated as an error bar.

Method COCO-1K
APbb

50 APinst
50

Supervised 17.0 ±0.54 15.6 ±0.67

SimCLR [8] 16.0 ±0.57 14.8 ±0.52
MoCo-v2 [11] 11.0 ±0.30 09.9 ±0.38
BYOL [25] 14.3 ±0.63 12.9 ±0.56
SwAV [6] 18.6 ±0.53 17.2 ±0.60
CompRess-1q [31] 14.8 ±0.33 13.5 ±0.47
OSS (ours) 20.0 ±0.48 18.4 ±0.50

0

5

10

15

20 AP50
bb AP50

inst

(a) COCO-1K experiment

Method COCO-10K
APbb

50 APinst
50

Supervised 33.6 ±0.13 31.1 ±0.17

SimCLR [8] 33.0 ±0.23 30.6 ±0.26
MoCo-v2 [11] 28.8 ±0.18 26.9 ±0.15
BYOL [25] 30.4 ±0.35 28.0 ±0.04
SwAV [6] 36.8 ±0.42 34.4 ±0.45
CompRess-1q [31] 31.7 ±0.38 29.4 ±0.46
OSS (ours) 37.9 ±0.16 35.4 ±0.24

20

25

30

35

40 AP50
bb AP50

inst

(b) COCO-10K experiment

21

B.6 Data efficiency evaluation on ImageNet for light networks

We pretrain three small networks: MobileNet-v2 [48] RegNetY-600MF [45], and EfficientNet-B0
[51] with a ResNet-50 teacher on OSS framework for 200 epochs and report top-1 linear evaluation
accuracy on ImageNet [19] validation set in Table 4 of Section 5.1. We further provide 1% and 10%
low-shot learning performance of pretrained student features on ImageNet validation set (see A.4
for implementation details). Table 15 shows that our method outperforms SwAV by a large margin
except for 1%-experiment with EfficientNet-B0. We have used SwAV’s optimal settings and did not
search over other parameters due to the computational limitation. We believe performance of OSS
models could be better with proper hyperparameter tuning.

Table 15: Classification accuracy (%) of linear probe and low-shot learning evaluation on ImageNet
for various shallow models. The second column (Params) is the number of parameters in each
network, and the unit M denotes 106.

Model Params Method Top-1 Accuracy Top-5 Accuracy
Frozen 1% 10% Frozen 1% 10%

RegNetY-600MF [45] 6.1M SwAV [6] 67.0 23.3 64.1 87.8 46.0 86.5
OSS (ours) 67.4 49.9 64.7 88.3 75.6 86.9

EfficientNet-B0 [51] 5.3M SwAV [6] 59.3 39.3 59.9 83.2 65.8 83.7
OSS (ours) 64.1 34.4 62.8 86.1 60.3 85.8

MobileNet-v2 [48] 3.4M SwAV [6] 63.2 36.8 56.1 84.7 63.1 80.3
OSS (ours) 66.1 39.4 57.6 86.7 65.6 81.4

B.7 Train times

We provide unsupervised pretraining lengths measured in minutes per epoch on 4 V100 32GB GPUs
with 256 batches. In Table 16, we report train times of ResNet-18 using our implementation with
ResNet-50 teacher (A.1) and SwAV [6]’s ResNet-18 (A.2) on ImageNet [19] training set along with
top-1 linear evaluation accuracy on the validation set at 200, 400 and 800 pretraining epochs. Here,
accuracy is taken from Figure 1. While per epoch train time of our method is longer than SwAV’s
due to joint training with ResNet-50, our model’s 200 epoch performance (64.1%) is almost on par
with SwAV’s 800 epoch performance (64.9%). Therefore, training ResNet-18 using our framework
with ResNet-50 teacher requires much less computation time to achieve comparable results with
SwAV’s. Moreover, if we train our model longer, our student ResNet-18 outperforms SwAV’s final
performance by +0.6 at 400 epochs and +3.4 at 800 epochs.

Table 16: Pretrain times of SwAV’s ResNet-18 and OSS’s ResNet-18 (trained with ResNet-50 teacher)
and top-1 linear probe accuracy of frozen features on ImageNet.

Method Time Pretrain Epochs
(min/epoch) 200 400 800

SwAV 25.0 61.2 63.7 64.9
OSS (ours) 57.5 64.1 65.5 68.3

22

B.8 Qualitative analysis of feature maps

Original Supervised offline KD-Drop KD KD-Drop KD-Drop-Adv
Image ResNet-18 Teacher Student Teacher Student Teacher Student Teacher Student

(a)

(b)

(c)

(d)

(e)

(f)

(g)

List of labels and image names
Label Label Index Name Image Name

(a) n07802026 816 hay ILSVRC2012_val_00043223.JPEG
(b) n04613696 714 yurt ILSVRC2012_val_00034462.JPEG
(c) n04357314 810 sunscreen, sunblock, sun blocker ILSVRC2012_val_00006886.JPEG
(d) n07871810 806 meat loaf, meatloaf ILSVRC2012_val_00035848.JPEG
(e) n02687172 246 aircraft carrier, carrier, flattop ILSVRC2012_val_00014273.JPEG
(f) n02490219 175 marmoset ILSVRC2012_val_00015041.JPEG
(g) n02860847 252 bobsled, bobsleigh, bob ILSVRC2012_val_00033253.JPEG

Figure 5: Grad-CAM [49] visualization of feature maps corresponding to the ground truth labels
for different dropout and distillation schemes. The images are selected from ImageNet validation
set. Here, teacher is ResNet-50, and student is ResNet-18. The proposed method (KD-Drop-Adv)
shows strongest activation on the target class region (Hay, Yurt, Sunscreen, Meatloaf, Aircraft carrier,
Marmoset and Bobsled) among all schemes. Green box boundary indicates the network correctly
predicts the class, and red box boundary means the prediction is wrong. Image names and their
correct classes are listed in the table.

23

