
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Materials: Towards High-performance Spiking
Transformers from ANN to SNN Conversion

Anonymous Authors

1 PROOF OF THEOREM 1
Theorem 1.1. Consider a non-linear layer 𝑙 with a function 𝐹 .

In SNNs, the output of this layer at time 𝑡 is denoted as 𝑶𝑙 (𝑡). Let
𝑺𝑙 (𝑇 ) be the cumulative sum of layer 𝑙 outputs up to time 𝑇 , given
by 𝑺𝑙 (𝑇 ) = ∑𝑇

𝑡=1 𝑶
𝑙 (𝑡). The expected output of the SNNs at time 𝑇 is

given by:

𝑶𝑙 (𝑇 ) = 𝑇𝐹
(
𝑺𝑙−1 (𝑇 )
𝑇

)
− (𝑇 − 1)𝐹

(
𝑺𝑙−1 (𝑇 − 1)
𝑇 − 1

)
. (1)

Proof. According to Section 3.2, we denote 𝒙𝑙 (𝑡) as𝑶𝑙 (𝑡), which
has the same meaning, and we can approximate the output value
of ANNs using the mean value of the output for the first T time
steps in SNNs:

𝒂𝑙𝑇 = Φ𝑙 (𝑇 ) =
∑𝑇
𝑡=1 𝑶

𝑙 (𝑡)
𝑇

(2)

where 𝒂𝑙
𝑇
represents the estimated values of neurons in layer 𝑙 at

time𝑇 in ANNs. It will change as the corresponding spikes in SNNs
accumulate over time.

Meanwhile, in the case of ANNs, 𝒂𝑙
𝑇
can be formulated as:

𝒂𝑙𝑇 = 𝐹 (𝒂𝑙−1𝑇 ) . (3)

Furthermore, we can deduce the output by subtracting the total
output of the previous T and T-1 time steps from the formula 2 and
3.

𝑶𝑙 (𝑇 ) =
𝑇∑︁
𝑡=1

𝑶𝑙 (𝑡) −
𝑇−1∑︁
𝑡=1

𝑶𝑙 (𝑡)

= 𝑇𝒂𝑙𝑇 − (𝑇 − 1)𝒂𝑙𝑇−1
= 𝑇𝐹 (𝒂𝑙−1𝑇 ) − (𝑇 − 1)𝐹 (𝒂𝑙−1𝑇−1)

= 𝑇𝐹

(∑𝑇
𝑡=1𝑂

𝑙−1 (𝑡)
𝑇

)
− (𝑇 − 1)𝐹

(∑𝑇−1
𝑡=1 𝑂

𝑙−1 (𝑡)
𝑇 − 1

)
= 𝑇𝐹

(
𝑺𝑙−1 (𝑇 )
𝑇

)
− (𝑇 − 1)𝐹

(
𝑺𝑙−1 (𝑇 − 1)
𝑇 − 1

)
(4)

□

2 PROOF OF THEOREM 2
Theorem 2.1. Consider a module for matrix product that receives

two sets of spike inputs, denoted by 𝑨𝑣𝑎 (𝑡) and 𝑩𝑣𝑏 (𝑡). These inputs
are generated by neurons 𝐴 and 𝐵, respectively, and are characterized
by multiple thresholds 𝑣𝑎 and 𝑣𝑏 , as described in Section 4.3.

We can integrate the input by 𝑨(𝑡) = ∑
𝑣𝑎 𝑣𝑎𝑨𝑣𝑎 (𝑡) and 𝑩(𝑡) =∑

𝑣𝑏
𝑣𝑏𝑩𝑣𝑏 (𝑡). Here, 𝑨(𝑡) and 𝑩(𝑡) are the sum matrices weighted

by multiple thresholds 𝑣𝑎 and 𝑣𝑏 , respectively.
Let 𝑺𝐴 (𝑇 ) =

∑𝑇
𝑡=1𝐴(𝑡) and 𝑺𝐵 (𝑇 ) =

∑𝑇
𝑡=1 𝐵(𝑡) represent the cu-

mulative sum of inputs up to time𝑇 . We define 𝑺𝐾 (𝑇 ) = 𝑺𝐴 (𝑇 )𝑺𝐵 (𝑇 ).

Then, the expected output at time T can be formulated as:

𝑶 (𝑇 ) = 1
𝑇
𝑺𝐾 (𝑇 ) −

1
𝑇 − 1

𝑺𝐾 (𝑇 − 1), (5)

where 𝑺𝐾 (𝑇 ) can be calculated mainly using addition, as described
by the following equation:

𝑺𝐾 (𝑇 ) = 𝑺𝐾 (𝑇 − 1) + 𝑲 (𝑇 ) (6)

𝐾 (𝑇 ) =
∑︁
𝑣𝑎,𝑣𝑏

𝑣𝑎𝑣𝑏𝑨𝑣𝑎 (𝑇 )𝑩𝑣𝑏 (𝑇 ) +
∑︁
𝑣𝑎

𝑣𝑎𝑨𝑣𝑎 (𝑇 )𝑺𝐵 (𝑇 − 1)

+
∑︁
𝑣𝑏

𝑣𝑏𝑺𝐴 (𝑇 − 1)𝑩𝑣𝑏 (𝑇 ).
(7)

Proof. Since we approximate the value of ANNs using the mean
value for the first T times in SNNs, let the expected input matrices
𝑨𝑇 , 𝑩𝑇 , and 𝑶𝑇 = 𝑨𝑇𝑩𝑇 in ANNs be calculated based on the input
spikes during the first 𝑇 time steps in SNNs, denoted as:

𝑨𝑇 =

∑𝑇
𝑡=1𝑨(𝑡)
𝑇

(8)

𝑩𝑇 =

∑𝑇
𝑡=1 𝑩(𝑡)
𝑇

(9)

𝑶𝑇 =

∑𝑇
𝑡=1 𝑶 (𝑡)
𝑇

(10)

So, the expected output matrix 𝑶 (𝑇 ) at time 𝑇 can be calculated
by:

𝑶 (𝑇 ) =
𝑇∑︁
𝑡=1

𝑶 (𝑡) −
𝑇−1∑︁
𝑖=𝑡

𝑶 (𝑡)

= 𝑇𝑶𝑇 − (𝑇 − 1)𝑶𝑇−1
= 𝑇𝑨𝑇𝑩𝑇 − (𝑇 − 1)𝑨𝑇−1𝑩𝑇−1

= 𝑇

∑𝑇
𝑡=1𝑨(𝑡)
𝑇

∑𝑇
𝑡=1 𝑩(𝑡)
𝑇

− (𝑇 − 1)
∑𝑇−1
𝑡=1 𝑨(𝑡)
𝑇 − 1

∑𝑇−1
𝑡=1 𝑩(𝑡)
𝑇 − 1

=
1
𝑇

𝑇∑︁
𝑡=1

𝑨(𝑡)
𝑇∑︁
𝑡=1

𝑩(𝑡) − 1
(𝑇 − 1)

𝑇−1∑︁
𝑡=1

𝑨(𝑡)
𝑇−1∑︁
𝑡=1

𝑩(𝑡)

=
1
𝑇
𝑺𝐴 (𝑇 )𝑺𝐵 (𝑇 ) −

1
𝑇 − 1

𝑺𝐴 (𝑇 − 1)𝑺𝐵 (𝑇 − 1)

=
1
𝑇
𝑺𝐾 (𝑇 ) −

1
𝑇 − 1

𝑺𝐾 (𝑇 − 1)

(11)



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

And 𝑺𝐾 (𝑇 ) can be calculated by:

𝑺𝐾 (𝑇 ) = 𝑺𝐴 (𝑇 )𝑺𝐵 (𝑇 )

= (
𝑇∑︁
𝑡=1

𝑨(𝑡)) (
𝑇∑︁
𝑡=1

𝑩(𝑡))

= (𝑺𝐴 (𝑇 − 1) +𝑨(𝑇 )) (𝑺𝐵 (𝑇 − 1) + 𝑩(𝑇 ))
= 𝑺𝐴 (𝑇 − 1)𝑺𝐵 (𝑇 − 1) +𝑨(𝑇 )𝑩(𝑇 )
+𝑨(𝑇 )𝑺𝐵 (𝑇 − 1) + 𝑺𝐴 (𝑇 − 1)𝑩(𝑇 )

= 𝑺𝐾 (𝑇 − 1) +
∑︁
𝑣𝑎,𝑣𝑏

𝑣𝑎𝑣𝑏𝑨𝑣𝑎 (𝑇 )𝑩𝑣𝑏 (𝑇 )

+
∑︁
𝑣𝑎

𝑣𝑎𝑨𝑣𝑎 (𝑇 )𝑺𝐵 (𝑇 − 1) +
∑︁
𝑣𝑏

𝑣𝑏𝑺𝐴 (𝑇 − 1)𝑩𝑣𝑏 (𝑇 )

= 𝑺𝐾 (𝑇 − 1) + 𝑲 (𝑇 ) .

(12)

Assuming the dimension of 𝑺𝐾 (𝑇 ), 𝑺𝐴 (𝑇 ) and 𝑺𝐵 (𝑇 ) are 𝑛×𝑚, 𝑛×𝑝
and 𝑝 ×𝑚, respectively. And suppose the firing rate of 𝐴(𝑇 ) and
𝐵(𝑇 ) are 𝜂1 and 𝜂2.

In order to determine the number of different operations required
to update 𝑺𝐾 (𝑇 ), we conduct a brief analysis: Multiplications occur
when the threshold is multiplied by the results of various matrix
multiplications; Additions occur during the calculation of individual
matrix multiplications, as well as the accumulation of the results of
the four parts.

As each position of the input matrix has only one effective thresh-
old at each time, it restricts the total number of input spikes, thus
limiting the total number of operations.

The maximum addition operation number is

𝐴𝐶𝑠𝑚𝑎𝑥SNN = 𝜂1𝜂2𝑛𝑝𝑚 + 𝜂1𝑛𝑝𝑚 + 𝜂2𝑛𝑝𝑚 + 3𝑛𝑚 (13)

where 𝜂1𝜂2𝑛𝑝𝑚, 𝜂1𝑛𝑝𝑚 and 𝜂2𝑛𝑝𝑚 are the maximum addition oper-
ations in calculating

∑
𝑣𝑎,𝑣𝑏

𝑣𝑎𝑣𝑏𝑨𝑣𝑎 (𝑇 )𝑩𝑣𝑏 (𝑇 ) ,
∑
𝑣𝑎 𝑣𝑎𝑨𝑣𝑎 (𝑇 )𝑺𝐵 (𝑇−

1) and ∑
𝑣𝑏
𝑣𝑏𝑺𝐴 (𝑇 − 1)𝑩𝑣𝑏 (𝑇 ), respectively. 3𝑛𝑚 is the maximum

operation in accumulating four parts in Equation (6).
The maximum multiplication operation number is

𝐴𝐶𝑠𝑚𝑎𝑥SNN =𝑚𝑖𝑛(𝜂1, 𝜂2)𝑛𝑚 + 𝜂1𝑛𝑚 + 𝜂2𝑛𝑚 (14)

where𝑚𝑖𝑛(𝜂1, 𝜂2)𝑛𝑚, 𝜂1𝑛𝑚 and 𝜂2𝑛𝑚 are the maximummultiplica-
tion operations in calculating

∑
𝑣𝑎,𝑣𝑏

𝑣𝑎𝑣𝑏𝑨𝑣𝑎 (𝑇 )𝑩𝑣𝑏 (𝑇 ),
∑
𝑣𝑎 𝑣𝑎𝑨𝑣𝑎 (𝑇 )𝑺𝐵 (𝑇−

1) and ∑
𝑣𝑏
𝑣𝑏𝑺𝐴 (𝑇 − 1)𝑩𝑣𝑏 (𝑇 ), respectively.

It can be seen that 𝐴𝐶𝑠𝑚𝑎𝑥SNN ≫ 𝑀𝐴𝐶𝑠𝑚𝑎𝑥SNN , so 𝑆𝐾 (𝑇 ) can be cal-
culated mainly using addition. □

3 EXPERIMENT DETAILS
3.1 Datasets
CIFAR-10. The CIFAR-10 dataset [7] consists of 60000 32 × 32

images in 10 classes. There are 50000 training images and 10000
test images.

CIFAR-100. The CIFAR-100 dataset [7] consists of 60000 32 ×
32 images in 100 classes. There are 50000 training images and 10000
test images.

ImageNet1k. We use the ILSVRC 2012 dataset [9], which con-
sists of 1,281,167 training images and 50000 testing images.

3.2 Data Preprocessing
To process our image data, we followed a series of steps. First, we
resized the image to the desired size and then cropped it tomatch the
input size. After that, we converted the image into a PyTorch tensor.
Next, we normalized the pixel values using the provided mean
and standard deviation values. The mean and standard deviation
values were specified as (0.48145466, 0.4578275, 0.40821073) and
(0.26862954, 0.26130258, 0.27577711). Finally, we normalized the
pixel values of the three-channel images based on the provided
mean and standard deviation.

3.3 Experimental Setup
The conversion in this paper is based on pre-trained Vision Trans-
former including the ViT-S/16, ViT-B/16, ViT-L/16 with 224 resolu-
tion [10], and the EVA model eva_g_patch14 in [3].

For all Multi-Threshold Neurons, we set 𝑛 to 8 for ViT-S/16,
ViT-B/16, ViT-L/16 and 6 for EVA. We set threshold percent 𝑝 to 99
to get thresholds for each neuron. In particular, due to huge differ-
ences in GELU and softmax layers’ output values, we configure the
positive and negative base thresholds to 0.5 and 0.08, respectively,
for neurons following the GELU module in 𝑉𝑖𝑇 models, and to
0.0125 for neurons following the softmax module to prevent too
few spikes.

Besides, the precision of the network is highly sensitive to the
precision of the classification layer, as mentioned in [8]. Since the
classification layer has minimal energy consumption during run-
time, we retained analog input in the classification layer.

4 ADDITIONAL EXPERIMENTAL DETAILS
4.1 Detailed results on other datasets
Tables 1 and 2 present a comparison of the accuracy and energy
consumption of different neural network architectures - ANNs and
SNNs - on CIFAR10 and CIFAR100 datasets.

Table 1 compares the accuracy of ANN and SNN architectures for
the CIFAR10 dataset across three model scales: ViT-S/16, ViT-B/16,
and ViT-L/16. It can be seen that the SNN model can reach a com-
parable accuracy while significantly reducing the consumption.
For example, when the SNN model is run for 6 time steps, models
such as ViT-S/16, ViT-B/16, and ViT-L/16 achieve accuracy levels
of 97.37%, 98.24%, and 99.1%, respectively. The remarkable fact is
that they only consume 0.6, 0.48, and 0.4 energy, respectively when
compared to the original ANN (Artificial Neural Network) models.

Table 2 presents a similar comparison for the more complex
CIFAR100 dataset. For instance, at 6 timesteps, ViT-S/16, ViT-B/16,
and ViT-L/16 achieve accuracies of 84.75%, 90.22%, and 93.04%, re-
spectively, while using only 0.61, 0.48, and 0.43 energy compared
to original ANN models. It shows the potential of our method to re-
duce energy consumption while maintaining accuracy. The results
demonstrate our method’s potential to reduce energy consumption
while maintaining accuracy.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supplementary Materials: Towards High-performance Spiking Transformers from ANN to SNN Conversion ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 1: Accuracy and energy consumption ratio of ECMT(Ours) on CIFAR10 dataset

Arch. Accuracy/Energy Original (ANN) Ours (SNN)

T=1 T=2 T=4 T=6 T=8 T=10

ViT-S/16 Acc. (%) 98.33 8.53 31.32 93.82 97.37 98.01 98.21
Energy ratio 1 0.06 0.15 0.37 0.60 0.82 1.03

ViT-B/16 Acc. (%) 98.75 9.17 32.25 95.17 98.24 98.55 98.69
Energy ratio 1 0.04 0.12 0.30 0.48 0.66 0.83

ViT-L/16 Acc. (%) 99.07 10.55 95.14 98.89 99.1 99.03 99.08
Energy ratio 1 0.03 0.11 0.27 0.42 0.57 0.72

Table 2: Accuracy and energy consumption ratio of ECMT(Ours) on CIFAR100 dataset

Arch. Accuracy/Energy Original (ANN) Ours (SNN)

T=1 T=2 T=4 T=6 T=8 T=10

ViT-S/16 Acc. (%) 89.28 0.95 4.9 69.49 84.75 87.83 88.93
Energy ratio 1 0.06 0.16 0.38 0.61 0.84 1.07

ViT-B/16 Acc. (%) 92.26 0.87 17.07 82.86 90.22 91.5 91.91
Energy ratio 1 0.04 0.12 0.30 0.48 0.66 0.84

ViT-L/16 Acc. (%) 93.84 1.61 69.08 91.82 93.04 93.34 93.56
Energy ratio 1 0.04 0.12 0.27 0.43 0.58 0.73

4.2 Comparison with the State-of-the-art on
CIFAR10 and CIFAR100 datasets

We compare the experimental results using the ViT-S/16, ViT-B/16,
ViT-L/16 model on the CIFAR10 and CIFAR100 datasets with previ-
ous state-of-the-art methods, as shown in Table 3 and 4.

In the evaluation of the CIFAR10 dataset, the ECMT model
achieved an impressive accuracy rate of 97.37%, 98.24%, and 99.1%
respectively, using the architecture of ViT-S/16, ViT-B/16, ViT-L/16
over just six timesteps. This level of precision is highly competitive,
especially compared to similarly-sized models. In evaluating the
CIFAR100 dataset, considered more complex, the ECMT method
again displays its strength. The results demonstrate that the ECMT
method achieves a similar high accuracy.

The ECMT model uses the Transformer-to-SNN approach and
has performed exceptionally well on the CIFAR10 and CIFAR100
datasets. Its ViT-B/16 variant stands out by achieving high accuracy
with a moderate number of parameters, indicating the potential
of SNNs in achieving state-of-the-art results with a significant
reduction in computational resources. This balance of efficiency and
accuracy makes the ECMT a promising model for energy-efficient
and fast processing tasks.



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 3: Comparison between the proposed method and previous works on CIFAR10 dataset

Method Type Arch. Param. (M) T Accuracy (%)

Spikingformer[14] Direct Training Spikingformer-4-384-400E 9.32 4 95.81
Spike-driven Transformer[13] Direct Training Spikingformer-4-384-400E 9.32 4 95.6

RMP[4] CNN-to-SNN VGG-16 138 64(2048) 90.35(93.63)
SNM[11] CNN-to-SNN VGG-16 138 32(128) 93.43(94.07)
TS[2] CNN-to-SNN VGG-16 138 16(32) 92.29(92.29)

QFFS[8] CNN-to-SNN VGG-16 138 4 92.64

QCFS[1] CNN-to-SNN ResNet-18 11.8 8(64) 94.82(96.06)
VGG-16 138 8(64) 94.95(95.55)

SRP[5] CNN-to-SNN ResNet-18 11.8 4(16) 95.25(95.55)
VGG-16 138 4(16) 95.32(95.42)

MST[12] Transformer-to-SNN Swin-T(BN) 27.6 64(256) 96.32(97.27)

STA[6] Transformer-to-SNN ViT-B/32 86 32(256) 95.49(95.82)

ECMT(Ours) Transformer-to-SNN
ViT-S/16 22 6(8) 97.37(98.01)
ViT-B/16 86 6(8) 98.24(98.55)
ViT-L/16 307 6(8) 99.1(99.03)

Table 4: Comparison between the proposed method and previous works on CIFAR100 dataset

Method Type Arch. Param. (M) T Accuracy (%)

Spikingformer[14] Direct Training Spikingformer-4-384-400E 9.32 4 79.21
Spike-driven Transformer[13] Direct Training Spikingformer-4-384-400E 9.32 4 78.4

RMP[4] CNN-to-SNN VGG-16 138 128(2048) 63.76(70.93)
SNM[11] CNN-to-SNN VGG-16 138 32(128) 71.8(73.95)
TS[2] CNN-to-SNN VGG-16 138 16(64) 63.73(69.27)

QCFS[1] CNN-to-SNN ResNet-18 11.8 8(64) 78.48(79.54)
VGG-16 138 8(64) 73.96(77.10)

SRP[5] CNN-to-SNN ResNet-20 0.27 4(32) 59.34(65.50)
VGG-16 138 4(32) 75.42(76.45)

MST[12] Transformer-to-SNN Swin-T(BN) 27.6 64(256) 85.4(86.91)

STA[6] Transformer-to-SNN ViT-B/32 86 32(256) 84.15(85.98)

ECMT(Ours) Transformer-to-SNN
ViT-S/16 22 6(8) 84.75(87.83)
ViT-B/16 86 6(8) 90.22(91.5)
ViT-L/16 307 6(8) 93.04(93.34)



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Supplementary Materials: Towards High-performance Spiking Transformers from ANN to SNN Conversion ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

REFERENCES
[1] Tong Bu, Wei Fang, Jianhao Ding, PENGLIN DAI, Zhaofei Yu, and Tiejun Huang.

2022. Optimal ANN-SNN Conversion for High-accuracy and Ultra-low-latency
SpikingNeural Networks. In International Conference on Learning Representations.

[2] Shikuang Deng and Shi Gu. 2021. Optimal Conversion of Conventional Artificial
Neural Networks to Spiking Neural Networks. In International Conference on
Learning Representations.

[3] Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang,
Tiejun Huang, Xinlong Wang, and Yue Cao. 2023. EVA: Exploring the Limits of
Masked Visual Representation Learning at Scale. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 19358–19369.

[4] Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. 2020. RMP-SNN: Resid-
ual Membrane Potential Neuron for Enabling Deeper High-Accuracy and Low-
Latency Spiking Neural Network. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 13558–13567.

[5] Zecheng Hao, Tong Bu, Jianhao Ding, Tiejun Huang, and Zhaofei Yu. 2023.
Reducing ANN-SNN Conversion Error through Residual Membrane Potential.
Proceedings of the AAAI Conference on Artificial Intelligence 37, 1 (2023), 11–21.

[6] Yizhou Jiang, Kunlin Hu, Tianren Zhang, Haichuan Gao, Yuqian Liu, Ying Fang,
and Feng Chen. 2024. Spatio-Temporal Approximation: A Training-Free SNN
Conversion for Transformers. In Proceedings of the International Conference on
Learning Representations.

[7] A Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.
Master’s thesis, University of Tront (2009).

[8] Chen Li, Lei Ma, and Steve Furber. 2022. Quantization Framework for Fast Spiking
Neural Networks. Frontiers in Neuroscience 16 (2022), 918793.

[9] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. ImageNet Large Scale Visual Recognition Challenge. International Journal
of Computer Vision 115 (2015), 211–252.

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, Vol. 30.

[11] Yuchen Wang, Malu Zhang, Yi Chen, and Hong Qu. 2022. Signed Neuron with
Memory: Towards Simple, Accurate and High-Efficient ANN-SNN Conversion.
In Proceedings of the International Joint Conference on Artificial Intelligence. 2501–
2508.

[12] Ziqing Wang, Yuetong Fang, Jiahang Cao, Qiang Zhang, Zhongrui Wang, and
Renjing Xu. 2023. Masked Spiking Transformer. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 1761–1771.

[13] Man Yao, JiaKui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi
Li. 2023. Spike-driven Transformer. In Advances in Neural Information Processing
Systems, Vol. 36. 64043–64058.

[14] Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Han Zhang, Zhengyu Ma, Huihui Zhou,
and Yonghong Tian. 2023. Spikingformer: Spike-driven Residual Learning for
Transformer-based Spiking Neural Network. arXiv preprint arXiv:2304.11954
(2023).


	1 Proof of Theorem 1
	2 Proof of Theorem 2
	3 Experiment Details
	3.1 Datasets
	3.2 Data Preprocessing
	3.3 Experimental Setup

	4 Additional Experimental Details
	4.1 Detailed results on other datasets
	4.2 Comparison with the State-of-the-art on CIFAR10 and CIFAR100 datasets

	References

