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1 PROOF OF THEOREM 1

THEOREM 1.1. Consider a non-linear layer | with a function F.
In SNNs, the output of this layer at time t is denoted as OL(1). Let
SH(T) be the cumulative sum of layer I outputs up to time T, given

by sH(T) = Zthl OL(t). The expected output of the SNNs at time T is
given by:
si-1(7) ST -1)
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PRrROOF. According to Section 3.2, we denote x!(t) as OL(t), which
has the same meaning, and we can approximate the output value
of ANNSs using the mean value of the output for the first T time
steps in SNNs:
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where alT represents the estimated values of neurons in layer [ at
time T in ANNs. It will change as the corresponding spikes in SNNs
accumulate over time.

Meanwhile, in the case of ANNS, alT can be formulated as:

ak. = F(a™). 3)

Furthermore, we can deduce the output by subtracting the total
output of the previous T and T-1 time steps from the formula 2 and
3.
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2 PROOF OF THEOREM 2

THEOREM 2.1. Consider a module for matrix product that receives
two sets of spike inputs, denoted by Ay, (t) and By, (t). These inputs
are generated by neurons A and B, respectively, and are characterized
by multiple thresholds v, and vy, as described in Section 4.3.

We can integrate the input by A(t) = ¥, vaAy,(t) and B(t) =
2o, Vb B, (t). Here, A(t) and B(t) are the sum matrices weighted
by multiple thresholds v, and vy, respectively.

Let SA(T) = Zthl A(t) and Sg(T) = Zthl B(t) represent the cu-
mulative sum of inputs up to time T. We define S (T) = Sao(T)Sg(T).

Then, the expected output at time T can be formulated as:
o(T) = —SK(T) - —SK(T -1, ©)

where Si (T) can be calculated mainly using addition, as described
by the following equation:

Sk (T) =Sk (T - 1) + K(T) (6)

K(T) = " 0athAq,(T)By, (T) + )" 0aAg, (T)S(T ~ 1)

7
+ 2 0pSa(T = DBy, (7). ”

Up

Proor. Since we approximate the value of ANNs using the mean
value for the first T times in SNNG, let the expected input matrices
Art, B, and Or = ATBt in ANNs be calculated based on the input
spikes during the first T time steps in SNNs, denoted as:

Z 2= A
—F (8)
B
T= Zi T ® )
O
Or = > T 2= 0(1) (10)

So, the expected output matrix O(T) at time T can be calculated
by:

T T-1
O(T) = Z o(t) - Z o(t)
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= 28k(T) = ——=Si(T - 1)
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And Sk (T) can be calculated by:

Sk (T) = Sa(T)Sp(T)

T T
= (O AW (D B®)
t=1 t=1

= (84(T = 1) + A(T))(Sp(T — 1) + B(T))
= $4(T = 1)S(T — 1) + A(T)B(T)
+ A(T)S(T = 1) + S4(T — 1)B(T) (12)

=SK(T=1)+ ) a0pAg,(T)Bu,(T)
Ua,Up
+ ) 0aAo, (T)SB(T = 1) + )" 0, SA(T = 1)Bq, (T)
Uq b

=Sk (T - 1) + K(T).

Assuming the dimension of S (T), S4(T) and Sg(T) are nxXm, nXp
and p X m, respectively. And suppose the firing rate of A(T) and
B(T) are 11 and 2.

In order to determine the number of different operations required
to update Sk (T), we conduct a brief analysis: Multiplications occur
when the threshold is multiplied by the results of various matrix
multiplications; Additions occur during the calculation of individual
matrix multiplications, as well as the accumulation of the results of
the four parts.

As each position of the input matrix has only one effective thresh-
old at each time, it restricts the total number of input spikes, thus
limiting the total number of operations.

The maximum addition operation number is

ACsQE = minznpm + ninpm + nznpm + 3nm (13)
where n1n2npm, ninpm and nanpm are the maximum addition oper-
ations in calculating 3., o, va0pAg, (T)By, (T), 2y, vaAo, (T)Sp(T—
1) and 3.,, 05SA(T — 1) By, (T), respectively. 3nm is the maximum
operation in accumulating four parts in Equation (6).

The maximum multiplication operation number is

ACsQE = min(n1, n2)nm + ninm + nanm (14)

where min(n1, n2)nm, nynm and nanm are the maximum multiplica-
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3.2 Data Preprocessing

To process our image data, we followed a series of steps. First, we
resized the image to the desired size and then cropped it to match the
input size. After that, we converted the image into a PyTorch tensor.
Next, we normalized the pixel values using the provided mean
and standard deviation values. The mean and standard deviation
values were specified as (0.48145466, 0.4578275, 0.40821073) and
(0.26862954, 0.26130258, 0.27577711). Finally, we normalized the
pixel values of the three-channel images based on the provided
mean and standard deviation.

3.3 Experimental Setup

The conversion in this paper is based on pre-trained Vision Trans-
former including the ViT-S/16, ViT-B/16, ViT-L/16 with 224 resolu-
tion [10], and the EVA model eva_g_patch14 in [3].

For all Multi-Threshold Neurons, we set n to 8 for ViT-S/16,
ViT-B/16, ViT-L/16 and 6 for EVA. We set threshold percent p to 99
to get thresholds for each neuron. In particular, due to huge differ-
ences in GELU and softmax layers’ output values, we configure the
positive and negative base thresholds to 0.5 and 0.08, respectively,
for neurons following the GELU module in ViT models, and to
0.0125 for neurons following the softmax module to prevent too
few spikes.

Besides, the precision of the network is highly sensitive to the
precision of the classification layer, as mentioned in [8]. Since the
classification layer has minimal energy consumption during run-
time, we retained analog input in the classification layer.

4 ADDITIONAL EXPERIMENTAL DETAILS
4.1 Detailed results on other datasets

Tables 1 and 2 present a comparison of the accuracy and energy
consumption of different neural network architectures - ANNs and
SNNs - on CIFAR10 and CIFAR100 datasets.

Table 1 compares the accuracy of ANN and SNN architectures for

tion operations in calculating 3., ., v40p A, (T)Bo, (T), 2y, vaAo, (T)Sptle-CIFAR10 dataset across three model scales: ViT-S/16, ViT-B/16,

1) and 3., 0pSA(T — 1)By, (T), respectively.
It can be seen that ACs{\{Y > MACsZE, so Sk (T) can be cal-
culated mainly using addition. O

3 EXPERIMENT DETAILS

3.1 Datasets

CIFAR-10. The CIFAR-10 dataset [7] consists of 60000 32 X 32
images in 10 classes. There are 50000 training images and 10000
test images.

CIFAR-100. The CIFAR-100 dataset [7] consists of 60000 32 X
32 images in 100 classes. There are 50000 training images and 10000
test images.

ImageNet1k. We use the ILSVRC 2012 dataset [9], which con-
sists of 1,281,167 training images and 50000 testing images.

and ViT-L/16. It can be seen that the SNN model can reach a com-
parable accuracy while significantly reducing the consumption.
For example, when the SNN model is run for 6 time steps, models
such as ViT-S/16, ViT-B/16, and ViT-L/16 achieve accuracy levels
of 97.37%, 98.24%, and 99.1%, respectively. The remarkable fact is
that they only consume 0.6, 0.48, and 0.4 energy, respectively when
compared to the original ANN (Artificial Neural Network) models.

Table 2 presents a similar comparison for the more complex
CIFAR100 dataset. For instance, at 6 timesteps, ViT-S/16, ViT-B/16,
and ViT-L/16 achieve accuracies of 84.75%, 90.22%, and 93.04%, re-
spectively, while using only 0.61, 0.48, and 0.43 energy compared
to original ANN models. It shows the potential of our method to re-
duce energy consumption while maintaining accuracy. The results
demonstrate our method’s potential to reduce energy consumption
while maintaining accuracy.
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Table 1: Accuracy and energy consumption ratio of ECMT(Ours) on CIFAR10 dataset

.. Ours (SNN
Arch.  Accuracy/Energy Original (ANN) urs ( )
T=1 T=2 T=4 T=6 T=8 T=10
VIT-S/16 Acc. (%) 98.33 8.53 31.32 93.82 9737 98.01 98.21
Energy ratio 1 0.06 0.15 0.37 0.60 0.82 1.03
ViT-B/16 Acc. (%) 98.75 9.17 3225 9517 98.24 98.55 98.69
Energy ratio 1 004 012 030 048 066 0.83
VIT-L/16 Acc. (%) 99.07 10.55 95.14 98.89 99.1 99.03 99.08
Energy ratio 1 0.03 0.11 0.27 0.42 0.57 0.72

Table 2: Accuracy and energy consumption ratio of ECMT(Ours) on CIFAR100 dataset

- 0 SNN
Arch.  Accuracy/Energy Original (ANN) urs (SNN)
=1 T=2 T=4 T=6 T=8 T=10
VIT-S/16 Acc. (%)‘ 89.28 095 49 6949 8475 87.83 88.93
Energy ratio 1 006 016 038 0.61 084 1.07
VIT-B/16 Acc. (%). 92.26 0.87 17.07 82.86 90.22 915 91.91
Energy ratio 1 0.04 0.12 030 048 066 0.84
VIT-L/16 Acc. (%). 93.84 1.61 69.08 91.82 93.04 9334 93.56
Energy ratio 1 004 012 027 043 058 0.73

4.2 Comparison with the State-of-the-art on
CIFAR10 and CIFAR100 datasets

We compare the experimental results using the ViT-S/16, ViT-B/16,
ViT-L/16 model on the CIFAR10 and CIFAR100 datasets with previ-
ous state-of-the-art methods, as shown in Table 3 and 4.

In the evaluation of the CIFAR10 dataset, the ECMT model
achieved an impressive accuracy rate of 97.37%, 98.24%, and 99.1%
respectively, using the architecture of ViT-S/16, ViT-B/16, ViT-L/16
over just six timesteps. This level of precision is highly competitive,
especially compared to similarly-sized models. In evaluating the
CIFAR100 dataset, considered more complex, the ECMT method
again displays its strength. The results demonstrate that the ECMT
method achieves a similar high accuracy.

The ECMT model uses the Transformer-to-SNN approach and
has performed exceptionally well on the CIFAR10 and CIFAR100
datasets. Its ViT-B/16 variant stands out by achieving high accuracy
with a moderate number of parameters, indicating the potential
of SNNs in achieving state-of-the-art results with a significant
reduction in computational resources. This balance of efficiency and
accuracy makes the ECMT a promising model for energy-efficient
and fast processing tasks.
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Table 3: Comparison between the proposed method and previous works on CIFAR10 dataset

Method Type Arch. Param. (M) T Accuracy (%)
Spikingformer([14] Direct Training Spikingformer-4-384-400E 9.32 4 95.81
Spike-driven Transformer[13] Direct Training Spikingformer-4-384-400E 9.32 4 95.6
RMP[4] CNN-to-SNN VGG-16 138 64(2048)  90.35(93.63)
SNM[11] CNN-to-SNN VGG-16 138 32(128) 93.43(94.07)
TS[2] CNN-to-SNN VGG-16 138 16(32)  92.29(92.29)
QFFS[8] CNN-to-SNN VGG-16 138 4 92.64
ResNet-18 11.8 8(64) 94.82(96.06)
QCFS[1] CNN-to-SNN VGG-16 138 8(64)  94.95(95.55)
ResNet-18 11.8 4(16)  95.25(95.55)
P _to-
SRP[3] CNN-to-SNN VGG-16 138 4(16)  95.32(95.42)
MST[12] Transformer-to-SNN Swin-T(BN) 27.6 64(256)  96.32(97.27)
STA[6] Transformer-to-SNN ViT-B/32 86 32(256)  95.49(95.82)
ViT-8/16 22 6(8) 97.37(98.01)
ECMT(Ours) Transformer-to-SNN ViT-B/16 86 6(8) 98.24(98.55)
ViT-L/16 307 6(8) 99.1(99.03)

Table 4: Comparison between the proposed method and previous works on CIFAR100 dataset

Method Type Arch. Param. (M) T Accuracy (%)
Spikingformer[14] Direct Training Spikingformer-4-384-400E 9.32 4 79.21
Spike-driven Transformer[13] Direct Training Spikingformer-4-384-400E 9.32 4 78.4
RMP[4] CNN-to-SNN VGG-16 138 128(2048)  63.76(70.93)
SNM[11] CNN-to-SNN VGG-16 138 32(128)  71.8(73.95)
TS[2] CNN-to-SNN VGG-16 138 16(64)  63.73(69.27)
ResNet-18 11.8 8(64) 78.48(79.54)
QCFS[] CNN-to-SNN VGG-16 138 8(64) 73.96(77.10)
ResNet-20 0.27 4(32)  59.34(65.50)
SRP[5] CNN-to-SNN VGG-16 138 4(32) 75.42(76.45)
MST[12] Transformer-to-SNN Swin-T(BN) 27.6 64(256) 85.4(86.91)
STA[6] Transformer-to-SNN ViT-B/32 86 32(256) 84.15(85.98)
ViT-5/16 22 6(8) 84.75(87.83)
ECMT(Ours) Transformer-to-SNN ViT-B/16 86 6(8) 90.22(91.5)
ViT-L/16 307 6(8) 93.04(93.34)
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