
A Proof of Theorem 1

In this section, we present detailed proofs for the theoretical derivation of Thm. 1, which aims to
solve the following optimization problem:

min
wk

η(π∗)− η(πk)

s.t. Qk = argmin
Q∈Q

Eµ[wk(s, a) · (Q− B∗Qk−1)
2(s, a)],

Eµ[wk(s, a)] = 1, wk(s, a) ≥ 0,

(1)

The problem is equivalent to:

min
pk

η(π∗)− η(πk)

s.t. Qk = argmin
Q∈Q

Epk [(Q− BπQk−1)
2(s, a)]∑

s,a

pk(s, a) = 1, pk(s, a) ≥ 0,

(2)

The desired wk(s, a) is pk(s,a)
µ(s,a) , where pk(s, a) is the solution to the problem 2.

To solve Problem 2, we need to give the definition of total variation distance, Wasserstein metric
and the diameter of a set, and introduce some mild assumptions.

Definition 1 (total variation distance). The total variation (TV) distance of distribution P and Q is
defined as

DTV(P,Q) =
1

2
‖P −Q‖1

Definition 2 (Wasserstein metric). For F,G two c.d.fs over the reals, the Wasserstein metric is
defined as

dp(F,G) := inf
U,V
‖U − V ‖p

where the infimum is taken over all pairs of random variables (U, V) with respective cumulative
distributions F and G.

Definition 3. The diameter of a set A is defined as

diam(A) = sup
x,y∈A

m(x, y)

where m is the metric on A.

Assumption 1. The state space S and action space A are metric spaces with a metric m.

Assumption 2. The Q function is continuous with respect to S ×A.

Assumption 3. The transition function T is continuous with respect to S×A in the sense of Wasser-
stein metric, i.e.,

lim
(s,a)→(s0,a0)

dp(T (·|s, a), T (·|s0, a0)) = 0,

where dp denote the Wasserstein metric.

These assumptions are not strong and can be satisfied in most of environments includes MuJoCo,
Atari games and so on.

Let dπi (s) denote the discounted state distribution, where the state is visited by the agent for the i-th
time. that is

dπi (s) = (1− γ)
∞∑
ti=0

γtiPr(stk = s,∀k ∈ [i]),

1

where [k] = {j ∈ N+ : j ≤ k}. Notably,

dπ(s) =

∞∑
i=1

dπi (s) (3)

dπi (s) =

∞∑
t=1

ρπ(s, π(s), t)γtdπi−1(s), (4)

where ρπ(s, π(s), t) is the shorthand for Ea∼πρπ(s, a, t).
The standard definitions of Q function, value function and advantage function is:

Qπ(s, a) = Eπ[
∑
t≥0

γtr(st, at)|s0 = s, a0 = a].

V π(s) = Eπ[
∑
t≥0

γtr(st, at)|s0 = s].

Aπ(s, a) = Qπ(s, a)− V π(s).

In the follows, Lemma 1 is a technique used in Lemma 2. Lemma 2 shows that
∣∣∣∂dπ(s)∂π(s)

∣∣∣ is a small
quantity.
Lemma 1. Let f be an Lebesgue integrable function, P and Q are two probability distributions,
|f | ≤ C, then ∣∣EP (x)f(x)− EQ(x)f(x)

∣∣ ≤ CDTV(P,Q) (5)

Proof.

∣∣EP (x)f(x)− EQ(x)f(x)
∣∣ = ∣∣∣∣∣∑

x

[P (x)f(x)−Q(x)f(x)]

∣∣∣∣∣
=

∣∣∣∣∣∑
x

[P (x)f(x)−Q(x)f(x)]I[P (x) > Q(x)]

−
∑
x

[P (x)f(x)−Q(x)f(x)]I[P (x) < Q(x)]

∣∣∣∣∣
≤ CDTV(P,Q)

Lemma 2. Let ϵπ = sups,a
∑∞
t=1 γ

tρπ(s, a, t), we have∣∣∣∣∂dπ(s)∂π(s)

∣∣∣∣ ≤ ϵπdπ1 (s) (6)

and ϵπ ≤ 1.

Proof. The definition of ρπ(s, a, t) implies

0 ≤
∞∑
t=1

γtρπ(s, a, t) ≤ ϵπ ≤ 1, ∀a ∈ A

Based on this fact, we have∣∣∣∣∣
∞∑
t=1

γt (ρπ(s, a1, t)− ρπ(s, a2, t))

∣∣∣∣∣ ≤ ϵπ, ∀a1, a2 ∈ A

Let ρπ(s, π(s), t) be a shorthand for Ea∼π(s)ρπ(s, a, t).

2

If π changes a little and becomes π′, and δa = DTV(π(s), π
′(s)), then we have∣∣∣∣∣

∞∑
t=1

γt (ρπ(s, π(s), t)− ρπ(s, π′(s), t))

∣∣∣∣∣
=

∣∣∣∣∣Ea1∼π
∞∑
t=1

γtρπ(s, a1, t)− Ea2∼π′

∞∑
t=1

γtρπ(s, a1, t)

∣∣∣∣∣
≤ ϵπδa

(7)

This inequality comes from Lemma 1.

We denote the difference between dπ2 (s) and dπ
′

2 (s) as ∆d2(s), which can be bounded as follows:

∆d2(s) = |dπ2 (s)− dπ
′

2 (s)|

=

∣∣∣∣∣
∞∑
t=1

γt (ρπ(s, π(s), t)− ρπ(s, π′(s), t)) dπ1 (s)

∣∣∣∣∣
= dπ1 (s)

∣∣∣∣∣
∞∑
t=1

γt (ρπ(s, π(s), t)− ρπ(s, π′(s), t))

∣∣∣∣∣
≤ ϵπδadπ1 (s)

Recursively, we have
∆di(s) ≤ ϵi−1

π δi−1
a dπ1 (s)

Obviously, the change of π at state s won’t change dπ1 (s). According to Eq. (3),

∆d(s) ≤
∞∑
i=1

∆di(s)

≤
∞∑
i=2

(ϵπδa)
i−1dπ1 (s)

=
ϵπδa

1− ϵπδa
dπ1 (s)

According to ∂dπ(s)
∂π(s) = limδa→0

∆d(s)
δa

, we have∣∣∣∣∂dπ(s)∂π(s)

∣∣∣∣ ≤ ϵπdπ1 (s)
This concludes the proof.

Lemma 3. Given two policy π1 and π2, where π1(a|s) = exp(Q1(s,a))∑
a′ exp(Q1(s,a′))

. Then

Ea∼π2
Q1(s, a)− Ea∼π1

Q1(s, a) ≤ 1

Proof. Suppose there are two actions a1, a2 under state s, and let Q1(s, a1) = u, Q1(s, a2) = v.
Without loss of generality, let u ≤ v.

Ea∼π2
Q1(s, a)− Ea∼π1

Q1(s, a) ≤ v −
ueu + vev

eu + ev

= v − u+ vev−u

1 + ev−u

= v − u−− (v − u)ev−u

1 + ev−u

Let f(z) = z − zez

1+ez , the maximum point z0 of f(z) satisfies f ′(z0) = 0 where f ′ is the derivative

of f , i.e., e
z0 (1+z0+e

z0

(1+ez0)2 − 1 = 0. This implies 1 + ez0 = z0e
z0 and z0 ∈ (1, 2). We have

3

Ea∼π2
Q1(s, a)− Ea∼π1

Q1(s, a) ≤ f(v − u) ≤ z0 − 1 ≤ 1

If the number of action is more than 2 and Q1(s, a1) ≥ Q1(s, a2) ≥ · · ·Q1(s, an), let b1 rep-
resents a1 and b2 represents all other actions. Then Q1(s, b1) = Q1(s, a1) and Q1(s, b2) =∑n
j=2

Q1(s,aj) exp(Q1(s,aj)∑n
k=2 exp(Q1(s,ak))

. In this way, we can derive the upper bound of Ea∼π2Q1(s, a) −
Ea∼π1

Q1(s, a) as above.

The following lemma is proposed by Kakade,
Lemma 4 (Lemma 6.1 in [1]). For any policy π̃ and π,

η(π̃)− η(π) = 1

1− γ
Edπ̃(s,a)[Aπ(s, a)] (8)

Lemma 5. In discrete MDPs, let ϵπk
= sups,a

∑∞
t=1 γ

tρπk(s, a, t), the optimal solution pk to a
relaxation of optimization problem 2 satisfies the following relationship:

pk(s, a) =
1

Z∗ (Dk(s, a) + ϵk(s, a)) (9)

where Dk(s, a) = dπk(s, a)(2 − πk(a|s)) exp (− |Qk −Q∗| (s, a)) |Qk − B∗Qk−1| (s, a), Z∗ is
the normalization constant and ϵk(s,a)

Dk(s,a)
≤ ϵπk

.

Proof. Suppose a∗ ∼ π∗(s). Let π = πk, π̃ = π∗ in Lemma 4, we have

η(π∗)− η(πk)

= − 1

1− γ
Edπk (s,a)Aπ∗(s, a)

=
1

1− γ
Edπk (s,a)(V

∗(s)−Q∗(s, a))

=
1

1− γ
Edπk (s,a)

(
V ∗(s)−Qk(s, a∗) +Qk(s, a

∗)−Qk(s, a) +Qk(s, a)−Q∗(s, a)
)

(a)

≤ 1

1− γ

(
Edπk (s)(Q

∗(s, a∗)−Qk(s, a∗)) + Edπk (s,a)(Qk(s, a)−Q∗(s, a)) + 1
)

≤ 1

1− γ

(
Edπk (s) |Q∗(s, a∗)−Qk(s, a∗)|+ Edπk (s,a) |Qk(s, a)−Q∗(s, a)|+ 1

)
=

2

1− γ

(
Edπk,π∗ |Qk(s, a)−Q∗(s, a)|+ 1

)
,

(10)

where dπk,π
∗
(s, a) = dπk(s)πk(a|s)+π∗(a|s)

2 and (a) uses Lemma 3.

Since both sides of the above equation have the same minimum (here the minima are given by
Qk = Q∗), we can replace the objective in Problem 2 with the upper bound in Eq. (10) and solve
the relaxed optimization problem.

min
pk

Edπk (s,a)[|Qk −Q∗|] (11)

s.t. Qk = argmin
Q∈Q

Epk [(Q− BπQk−1)
2(s, a)], (12)∑

s,a

pk(s, a) = 1, pk(s, a) ≥ 0. (13)

Here we use dπk(s, a) to replace dπk,π
∗

because we can not access π∗, and the best surrogate avail-
able is πk.

Step 1: Jensen’s Inequality. The optimization objective can be further relaxed with Jensen’s In-
equality, based on the fact that f(x) = exp(−x) is a convex function.

Edπk (s,a)[|Qk −Q∗|] = − log exp(−Edπk (s,a)[|Qk −Q∗|]) ≤ − logEdπk (s,a)[exp(−|Qk −Q∗|)]
(14)

4

Similarly, both sides of Eq. (14) have the same minimum. We obtain the following new optimization
problem by replacing the objective with the upper bound in this equation:

min
pk
− logEdπk (s,a)[exp(−|Qk −Q∗|)]

s.t. Qk = argmin
Q∈Q

Epk [(Q− B∗Qk−1)
2],∑

s,a

pk(s, a) = 1, pk(s, a) ≥ 0.

(15)

Step 2: Computing the Lagrangian. In order to optimize problem 15, we follow the standard
procedures of Lagrangian multiplier method. The Lagrangian is:

L(pk;λ, µ) = − logEdπk (s,a)[exp(−|Qk −Q∗|)] + λ(
∑
s,a

pk(s, a)− 1)− µT pk. (16)

where λ and µ are the Lagrange multipliers.

Step 3: IFT gradient used in the Lagrangian. ∂Qk

∂pk
can be computed according to implicit function

theorem (IFT). The IFT gradient is given by:
∂Qk
∂pk

∣∣∣∣
Qk,pk

= − [Diag (pk)]
−1

[Diag (Qk − B∗Qk−1)] (17)

The derivation is similar to that in [2].

Step 4: Approximation of the gradient used in the Lagrangian. We derive an expression for
∂dπk (s,a)

∂pk
, which will be used when computing the gradient of the Lagrangian. We use πk to denote

the policy induced by Qk.

∂dπk(s, a)

∂pk
=
∂dπk(s, a)

∂πk

∂πk
∂Qk

∂Qk
∂pk

= (dπk(s) + ϵ2(s))
∂πk
∂Qk

∂Qk
∂pk

(b)
= (dπk(s) + ϵ2(s)πk(a|s)

∑
a′ ̸=a exp (Qk(s, a

′))∑
a′ exp(Qk(s, a

′))

∂Qk
∂pk

(c)
= dπk(s, a)(1− πk(a|s))

∂Qk
∂pk

+ ϵ2(s)πk(a|s)(1− πk(a|s))
∂Qk
∂pk

where ϵ2(s) =
∂dπk (s)
∂πk(s)

. (b) and (c) are based on the fact that πk(a|s) = exp(Qk(s,a))∑
a′ exp(Qk(s,a′))

.

Step 5: Computing optimal pk. By KKT conditions, we have
∂L(pk;λ, µ)

∂pk
= 0

∂L(pk;λ, µ)
∂pk

=
exp (− |Qk −Q∗| (s, a))

Z
(dπk(s, a) sgn (Qk −Q∗) · ∂Qk

∂pk
+ ·∂d

πk(s, a)

∂pk
) + λ− µs,a

where Z = Es′,a′∼dπk (s,a) exp (− |Qk −Q∗| (s′, a′)). Substituting the expression of ∂Qk

∂pk
and

∂dπk (s,a)
∂pk

with the results obtained in Step. 3 and Step. 4 respectively, and let Zs,a = Z(λ∗ − µ∗
s,a),

we obtain

pk(s, a) =
(
dπk(s, a)(sgn(Qk −Q∗) + 1− πk(a|s)) exp (− |Qk −Q∗| (s, a)) |Qk − B∗Qk−1| (s, a)

+ ϵ2(s)πk(a|s)(1− πk(a|s)) exp (− |Qk −Q∗| (s, a)) |Qk − B∗Qk−1| (s, a)
) 1

Zs,a
(18)

5

Notably, Qk ≈ Qπk ≤ Q∗. Thus, sgn(Qk −Q∗) always is 1 approximately, so we can simplify this
relationship as

pk(s, a) =
1

Zs,a

(
dπk(s, a)(2− πk(a|s)) exp (− |Qk −Q∗| (s, a)) |Qk − B∗Qk−1| (s, a)

+ ϵ2(s)πk(a|s)(1− πk(a|s)) exp (− |Qk −Q∗| (s, a)) |Qk − B∗Qk−1| (s, a)
) (19)

The first term is always larger or equal to zero. The second term does not influence the sign of the
equation because the absolute value of ϵ2(s) is smaller than dπk(s) according to Lemma 2. Note that
Eq. (19) is always larger or equal to zero. If it is larger than zero then µ∗ = 0 by the KKT condition.
If it is equal to zero, we can let µ∗ = 0 because the value of µ∗ does not influence wk(s, a). Without
loss of generality, we can let µ∗ = 0. Then Zs,a = Z∗ = Zλ∗ is a constant with respect to different
s and a. In this way, we can simplify Eq. (19) as follows:

pk(s, a) =
1

Z∗ (Dk(s, a) + ϵk(s, a))

where Dk(s, a) = dπk(s, a)(2 − πk(a|s)) exp (− |Qk −Q∗| (s, a)) |Qk − B∗Qk−1| (s, a) and
ϵk(s, a) = ϵ2(s)πk(a|s)(1− πk(a|s)) exp (− |Qk −Q∗| (s, a)) |Qk − B∗Qk−1| (s, a).
Based on the expression of Dk(s, a) and ϵk(s, a), we have

ϵk(s, a)

Dk(s, a)
=

ϵ2(s)(1− πk(a|s))
dπk(s)(2− πk(a|s))

≤ ϵπk

The inequality is from 2. This concludes the proof.

Theorem 1 (formal). Let ϵπk
= sups,a

∑∞
t=1 γ

tρπk(s, a, t). Under Assumption 1, 2 and 3, if
dπk (s,a)
µ(s,a) exists, we have in MDPs with discrete action spaces, the solution wk to the relaxed opti-

mization problem 1 is

wk(s, a) =
1

Z∗
1

(Ek(s, a) + ϵk,1(s, a)) . (20)

In MDPs with continuous action spaces, the solution is

wk(s, a) =
1

Z∗
2

(Fk(s, a) + ϵk,2(s, a)) . (21)

where

Ek(s, a) =
dπk(s, a)

µ(s, a)
(2− πk(a|s)) exp (− |Qk −Q∗| (s, a)) |Qk − B∗Qk−1| (s, a)

Fk(s, a) = 2
dπk(s, a)

µ(s, a)
exp (− |Qk −Q∗| (s, a)) |Qk − B∗Qk−1| (s, a),

Z∗
1 , Z∗

2 is the normalization constants and max
{
ϵk,1(s,a)
Ek(s,a)

,
ϵk,2(s,a)
Fk(s,a)

}
≤ ϵπk

.

Proof. By Lemma 5, for MDPs with discrete action space and state space, we have

pk(s, a) =
1

Z∗ (Dk(s, a) + ϵk(s, a))

Based on the deviation of Problem 2, the solution in this situation is

wk(s, a) =
1

Z∗

(
Dk(s, a)

µ(s, a)
+
ϵk(s, a)

µ(s, a)

)
(22)

The existence of dπk (s,a)
µ(s,a) guarantees the existence of Dk(s,a)

µ(s,a) and ϵk(s,a)
µ(s,a) . Let Ek(s, a) = Dk(s,a)

µ(s,a)

and ϵk,1(s, a) =
ϵk(s,a)
µ(s,a) , we get Eq. (20).

6

We derive the result for continuous action space and state space as follows, the result for continuous
state space and discrete action space, and discrete state space and continuous action space can be
derived similarly.

Remember that B∗Qk−1(s, a) = r(s, a) + γmaxa′ Es′Qk−1(s
′, a′) and Qk(s, a) =

argminQ(Q(s, a) − B∗Qk−1(s, a))
2, if we use R(s, a) = Qk(s, a) − γmaxa′ Es′Qk−1(s

′, a′)
to replace r(s, a), then Qk is still the desired Q function after the Bellman update. Since the con-
tinuity of Qk, Qk−1 and T guarantee R(s, a) is continuous, without loss of generality, we assume
r(s, a) is continuous.

We utilize the techniques in reinforcement learning with aggregated states [3]. Concretely, we can
partition the set of all state-action pairs, with each cell representing an aggregated state. Such a
partition can be defined by a function ϕ : S ∪A 7→ Ŝ ∪ Â, where Ŝ is the space of aggregated states
and Â is the space of aggregated actions. With such a partition, we can discretize the continuous
spaces. For example, for the continuous space {x ∈ R : 0 ≤ x ≤ 10}, define ϕ(x) =

∑9
i=1 I(x ≤

xi), and then the space of aggregated states becomes {0, 1, 2, . . . , 9}, which is a discrete space.

With function ϕ, we define the transition function and reward function in this new MDP. For all
ŝ, ŝ′ ∈ Ŝ, â ∈ Â

T̂ (ŝ′|ŝ, â) =
∑
s,a∈ϕ−1(ŝ,â) µ(s, a)

∑
s′∈ϕ−1(ŝ′) T (s′|s, a)∑

s,a∈ϕ−1(ŝ,â) µ(s, a)

r̂(ŝ, â) =

∑
s,a∈ϕ−1(ŝ,â) µ(s, a)r(s, a)∑

s,a∈ϕ−1(ŝ,â) µ(s, a)

(23)

where (ϕ(s), ϕ(a)) is simplified as ϕ(s, a) and ϕ−1(ŝ, â) is the preimage of (ŝ, â).

In this way, Eq. (22) holds for aggregated state space:

ŵk(ϕ(s, a)) =
1

Ẑ∗

(
D̂k(ϕ(s, a))

µ̂(ϕ(s, a))
+
ϵ̂k(ϕ(s, a))

µ̂(ϕ(s, a))

)
(24)

Suppose Ŝ and Â is equipped with metric m′, we construct a sequence of functions ϕh, which
satisfies

(i) If m(u1 − u2) ≤ m(u1 − u3), then m′(ϕh(u1) − ϕh(u2)) ≤ m′(ϕh(u1) − ϕh(u3)) for all
u1, u2, u3 ∈ S or u1, u2, u3 ∈ A.

(ii) limh→∞ diam(ϕ−1
h (c)) = 0 for all c ∈ S ′ ∪ A′.

Based on the two conditions on ϕh and the continuous of reward function and transition function,
for all s, s′ ∈ S and a ∈ A,

lim
h→∞

|r̂(ϕh(s, a))− r(s, a)| = 0

lim
h→∞

∣∣∣T̂ (ϕh(s′)|ϕh(s, a))− T (s′|s, a)∣∣∣ = 0
(25)

This means the constructed MDP approaches the original MDP as h tends to infinity.

With the Lemma 3 in [4],

lim
h→∞

B∗Q̂k−1(ϕh(s, a)) = B∗Qk−1(s, a)

lim
h→∞

B∗Q̂∗(ϕh(s, a)) = B∗Q∗(s, a)

Note that Qk(s, a) = argminQ(Q − B∗Qk−1(s, a))
2, Q̂k(ϕh(s, a)) = argminQ(Q −

B∗Qk−1(ϕh(s, a)))
2,Q∗(s, a) = argminQ(Q−B∗Q∗(s, a))2 and Q̂∗(ϕh(s, a)) = argminQ(Q−

7

B∗Q∗(ϕh(s, a)))
2,

lim
h→∞

Q̂k(ϕh(s, a)) = Qk(s, a)

lim
h→∞

Q̂∗(ϕh(s, a)) = Q∗(s, a)

Because π(a|s) = exp(Q(s,a))∑
a′ exp(Q(s,a′)) , π is continuous with respect to Q, then we have

lim
h→∞

π̂k(ϕh(a)|ϕh(s)) = πk(a|s)

The continuity of π and transition function T guarantees

lim
h→∞

d̂π̂k(ϕh(s, a)) = dπk(s, a)

Therefore,
lim
h→∞

|Q̂k − Q̂∗|(ϕ((s, a))) = |Qk −Q∗| (s, a)

lim
h→∞

|Q̂k − B̂∗Q̂∗|(ϕ((s, a))) = |Qk − B∗Qk−1| (s, a)

lim
h→∞

dπ̂k(ϕh(s, a))

µ̂(ϕh(s, a))
=
dπk(s, a)

µ(s, a)

(26)

Notably, ϵ2(s)πk(a|s) ≤ dπk(s, a), the existence of d
πk (s,a)
µ(s,a) implies the existence of ϵ2(s)πk(a|s)

µ(s,a) .

lim
h→∞

ϵ̂k(ϕ(s, a))

µ̂(ϕ(s, a))
= ϵk,1(s, a) (27)

where ϵk,1 = ϵk(s)πk(a|s)
µ(s,a) (1− πk(a|s)) exp (− |Qk −Q∗| (s, a)) |Qk − B∗Qk−1| (s, a).

Using the Eq. (A), (26) and (27), we have

wk(s, a) =
1

Z∗
1

(Ek(s, a) + ϵk,1(s, a)) .

If the action space is continuous, πk(a|s) = 0, then we have

wk(s, a) =
1

Z∗
2

(Fk(s, a) + ϵk,2(s, a))

The upper bound of ϵk,1(s,a)
Ek(s,a)

and ϵk,2(s,a)
Fk(s,a)

can be derived directly from Lemma 5. This concludes
our proof.

B Detailed Proof of Theorem 2

Let (BQ)k(s, a) denote |Qk(s, a)− B∗Qk(s, a)|. We first introduce an assumption.
Assumption 4. At iteration k, (BQ)k(s, a) is independent of (BQ)k(s

′, a′) if (s, a) 6= (s′, a′) for
all k > 0.

This assumption is not strong. If we use a table to represent Q function, it holds apparently. Notably,
though we need this assumption in our proof, we can also apply our method on the situation where
this assumption doesn’t hold. With this assumption, we have the following theorem.
Lemma 6. Consider a MDP, trajectories τi = {sit, ait}

Ti
t=0, i = 0, 1, . . . is generated by a policy π

under this MDP, then we have
|Qk(s, a)−Q∗(s, a)| ≤|Qk(st, at)− B∗Qk−1(st, at)|

+ Eτ
(h

πk
τ (s,a)∑
t′=1

γt
′
(
(BQ)k−1(st′ , at′) + c

)
+ γh

πk
τ (s,a)+1c

) (28)

8

where (BQ)k(shπk
τ (s,a), ahπk

τ (s,a)) = |Qk(shπk
τ (s,a), ahπk

τ (s,a)) − r(shπk
τ (s,a), ahπk

τ (s,a))|, c =

maxs,a
(
Q∗(s, a∗)−Q∗(s, a)

)
, and (st′ , at′) is the t′-th state-action pair behind (s, a).

Proof.

|Qk(st, at)−Q∗(st, at)|
= |Qk(st, at)− B∗Qk−1(st, at) + B∗Qk−1(st, at)− B∗Q∗(st, at)]|
(a)

≤ |Qk(st, at)− B∗Qk−1(st, at)|
+ γ|Ep(τ)[Qk−1(st+1, at+1)−Q∗(st+1, at+1) +Q∗(st+1, at+1)−Q∗(st+1, a

∗)]|
(b)

≤ |Qk(st, at)− B∗Qk−1(st, at)|+ γc+ γEτ [|Qk−1(st+1, at+1)−Q∗(st+1, at+1)|]
where the expectation is taken over s′ ∼ P (s′|s, a), a′ ∼ π(a′|s′). (a) uses triangle inequality, (b)
is because f(x) = |x| is convex function and using Jensen’s Inequality.

Similarly, we have
|Qk−1(st+1, at+1)−Q∗(st+1, at+1)|

= |Qk−1(st+1, at+1)− B∗Qk−1(st+1, at+1) + B∗Qk−1(st+1, at+1)− B∗Q∗(st+1, at+1)]|
≤ (BQ)k−1(st+1, at+1) + γc+ γEτ [|Qk−1(st+2, at+2)−Q∗(st+2, at+2)|]

Recursively,
|Qk(s, a)−Q∗(s, a)|

≤ |Qk(st, at)− B∗Qk−1(st, at)|+
h
πk
τ (s,a)∑
t′=1

γt
′
(
(BQ)k−1(st′ , at′) + c

)
+ γh

πk
τ (s,a)+1c

(29)

where (BQ)k−1(shπk
τ (s,a), ahπk

τ (s,a)) = |Qk−1(shπk
τ (s,a), ahπk

τ (s,a))− r(shπk
τ (s,a), ahπk

τ (s,a))|.

This theorem shows that the cumulative Bellman error with a constant c is an upper bound of |Qk −
Q∗|, so we can use Bellman error with the constant to estimate this quantity.

Suppose the Q function is equipped with a learning rate α, i.e., Qk = α(B∗Qk−1 −Qk−1) + (1−
α)Qk−1, we have the following lemma,
Lemma 7.

‖B∗Qk −Qk‖∞ ≤ (αγ + 1− α)k ‖B∗Q0 −Q0‖∞
‖B∗Qk−1 −Qk‖∞ ≤ (1− α)(αγ + 1− α)k−1 ‖B∗Q0 −Q0‖∞

(30)

Proof.

Qk = Qk−1 + α(B∗Qk−1 −Qk−1)

=⇒ B∗Qk−1 −Qk =
1− α
α

(Qk −Qk−1)

‖B∗Qk −Qk‖∞ ≤ ‖B
∗Qk − B∗Qk−1‖∞ + ‖B∗Qk−1 −Qk‖∞

≤ γ ‖Qk −Qk−1‖∞ + ‖B∗Qk−1 −Qk‖∞

≤ (γ +
1− α
α

) ‖Qk −Qk−1‖∞
≤ (αγ + 1− α) ‖B∗Qk−1 −Qk−1‖∞

(31)

‖Qk − B∗Qk−1‖∞ ≤ (1− α) ‖Qk−1 − B∗Qk−1‖∞
≤ (1− α) (‖Qk−1 − B∗Qk−2‖∞ + ‖B∗Qk−2 − B∗Qk−1‖∞)

≤ (1− α) (γ ‖Qk−2 −Qk−1‖∞ + ‖Qk−1 − B∗Qk−2‖∞)

(a)

≤ (1− α)(γ +
1− α
α

) ‖Qk−1 −Qk−2‖∞
≤ (1− α)(αγ + 1− α) ‖B∗Qk−2 −Qk−2‖∞

(32)

9

Then we can finish the proof by recursively applying Eq. (31) and (32).

Lemma 8 (Azuma). Let X0, X1, . . . be a martingale such that, for all k ≥ 1, |Xk −Xk−1| ≤ ck,
Then

Pr[|Xn −X0| ≥ t] ≤ 2 exp(− t2

2
∑n
k=1 c

2
k

). (33)

In the follows, we denote
∑h

πk
τ (s,a)
t=1 γt(BQ)k(st, at) as B(s, a, k).

Lemma 9. Let ϕk = (αγ + 1 − α)k||B∗Q0 − Q0||∞, f(t) = γ−γt+1

1−γ and ϵπk
=

sups,a
∑∞
t=1 γ

tρπk(s, a, t). Under Assumption 4, with probability at least 1− δ,

|B(s, a, k)− f(hπk
τ (s, a))E[(BQ)k(st, at)]| ≤

√
2f(hπk

τ (s, a))2(1 + ϵπk
)2ϕ2k log

2

δ
. (34)

Proof. Let Fh = σt(s0, a0, r0, . . . , sh−1, ah−1, rh−1) be the σ-field summarising the information
available just before st is observed.

Define Yh = E[B(s, a, k)|Fh], then Yh is a martingale because

E[Yh|Fh−1] = E[E[B(s, a, k)|Fh]|Fh−1] = E[B(s, a, k)|Fh−1] = Yh−1

|Yh − Yh−1| ≤ γh(1 + ϵπk
) ‖B∗Qk −Qk‖∞

≤ γh(1 + ϵπk
)(αγ + 1− α)k ‖B∗Q0 −Q0‖∞ = γh(1 + ϵπk

)ϕk

By Azuma’s lemma,

Pr
(
|B(s, a, k)− E[B(s, a, k)]| ≥

√
2
(γ − γhπk

τ +1

1− γ

)2
(1 + ϵπk

)2ϕ2k log
2

δ

)
≤ δ

Since (αγ + 1 − α) is less than 1, ϕk decreases exponentially as k increases. This theorem shows
that we can use the average Bellman error as a surrogate of Bellman error at specific state-action
pair without losing too much accuracy. In this way, |Qk−Q∗|(s, a) is merely related to the distance
to end of the state-action pair.

Theorem 2 (formal). Under Assumption 4, with probability at least 1− δ, we have

|Qk(s, a)−Q∗(s, a)|

≤ Eτ
(
f(hπk

τ (s, a))
(
E[(BQ)k(st′ , at′)] + c

)
+ γh

πk
τ (s,a)+1c

)
+ g(k, δ)

(35)

where g(k, δ) = (1− α)ϕk−1 +
√
2f(hπk

τ (s, a))2(1 + ϵπk
)2ϕ2k log

2
δ .

Proof. According to Lemma 6, we have

|Qk(s, a)−Q∗(s, a)| ≤|Qk(st, at)− B∗Qk−1(st, at)|

+ Eτ
(h

πk
τ (s,a)∑
t′=1

γt
′
(
(BQ)k−1(st′ , at′) + c

)
+ γh

πk
τ (s,a)+1c

) (36)

Using Lemma 7, we can upper bound |Qk(st, at)−B∗Qk−1(st, at)| as (1−α)ϕk−1. With Lemma

9,
∑h

pik
τ (s,a)
t=1 γt(BQ)k(st, at) can be bounded by right hand side of Eq. (34) with probability 1− δ.

10

Substitute the bounds into Eq. (36), we have

|Qk(s, a)−Q∗(s, a)| ≤ (1− α)ϕk−1 +

√
2f(hπk

τ (s, a))2(1 + ϵπk
)2ϕ2k log

2

δ

+ Eτ
(
f(hπk

τ (s, a))
(
E[(BQ)k(st′ , at′)] + c

)
+ γh

πk
τ (s,a)+1c

)
≤ g(k, δ)

+ Eτ
(
f(hπk

τ (s, a))
(
E[(BQ)k(st′ , at′)] + c

)
+ γh

πk
τ (s,a)+1c

)

C Algorithms

Algorithm 1 ReMERN
1: Initialize Q-values Qθ(s, a), a replay buffer µ, an error model ∆ϕ(s, a), and a weight model κψ .

2: for step k in {1, . . . , N} do
3: Collect M samples using πk, add them to replay buffer µ, sample {(si, ai)}Ni=1 ∼ µ.
4: Evaluate Qθ(s, a), ∆ϕ(s, a) and κψ(s, a) on samples (si, ai).
5: Compute target values for Q and ∆ on samples:

yi = ri + γmaxa′ Qk−1(s
′
i, a

′).
âi = argmaxaQk−1(s

′
i, a).

∆̂ = |Qθ(s, a)− yi|+ γ∆k−1(s
′
i, âi).

6: Optimize κψ using

Lκ(ψ) := EDs
[f∗ (f ′ (κψ(s, a)))]− EDf

[f ′ (κψ(s, a))] .

7: Compute wk using

wk(s, a) ∝
dπk(s, a)

µ(s, a)
exp

(
−γ
[
Pπ

wk−1
∆k−1

]
(s, a)

)
.

8: Minimize Bellman error for Qθ weighted by wk.
θk+1 ← argmin

θ

1
N

∑N
i wk (si, ai) (Qθ (si, ai)− yi)

2.

9: Minimize ADP error for training ϕ.

ϕk+1 ← argmin
ϕ

1
N

∑N
i=1

(
∆ϕ (si, ai)− ∆̂i

)2
.

10: end for

11

Algorithm 2 ReMERT
1: Initialize Q-values Qθ(s, a), a replay buffer µ, and a weight model κψ .
2: for step k in {1, . . . , N} do
3: Collect M samples using πk, add them to replay buffer µ, sample {(si, ai)}Ni=1 ∼ µ.
4: Evaluate Qθ(s, a) and κψ(s, a) on samples (si, ai).
5: Compute target values for Q on samples:

yi = ri + γmaxa′ Qk−1(s
′
i, a

′).
âi = argmaxaQk−1(s

′
i, a).

6: Optimize κψ using

Lκ(ψ) := EDs
[f∗ (f ′ (κψ(s, a)))]− EDf

[f ′ (κψ(s, a))] .

7: Compute wk using

wk(s, a) ∝
dπk(s, a)

µ(s, a)
exp

(
− Eqk−1(τ)TCEc(s, a)

)
.

8: Minimize Bellman error for Qθ weighted by wk.
θk+1 ← argmin

θ

1
N

∑N
i wk (si, ai) (Qθ (si, ai)− yi)

2.

9: end for

D Experiments

We now present some additional experimental results and experiment details which we could not
present due to shortage of space in the main body.

D.1 Cumulative Recurring Probability on Atari Games

Table 1: The value of ϵπ with different policies in Atari games.

Initial (Random) policy Policy at timestep 100k Policy at timestep 200k
Pong 0.00 0.00 0.00
Breakout 0.00 0.00 0.00
Kangaroo 0.44 0.32 0.15
KungFuMaster 0.66 0.06 0.01
MsPacman 0.44 0.04 0.00
Qbert 0.02 0.05 0.00
Enduro 0.00 0.00 0.00

In Pong, Breakout and Enduro, ϵπ keeps zero, so there is no error terms in such environments. For
KungFuMaster and MsPacman, though ϵπ is high for the initial policy, its value decreases rapidly
as the policy updates. The error term in Kangaroo induces some error but ϵπ is still much smaller
than one. The experiment results imply we can ignore the error term in most reinforcement learning
environments.

D.2 Illustrations on Stable Temporal Structure

We conduct an extra experiment in the GridWorld environment to support our claim that the trajec-
tories have a stable temporal ordering of states. Fig. 1 shows an empirical verification of the stable
temporal ordering of states property.

The result shows that the variance of distance to end in one state is not large and decreases fast in
training process. This means the property is not a strong assumption and can be satisfied in many
environments.

12

Figure 1: Change in variance of distance to end through time. For each timestep, the red line
shows the average trajectory length in the last 500 states. The blue line shows the average variance
of the last 500 states, where the variance for each state is calculated from its positions in their
corresponding trajectories.

D.3 Description of Involved Environments

The Meta-World benchmark [5] includes a series of robotic manipulation tasks. These tasks differ
from traditional goal-based ones in that the target objects of the robot. For example, the screw
in the hammer task has randomized positions and can not be observed by RL agents. Therefore,
Meta-World suite can be highly challenging for current state-of-the-art off policy RL algorithms.
Visual descriptions for the Meta-World tasks are shown in Fig. 2. DisCor [2] showed preferable
performance on some Meta-World tasks compared to SAC and PER [6], but the learning process is
slow and unstable.

Figure 2: Pictures for Meta-World tasks hammer, sweep, peg-insert-side and stick-push.

D.4 Extended Results on Atari Environment

We evaluate ReMERN on an extended collection of Atari environments. As is shown in Tab. 2,
ReMERN outperforms baseline methods in most of the environments.

D.5 Extended Evaluation on Gridworld

Aside from the FourRooms environment in Gridworld, we also conduct comparative evaluation on
the Maze environment. The results are shown in Fig. 3. The Maze environment perfectly fits for our
TCE-based prioritization, and TCE achieves the best performance among other methods.

D.6 The Relation Between Distance to End and |Qk −Q∗|

In section D.5, the relationship between |Qk − Q∗| and distance to end has been shown in tabular
environments. In this section, we explore the relationship in environments with continuous state and

13

Figure 3: Extended evaluation results on Gridworld.

action spaces, i.e., Ant and Hopper tasks of MuJoCo environment. Since Q∗ is inaccessible in these
complex continuous control tasks, we approximate it by doing Monte-Carlo rollout using the best
policy during training. The results are shown in Fig. 4.

The negative correlation between the two quantities is obvious in Ant-v2, but vague in Hopper-
v2. It is because Hopper is a relatively easy task so that all state-action pair have small Q loss
and don’t have such correlation. The performance of ReMERT shown in Section 4 accords with
this observation. ReMERT outperforms other algorithms in environments with a high correlation
between the two quantities, and has a relatively poor performance in environments without such
correlation.

D.7 Implementation Details

D.7.1 Algorithm Details

Weight Normalization To stabilize the prioritization, we apply normalization to the estimation of
two terms: d

πk (s,a)
µ(s,a) and exp(−|Qk −Q∗|).

Table 2: Extended experiments on Atari.

Environments DQN(Nature) DQN(Baseline) PER(rank-b.) ReMERT(Ours)
Assault 3395±775 8260±2274 3081 9952±3249
BankHeist 429±650 1116±34 824 1166±82
BeamRider 6846±1619 5410±1178 12042 5542±1577
Breakout 401±27 242±79 481 223 ±79
Enduro 302±25 1185±100 1266 1303±258
Kangaroo 6740±2959 6210±1007 9053 7572±1794
KungFuMaster 23270±5955 29147±7280 20181 35544±8432
MsPacman 2311±525 3318±647 964.7 3481±1350
Riverraid 8316±1049 9609±1293 10205 10215±1815
SpaceInvaders 1976±893 925±371 1697 877±249
UpNDown 8456±3162 134502±68727 16627 145235±94643
Qbert 10596±3294 13437±2537 12741 14511±1138
Zaxxon 4977±1235 5070±997 5901 5738±1296

14

Figure 4: The relationship between |Qk − Q∗| and distance to end in two MuJoCo tasks (Ant and
Hopper).

First, we introduce the normalization in calculating dπk (s,a)
µ(s,a) , which aims to address the finite sample

size issue. The normalization is:

κ̃ψ(s, a) :=
κψ(s, a)

1/T

EDs [κψ(s, a)
1/T]

where Ds is the slow buffer and T is temperature.

ReMERN uses ∆ϕ to fit the discounted cumulative Bellman error. However, the Bellman error has
different scales in various environments, leading to erroneous weight. We normalize it by dividing a
moving average of Bellman error. The divisor is denoted as τ . Then the estimation of exp(−|Qk −
Q∗|) becomes

exp

(
−
γ
[
Pπ

wk−1
∆k−1

]
(s, a)

τ

)

Truncated TCE TCE may suffer from a big deviation when hπτ (s, a) is too large or too small. To
tackle this issue and improve the stability of the prioritization, we clip the output of TCE into [b1, b2],
where b1 and b2 are regarded as hyperparameters.

Baselines For the ReMERN and ReMERT algorithms in continuous action spaces with sensory
observation, we alter the re-weighting strategy to dπk (s,a)

µ(s,a) and TCE approximation based on the
source code provided by DisCor1. For the algorithms in discrete action spaces with pixel observation,
we employ the baseline Tianshou2 [7] and add corresponding components.

D.7.2 Hyperparameter Details

The hyperparameters of our ReMERN and ReMERT algorithms include network architectures, learn-
ing rates, temperatures in on-policy reweight and DisCor, and the lower and upper bound in TCE
algorithm. They are specified as follows:

• Network architectures We use standard Q and policy network in MuJoCo benchmark with hid-
den network sizes [256, 256]. In Meta-World we add an extra layer and the hidden network sizes
are [256, 256, 256]. The networks computing ∆ and κ have one extra layer than the corresponding
Q and policy network.

• Learning rates The learning rate for continuous control tasks, including Meta-World, MuJoCo
and DMC, is set to be 3e-4 for Q and policy networks alike. For Atari games, the learning rate is
set to be 1e-4 and fixed across all environments.

1https://github.com/ku2482/discor.pytorch
2https://github.com/thu-ml/tianshou

15

• Temperatures The temperature for weights related with dπk (s,a)
µ(s,a) is 7.5 and fixed across different

environments. Also, DisCor has a temperature hyperparameter related to the output normalization
of the error network. We keep it unchanged in the Meta-World and DMC benchmark, and divide
it by 20 in MuJoCo environments to make it compatible with on-policy prioritization weights.

• Bounds in TCE We select time-adaptive lower and upper bounds for TCE. The lower bound
rises from 0.4 when training begins to 0.9 when it ends, and the upper bound drops from 1.6 to 1.1
accordingly. The bounds are fixed across different environments.

• Random Seeds In MuJoCo, Meta-World and DMC benchmarks, we run each experiment with
four random seeds. The results are plotted with the mean of the four experiments. In Atari games,
we run experiments with three random seeds and select the one with max return.

References
[1] Sham M. Kakade and John Langford. Approximately optimal approximate reinforcement learn-

ing. In Proceedings of the 19th International Conference on Machine Learning (ICML’02),
pages 267–274, Sydney, Australia, 2002.

[2] Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Corrective feedback in reinforce-
ment learning via distribution correction. In Proceedings of 33rd conference on Neural Infor-
mation Processing Systems (NeurIPS’20), virtual event, 2020.

[3] Shi Dong, Benjamin Van Roy, and Zhengyuan Zhou. Provably efficient reinforcement learning
with aggregated states. CoRR, abs/1912.06366, 2019.

[4] Nan Jiang, Alex Kulesza, and Satinder P. Singh. Abstraction selection in model-based rein-
forcement learning. In Proceedings of the 32nd International Conference on Machine Learning
(ICML’15), pages 179–188, Lille, France, 2015.

[5] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Proceedings of the 3rd Conference on Robot Learning (CoRL’19), Osaka, Japan,
2019.

[6] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
Proceedings of the 4th International Conference on Learning Representations (ICLR’16), San
Juan, Puerto Rico, 2016.

[7] Jiayi Weng, Huayu Chen, Alexis Duburcq, Kaichao You, Minghao Zhang, Dong Yan, Hang Su,
and Jun Zhu. Tianshou. https://github.com/thu-ml/tianshou, 2020.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [N/A]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]

16

https://github.com/thu-ml/tianshou

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

17

	Proof of Theorem 1
	Detailed Proof of Theorem 2
	Algorithms
	Experiments
	Cumulative Recurring Probability on Atari Games
	Illustrations on Stable Temporal Structure
	Description of Involved Environments
	Extended Results on Atari Environment
	Extended Evaluation on Gridworld
	The Relation Between Distance to End and |Qk-Q*|
	Implementation Details
	Algorithm Details
	Hyperparameter Details

