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A APPENDIX
A.1 Anytime prediction and budgeted Batch

prediction on “E” structure of MSDNet and
RANet

In the main text, we have analyzed the effectiveness of GCDM on
MSDNet and RANet with “LG” structure. In this section, we further
verify the effectiveness of GCDM on the MSDNet and RANet with
“E” structure.

The results of anytime prediction setting are shown in Figure 1
(CIFAR10 and CIFAR100) and Figure 2 (ImageNet100 and Ima-
geNet1000). The results of budgeted batch prediction setting are
shown in Figure 3 (CIFAR10 and CIFAR100) and Figure 4 (Ima-
geNet100 and ImageNet1000). The experimental conclusion was the
same as what was drawn in the main text: GCDM consistently im-
proves the performance of the original adaptive networks, whether
in the “LG” or “E” structures

(a) CIFAR10 (b) CIFAR100

Figure 1: Accuracy (top-1) of anytime batch prediction on
CIFAR10 and CIFAR100. With the same computational re-
sources, existingmethods equippedwith the proposedGCDM
can achieve better performance.

A.2 Diversity of early classifiers after
regularization on CIFAR100

In the main text, we have shown the agreement measurement on 10
classifiers of MSDNet𝐸 on ImageNet100 after regularized training.
Here we additionally show the results on CIFAR100. As shown in
Figure 6, values in bold denote that the corresponding classifiers
obtain higher diversity after regularized training. It further proves
∗Corresponding author.

(a) ImageNet100
(b) ImageNet1000

Figure 2: Accuracy (top-1) of anytime batch prediction on
ImageNet100 and ImageNet1000.

(a) CIFAR10 (b) CIFAR100

Figure 3: Accuracy (top-1) of budgeted batch prediction on
CIFAR10 and CIFAR100.

(a) ImageNet100 (b) ImageNet1000

Figure 4: Accuracy (top-1) of budgeted batch prediction on
ImageNet100 and ImageNet1000.

that regularized training won’t obviously harm the diversity of
early classifiers and even can increase the diversity.
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A.3 Using Stable Training Strategy (STS) on
budgeted batch prediction

The conclusion is the same as that obtained in Section 4.3 and
Figure 8 (b) in the main text. As shown in Figure 5, the proposed
STS using both 𝜏1 and 𝜏2 during regularized training can improve
the performance instability issues and outperform using 𝜏1 or 𝜏2
individually. Moreover, we observe that CDM can significantly
improve the accuracy after regularized training, indicating CDM
can work well with regularized training.

Figure 5: Results of budgeted batch prediction with proposed
Stable Training Strategy (STS) on MiNi-ImageNet.

Figure 6: Agreement measurement on 10 classifiers of MSD-
Net on Cifar100with regularization (G+). Lower value (higher
diversity) is better and bolded values denote decreasing after
regularization.

A.4 Datasets
First, the CIFAR-10 and CIFAR-100 datasets are used in our experi-
ment, which contains 32 × 32 RGB natural images and corresponds
to 10 and 100 classes, respectively.

Second, the ImageNet100 dataset contains 100 classes and 60000
images and we split it into a training set (50000 images) and a
testing set (10000 images).

Hence, the above three datasets both contain 50,000 training and
10,000 testing images. We hold out 5,000 images in the training

set as a validation set for selecting the model and searching the
confidence threshold for adaptive inference.

Third, the ImageNet1000 dataset contains 1.2 million images of
1,000 classes for training and 50,000 images for validation. We use
the original validation set for testing and hold out 50000 images
from the training set as a validation set for model selection and
adaptive inference tasks. Besides, the image size of Mini-ImageNet
used in this paper is as same as ImageNet. The above settings of
datasets follow the source codes and paper of [6, 8, 12].

A.5 Qualitative analysis of CDM
The deepening of the CNN network results in an expansion of the
receptive field of the convolutional kernel, consequently amplifying
the overlapping area between these receptive fields [9, 10]. Hence,
deeper CNN tends to extract deep features, in which the image
information is compressed, including more coarse-grained informa-
tion (i.e., semantic information) about the integrity of the image. In
contrast, shallower CNN tends to extract shallow features, which
contain more fine-grained image information such as color, texture,
edge, and corner information [1, 2, 7].

Here, to further explain the above analysis, we visualize sam-
ples accurately classified by the final classifier in the top row, and
samples misclassified by the final classifier but accurately classified
by the early classifier in the bottom row. The results are shown in
Figure 7.

A.6 Structures of baseline models
The baseline structures follow the source codes of MSDNet (https:
//github.com/gaohuang/MSDNet) and RANet (https://github.com/
yangle15/RANet-pytorch). Details are as follows:

ResNet𝑀𝐶 andDenseNet𝑀𝐶 for CIFAR datasets. The𝑅𝑒𝑠𝑁𝑒𝑡𝑀𝐶

has 62 layers, with 30 basic blocks and each block consisting of 2
Convolution layers. We train early-exit classifiers on the output of
every 5 basic blocks and there are a total of 6 intermediate classi-
fiers (plus the final classification layer)). The 𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡𝑀𝐶 has 56
layers with three dense blocks and each of them has 18 layers. The
growth rate is set as 12. We train early-exit classifiers on the output
of every 8 layers for the first 5 classifiers and 14 layers for the last
classifier.

MSDNet𝐸 andMSDNet𝐿𝐺 for CIFAR datasets. MSDNet𝐸 has 10
classifiers and the distance between classifiers is equidistant. The
span between two adjacent classifiers is 2. The number of features
produced by the initial convolution layer is 16. The growth rate is
6. The bottleneck scales and the growth rate factors are all 1, 2, and
4. MSDNet𝐿𝐺 has 7 classifiers and the distance between classifiers
is growing linearly. The feature scales are as same as MSDNet𝐸 .

MSDNet𝐸 and MSDNet𝐿𝐺 for Mini-ImageNet and ImageNet
datasets. MSDNet𝐸 has 5 classifiers and the number of features
produced by the initial convolution layer is 64. The growth rate is
16. The bottleneck scales and the growth rate factors are all 1, 2, 4,
and 4. The span between two adjacent classifiers is 4. MSDNet𝐿𝐺
has 6 classifiers and the feature scales are as same as MSDNet𝐸 .
The initial span between two adjacent classifiers is 1. More details
can be seen in the source code on GitHub.

RANet𝐸 and RANet𝐿𝐺 for CIFAR datasets. RANet𝐸 has 8 classi-
fiers and four sub-networks with 8, 6, 4, 2Conv Blocks. The numbers

https://github.com/gaohuang/MSDNet
https://github.com/gaohuang/MSDNet
https://github.com/yangle15/RANet-pytorch
https://github.com/yangle15/RANet-pytorch
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Figure 7: Qualitative analysis of Figure 1 (a) in the submitted Manuscript. The top row is samples that are correctly classified by
the last classifier while the bottom row is correctly classified by early classifiers but wrongly classified by the last classifier.

of input channels and the growth rates are 16, 16, 32, 64, and 6, 6, 12,
and 24, respectively. The number of layers in each Conv Block is set
to 4. RANet𝐿𝐺 has 8 classifiers and four sub-networks with 8, 6, 4, 2
Conv Blocks. The numbers of input channels and the growth rates
are 16, 32, 32, 64, and 6, 12, 12, and 24, respectively. The number of
layers in a Conv Block is added 2 to the previous one, and the base
number of layers is 2.

RANet𝐸 andRANet𝐿𝐺 forMini-ImageNet and ImageNet datasets.
RANet𝐸 has 8 classifiers and four sub-networks with 8, 6, 4, 2 Conv
Blocks. The numbers of input channels and the growth rates are
64, 64, 128, 256, and 16, 16, 32, and 64, respectively. The number of
layers in each Conv Block is set to 7. The architecture of RANet𝐿𝐺
is exactly the same as the RANet𝐸 . However, the number of layers
in a Conv Block is added to 3 to the previous one, and the base
number of layers is 3.

We found that the final classifier performs poorly on samples
(bottom row) that heavily rely on local texture, edge, and corner
information. For instance, in samples of parrots, palaces, and corals,
the final classifier exhibits the wrong classification on samples with
distinct texture, edge, and corner features (bottom row). This is
because the final classifier relies on deep features extracted from the

deepest CNN network for classification, which emphasizes overall
high-level semantic information in images, but loses part of texture,
edge, and corner details [1, 2, 7].

In contrast, the shallow features extracted from earlier CNN
networks can classify these samples well. This is the reason for the
observation in Figure 1: early classifiers perform better than the
final classifier in certain classes. Hence, different classifiers have
their own advantages and we can use the proposed uncertainty-
aware attention mechanism-based fusion method to weight and
integrate the decision information from 𝑐 − 1 classifiers to enhance
the performance of 𝑐-th classifier where 𝑐 ≥ 2 in CDM module.

A.7 Using CDMmodule under different
prediction settings

In Figure 2 of the main text, we only show the difference between
anytime prediction and budgeted batch prediction settings. Here we
further show the version of the two prediction settings equipped
with the CDM module in Figure 8(a) and Figure 8(b). Overall, for
traditional prediction settings, anytime prediction or budgeted batch
prediction all don’t utilize the available 𝑐-1 classifiers when inferring
the 𝑐-th classifier. In contrast, in CDMmodule, we use the proposed
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Figure 8: Illustration of prediction settings equipped with
Uncertainty-aware Fusion based CDM module. CDM fuses
the available 𝑐-1 classifiers when inferring the 𝑐-th classifier
for performance improvement.

uncertainty-aware attention mechanism-based fusion method to
weight and integrate the decision information from 𝑐 − 1 classifiers
to enhance the performance of 𝑐-th classifier during inference.

A.8 Limitation and solution about CDM module
While the proposed Collaborative Decision Making (CDM) module
performs well in most cases, it may occur that CDM fails in certain
scenarios.

To address this, we can mitigate the potential adverse effects
of CDM failures by utilizing the validation set1. Specifically, for
the 𝑐-th classifier (c ≥ 2), we first apply CDM to fuse it with the
previous 𝑐 − 1 classifiers on the validation set. If a performance
drop occurs after fusion, we will retain the original classifier (no fu-
sion) for actual testing, thereby minimizing the risk of performance
degradation due to potential CDM failures. We will incorporate this
discussion into the "Discussion about Limitations" section of the
manuscript.

1Note that the validation set is also used in adaptive networks for dynamic inference [12]
and we are just utilizing it, with no need to reconstruct it.

A.9 Decision fusion methods
After obtaining decision outputs from different sub-models (classi-
fiers), we need to fuse all decisions by using fusion methods to pro-
duce the final decision for classification. Traditional fusion methods
include averaging fusion, weighted averaging fusion, voting fusion,
and neural network fusion strategies [3, 4, 11]. Traditional methods
don’t take into account the uncertainty of classifiers, which may
lead to unreliable fusion results. To this end, [5] proposes an EDL-
based fusion strategy for multiview classification tasks. However,
the potential issues of fusion saturation and fusion unfairness caused
by the EDL theoretical framework have not been fully explored,
which may lead to failure of the decision fusion and decreasing
fusion performance.
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