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Abstract

A central concern in classification is the vulnerability of machine learning models to ad-
versarial attacks. Adversarial training is one of the most popular techniques for training
robust classifiers, which involves minimizing an adversarial surrogate risk. Recent work has
characterized the conditions under which any sequence minimizing the adversarial surro-
gate risk also minimizes the adversarial classification risk in the binary setting, a property
known as adversarial consistency. However, these results do not address the rate at which
the adversarial classification risk approaches its optimal value along such a sequence. This
paper provides surrogate risk bounds that quantify that convergence rate.

1 Introduction

A central concern regarding regarding sophisticated machine learning models is their susceptibility to ad-
versarial attacks. Prior work (Biggio et al., 2013; Szegedy et al., 2013) demonstrated that imperceptible
perturbations can degrade the performance of neural nets. As such models are deployed in security-critical
applications, including facial recognition (Xu et al., 2022) and medical imaging (Paschali et al., 2018), train-
ing robust models remains a key challenge in machine learning.

In the standard classification setting, the classification risk is the proportion of incorrectly classified data.
Directly minimizing this quantity is a combinatorial optimization problem, so typical machine learning algo-
rithms instead minimize a more tractable surrogate risk via gradient-based methods. A surrogate risk is said
to be consistent for a given data distribution if every minimizing sequence also minimizes the classification
risk for that distribution. Beyond consistency, a central objective is efficiency: minimizing the surrogate risk
should translate into a rapid reduction of the classification risk. This rate can be quantified via surrogate
risk bounds, which bound the excess classification risk in terms of the excess surrogate risk.

In the standard binary classification setting, consistency and surrogate risk bounds are well-studied topics
(Bartlett et al., 2006; Lin, 2004; Steinwart, 2007; Zhang, 2004). A typical approach reduces the problem to a
pointwise analysis of the conditional classification and surrogate risks. In contrast, the adversarial setting is
less understood. The adversarial classification risk penalizes instances that can be perturbed into the opposite
class, while the adversarial surrogate risk computes the worst-case value over an ϵ-ball. The dependence on
the value of a function over an ϵ-ball precludes a pointwise decomposition, rendering the classical analysis
inapplicable. Frank & Niles-Weed (2024a) characterized the risks that are consistent for all data distributions,
and the corresponding losses are referred to as adversarially consistent. Unfortunately, no convex loss
function can be adversarially consistent for all data distributions (Meunier et al., 2022). On the other hand,
Frank (2025) showed that such situations are rather atypical— when the data distribution is absolutely
continuous, a surrogate risk is adversarially consistent so long as the adversarial Bayes classifier satisfies a
certain notion of uniqueness. While these results characterize consistency, none describe convergence rates.

Our Contributions:

• We prove a linear surrogate risk bound for adversarially consistent losses (Theorem 9).
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• When the “distribution of optimal attacks” satisfies a bounded noise condition, we prove a linear
surrogate risk bound under mild conditions on the loss (Theorem 9).

• We establish a distribution-dependent surrogate risk bound that applies whenever a loss is adver-
sarially consistent for the data distribution (Theorem 11).

Notably, the last result applies to convex loss functions. By prior consistency results (Frank, 2025; Frank &
Niles-Weed, 2024a; Meunier et al., 2022), one cannot hope for distribution independent surrogate bounds for
non-adversarially consistent losses. This work presents a framework for surrogate risk bounds that applies
to any supremum-based risk under mild conditions. A detailed comparison with prior work is provided in
Section 7.

2 Background and Preliminaries

2.1 Surrogate Risks

We study binary classification on Rd with labels −1 and +1, where P0 and P1 denote the class-conditional
distributions. For a measurable set A, the classification risk is

R(A) =
∫

1AC dP1 +
∫

1A dP0,

with minimum R∗ over all Borel sets. Because the indicator function is nondifferentiable, one instead
minimizes a surrogate risk

Rϕ(f) =
∫

ϕ(f) dP1 +
∫

ϕ(−f) dP0,

with minimum Rϕ,∗ over all Borel functions. The loss ϕ satisfies:
Assumption 1. ϕ is continuous, non-increasing, and limα→∞ ϕ(α) = 0.

Thresholding f at zero yields the classifier {f > 0}, whose risk is

R(f) = R({f > 0}) =
∫

1f≤0 dP1 +
∫

1f>0 dP0.

It remains to verify that minimizing the surrogate risk Rϕ will also minimize the classification risk R.
Definition 1. The loss function ϕ is consistent for the distribution P0, P1 if every minimizing sequence of Rϕ

is also a minimizing sequence of R. The loss function ϕ is consistent if it is consistent for all distributions.

Prior work establishes conditions under which many common loss functions are consistent. For convex ϕ,
consistency occurs iff ϕ is differentiable at 0 and ϕ′(0) < 0 (Bartlett et al., 2006, Theorem 2). Frank &
Niles-Weed (2024a, Proposition 3) show that consistency holds if infα

1
2 (ϕ(α) + ϕ(−α)) < ϕ(0), which is

satisfied by losses such as the ρ-margin loss ϕρ(α) = min(1, max(1 − α/ρ, 0)) and the shifted sigmoid loss
ϕτ (α) = 1/(1 + exp(α − τ)), τ > 0. However, a convex loss ϕ cannot satisfy this inequality:

1
2 (ϕ(α) + ϕ(−α)) ≥ ϕ

(
1
2α + 1

2 · −α

)
= ϕ(0). (1)

2.2 Surrogate Risk Bounds

In addition to consistency, quantifying convergence rates is a key concern. Specifically, prior work (Bartlett
et al., 2006; Zhang, 2004) establishes surrogate risk bounds of the form Ψ(R(f) − R∗) ≤ Rϕ(f) − Rϕ,∗ for
some function Ψ, linking excess classification risk to excess surrogate risk. These bounds involve pointwise
minima of the conditional classification and surrogate risks.
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Let P = P0 + P1 and η(x) = dP1/dP. An equivalent formulation of the classification risk is

R(f) =
∫

C(η(x), f(x))dP(x) (2)

where C(η, α) = η1α≤0 + (1 − η)1α>0, with minimal conditional risk

C∗(η) = inf
α

C(η, α) = min(η, 1 − η), (3)

and thus the minimal classification risk is R∗ =
∫

C∗(η(x))dP(x). Analogously, the surrogate risk in terms
of η and P is

Rϕ(f) =
∫

Cϕ(η(x), f(x))dP, Cϕ(η, α) = ηϕ(α) + (1 − η)ϕ(−α) (4)

and the minimal surrogate risk is Rϕ,∗ =
∫

C∗
ϕ(η(x))dP(x) with the minimal conditional risk C∗

ϕ(η) defined
by

C∗
ϕ(η) = inf

α
Cϕ(η, α). (5)

Prior work on consistency typically establishes surrogate risk bounds via pointwise analysis of the conditional
risks, relating the excess conditional surrogate risk Cϕ(η, α) − C∗

ϕ(η) to the excess conditional classification
risk C(η, α) − C∗(η).

The consistency of ϕ can be fully characterized by the properties of the function C∗
ϕ(η).

Theorem 1. A loss ϕ is consistent iff C∗
ϕ(η) < ϕ(0) for all η ̸= 1/2.

Surprisingly, this criterion has not appeared in prior work. See Appendix A for a proof. In terms of the
function C∗

ϕ, Frank & Niles-Weed (2024a, Proposition 3) states that any loss ϕ with C∗
ϕ(1/2) < ϕ(0) is

consistent. The function C∗
ϕ is a key component of surrogate risk bounds from prior work. Specifically,

Bartlett et al. (2006) shows:
Theorem 2 (Tewari & Bartlett (2007)). Let ϕ be any loss satisfying Assumption 1 with C∗

ϕ(1/2) = ϕ(0)
and define

Ψ(θ) = ϕ(0) − C∗
ϕ

(
1 + θ

2

)
.

Then
Ψ(C(η, f) − C∗(η)) ≤ Cϕ(η, f) − C∗

ϕ(η) (6)

and consequently
Ψ(R(f) − R∗) ≤ Rϕ(f) − R∗

ϕ. (7)

The inequality (7) is a consequence of (6) and Jensen’s inequality. Theorem 1 implies that this bound is
non-vacuous iff ϕ is consistent— compare with Theorem 1. Moreover, (6) yields a distribution-dependent
linear surrogate bound when η is bounded away from 1/2. If Massart’s noise condition (Massart & Nédélec,
2006) holds— namely, there exists a α ∈ [0, 1/2] for which |η − 1/2| ≥ α P-a.e., then the distribution admits
a linear surrogate bound.
Proposition 1. Let η, P be a distribution that satisfies |η − 1/2| ≥ α P-a.e. with a constant α ∈ [0, 1/2],
and let ϕ be a loss with ϕ(0) > C∗

ϕ(1/2 − α). Then for all |η − 1/2| ≥ α,

C(η, f) − C∗(η) ≤ 1
ϕ(0) − C∗

ϕ( 1
2 − α)

(Cϕ(η, f) − C∗
ϕ(η)) (8)

and consequently
R(f) − R∗ ≤ 1

ϕ(0) − C∗
ϕ( 1

2 − α)
(Rϕ(f) − Rϕ,∗) (9)
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See Appendix B for a proof of this result. Observe that Theorem 1 guarantees that the linear constant is
finite whenever α ̸= 0 and ϕ is consistent. This bound is distribution-independent when ϕ(0) > C∗

ϕ(1/2)
with α = 0, and will later be generalized to adversarial risks. Although the constant in Proposition 1 is not
optimal, further refinement offers no improvement to our adversarial bounds, so we opt to retain the simpler
form.

2.3 Adversarial Risks

The adversarial classification risk incurs a penalty of 1 whenever a point x can be perturbed into the
opposite class. This penalty can be expressed in terms of supremums of indicator functions— the adversarial
classification risk incurs a penalty of 1 whenever sup∥x′−x∥≤ϵ 1A(x′) = 1 or sup∥x′−x∥≤ϵ 1AC (x′) = 1. Define

Sϵ(g)(x) = sup
∥x−x′∥≤ϵ

g(x′).

The adversarial classification and surrogate risks are given respectively by1

Rϵ(A) =
∫

Sϵ(1AC )dP1 +
∫

Sϵ(1A)dP0, Rϵ
ϕ(f) =

∫
Sϵ(ϕ(f))dP1 +

∫
Sϵ(ϕ(−f))dP0.

A minimizer of the adversarial classification risk is called an adversarial Bayes classifier. After optimizing
the surrogate risk, a classifier is obtained by thresholding the resulting function f at zero. The associated
adversarial classification error function f is then

Rϵ(f) = Rϵ({f > 0}) =
∫

Sϵ(1f≤0)dP1 +
∫

Sϵ(1f>0)dP0. (10)

Just as in the standard case, one would hope that minimizing the adversarial surrogate risk would minimize
the adversarial classification risk.
Definition 2. The loss ϕ is adversarially consistent for the distribution P0, P1 if any minimizing sequence
of Rϵ

ϕ is also a minimizing sequence of Rϵ. We say that ϕ is adversarially consistent if it is adversarially
consistent for all distributions.

Theorem 2 of Frank & Niles-Weed (2024a) characterizes the adversarially consistent losses:
Theorem 3 (Frank & Niles-Weed (2024a)). The loss ϕ is adversarially consistent iff C∗

ϕ(1/2) < ϕ(0).

Frank & Niles-Weed (2024a, Proposition 3) guarantees that every adversarially consistent loss is also consis-
tent in the standard sense. Unfortunately, (1) shows that no convex loss is adversarially consistent. However,
distributions for which consistency fails are atypical: for absolutely continuous P, adversarial consistency
holds provided the adversarial Bayes classifier is unique up to degeneracy.
Definition 3. Two adversarial Bayes classifiers A1, A2 are equivalent up to degeneracy if any set A with
A1 ∩ A2 ⊂ A ⊂ A1 ∪ A2 is also an adversarial Bayes classifier. The adversarial Bayes classifier is unique
up to degeneracy if any two adversarial Bayes classifiers are equivalent up to degeneracy.

See Figure 1 for an illustration of non-equivalent adversarial Bayes classifiers in a distribution where adver-
sarial consistency fails. Theorem 4 of Frank (2025) relates uniqueness of the adversarial Bayes classifier to
the consistency of ϕ.
Theorem 4 (Frank (2025)). Let ϕ be a loss with C∗

ϕ(1/2) = ϕ(0) and assume that P is absolutely continuous
with respect to Lebesgue measure. Then ϕ is adversarially consistent for the data distribution given by P0,
P1 iff the adversarial Bayes classifier is unique up to degeneracy.

Any extension of surrogate risk bounds to the adversarial setting must account for the conditions of Theo-
rems 3 and 4.

1In order to define the risks Rϵ
ϕ and Rϵ, one must argue that Sϵ(g) is measurable. Theorem 1 of Frank & Niles-Weed (2024b)

proves that whenever g is Borel, Sϵ(g) is always measurable with respect to the completion of any Borel measure.
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Figure 1: Adversarial Bayes classifiers for the distribution where P0 = P1 are uniform distributions on Bϵ(0),
the counterexample from Meunier et al. (2022). The classifiers in (a) and (b) are equivalent up to degeneracy,
as are those in (c) and (d), but the classifiers in (a) and (c) are not. A sequence minimizing Rϵ

ϕ but not Rϵ

is provided in (33).

2.4 Minimax Theorems

A central tool in analyzing the adversarial consistency of surrogate risks is minimax theorems, which en-
able a ‘pointwise’-style representation of adversarial risks analogous (4). This section reviews the minimax
representation for both adversarial classification and surrogate risks, which underlie the bounds in Section 3.

These minimax theorems utilize the ∞-Wasserstein (W∞) metric from optimal transport. Informally, this
metric quantifies the smallest radius ϵ such that the mass of one distribution can be transported to match
another without moving any point more than ϵ.

Formally, let Q and Q′ be finite positive measures with equal total mass. A Borel measure γ on Rd × Rd

is a coupling between Q and Q′ if its first marginal is Q and its second marginal is Q′, or in other words,
γ(A × Rd) = Q(A) and γ(Rd × A) = Q′(A) for all Borel sets A. Denote the set of couplings between Q and
Q′ by Π(Q,Q′). Then the W∞ distance is

W∞(Q,Q′) = inf
γ∈Π(Q,Q′)

ess sup
(x,y)∼γ

∥x − y∥. (11)

Theorem 2.6 of Jylhä (2014) proves that the infimum in (11) is always attained. The ϵ-ball around Q in the
W∞ metric is B∞

ϵ (Q) = {Q′ : W∞(Q′,Q) ≤ ϵ}.

The next lemma is a standard observation linking adversarial perturbations to W∞-balls. We include a
proof in Appendix C for completeness; it is a known result and not new to this work (see for instance
Matthew Staib (2017, Proposition 3.1)).
Lemma 1. Let g be a Borel function. Let γ be a coupling between the measures Q and Q′ supported on
∆ϵ = {(x, x′) : ∥x − x′∥ ≤ ϵ}. Then Sϵ(g)(x) ≥ g(x′) γ-a.e. and consequently∫

Sϵ(g)dQ ≥ sup
Q′∈B∞

ϵ (Q)

∫
gdQ′.

Applying Lemma 1 to Rϵ shows that infA Rϵ(A) can be expressed as an inf-sup problem. The minimax
theorem of Pydi & Jog (2021) ensures that the order of the inf and sup can be interchanged. Let C∗(η) be
as defined in (3) and define
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R̄(P′
0,P′

1) = inf
A Borel

∫
1AC dP′

1 +
∫

1AdP′
0 =

∫
C∗
(

dP′
1

d (P′
1 + P′

0)

)
d (P′

0 + P′
1) . (12)

Theorem 5 (Frank (2025)). Let R̄ be as defined in (12). Then

inf
A Borel

Rϵ(A) = sup
P′

1∈B∞
ϵ (P1)

P′
0∈B∞

ϵ (P0)

R̄(P′
0,P′

1).

with equality attained at some Borel A, P∗
0 ∈ B∞

ϵ (P0), and P∗
1 ∈ B∞

ϵ (P1).

See Frank & Niles-Weed (2024a, Theorem 1) for a proof of this statement. The maximizers P∗
0, P∗

1 can be
interpreted as optimal adversarial attacks (see discussion following Frank & Niles-Weed (2024b, Theorem 7)).
Frank (2024, Theorem 3.4) provide a criterion for uniqueness up to degeneracy in terms of dual maximizers.
Theorem 6 (Frank (2025)). The following are equivalent:

A) The adversarial Bayes classifier is unique up to degeneracy

B) There are maximizers P∗
0, P∗

1 of R̄ for which P∗(η∗ = 1/2) = 0, where P∗ = P∗
0+P∗

1 and η∗ = dP∗
1/dP∗

Thus, uniqueness corresponds to the situation in which the set where both classes are equally probable has
measure zero under some optimal adversarial attack.

The analogous dual problem to Rϵ
ϕ uses C∗

ϕ(η) from (5)

R̄ϕ(P′
0,P′

1) = inf
f Borel

∫
ϕ(f)dP′

1 +
∫

ϕ(−f)dP′
0 =

∫
C∗

ϕ

(
dP′

1
d (P′

1 + P′
0)

)
d (P′

0 + P′
1) (13)

and the analogous minimax theorem states (Frank & Niles-Weed, 2024b, Theorem 6):
Theorem 7 (Frank & Niles-Weed (2024b)). Let R̄ϕ be defined as in (13). Then

inf
f Borel,
R-valued

Rϵ
ϕ(f) = sup

P′
1∈B∞

ϵ (P1)
P′

0∈B∞
ϵ (P0)

R̄ϕ(P′
0,P′

1).

with maximizers P∗
0 ∈ B∞

ϵ (P0), P∗
1 ∈ B∞

ϵ (P1) attained.

Finally, optimal attacks for the surrogate problem are also optimal for the classification problem:
Theorem 8. Consider maximizing the dual objectives R̄ϕ and R̄ over B∞

ϵ (P0) × B∞
ϵ (P1).

1) If ϕ is consistent, then any maximizer (P∗
0,P∗

1) of R̄ϕ over B∞
ϵ (P0) × B∞

ϵ (P1) also maximizes R̄.

2) [Frank (2025)] If the adversarial Bayes classifier is unique up to degeneracy, then there exists a
maximizer (P∗

0,P∗
1) of R̄ϕ with P∗(η∗ = 1/2) = 0, where P∗ = P∗

0 + P∗
1 and η∗ = dP∗

1/dP∗.

See Appendix D for a proof of Item 1), Item 2) is shown in Theorems 5 and 7 of Frank (2025). This minimax
machinery links the adversarial Bayes classifier, optimal attacks, and surrogate risks, establishing the dual
formulations used in Section 3 to derive adversarial surrogate risk bounds.

3 Main Results

Prior work has characterized when a loss ϕ is adversarially consistent with respect to a distribution P0, P1.
Theorem 3 shows that a distribution-independent surrogate risk bound is possible only when C∗

ϕ(1/2) < ϕ(0).
When C∗

ϕ(1/2) = ϕ(0), Theorem 4 indicates that any such bound must depend on the marginal distribution
of η∗ under P∗, and moreover, is possible only if P∗(η∗ = 1/2) = 0.
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Compare these statements with Proposition 1: Theorems 3, 4 and 8 together imply if either C∗
ϕ(1/2) < ϕ(0) or

if there exist some maximizers of R̄ϕ that satisfy Massart’s noise condition, then ϕ is adversarially consistent
for P0, P1. Alternatively, due to Theorem 8, one can equivalently assume that there are maximizers of
R̄ϕ satisfying Massart’s noise condition. Our first result extends Proposition 1 to the adversarial scenario,
replacing P0, P1 with the distribution of optimal adversarial attacks.
Theorem 9. Let ϕ be consistent and let P0, P1 be a distribution for which there are maximizers P∗

0, P∗
1 of the

dual problem R̄ϕ that satisfy |η∗ − 1/2| ≥ α P∗-a.e. for some constant α ∈ [0, 1/2] with C∗
ϕ(1/2 − α) < ϕ(0),

where P∗ = P∗
0 + P∗

1, η∗ = dP∗
1/dP∗. Then

Rϵ(f) − Rϵ
∗ ≤ 1

ϕ(0) − C∗
ϕ(1/2 − α)

(
Rϵ

ϕ(f) − Rϵ
ϕ,∗
)

(14)

When C∗
ϕ(1/2) < ϕ(0), setting α = 0 in Theorem 9 yields a distribution-independent bound. As noted

earlier, two losses satisfying this condition are the ρ-margin loss and the shifted sigmoid loss. Likewise,
Theorem 1 ensures that the linear constant is finite whenever α ̸= 0 and ϕ is consistent.

The constant appearing in Theorem 9 is nearly optimal: Section 4.3 shows that it can be improved by at
most a factor of two, and this gap is attained by a known counterexample to consistency. Thus, the result
provides a sharp characterization of how tightly the adversarial classification risk can be controlled by the
surrogate risk across all consistent convex losses.

Furthermore, the theorem parallels the classical realizable-case guarantee from the non-adversarial setting.
If the optimal adversarial risk satisfies Rϵ

∗ = 0, then Massart’s noise condition holds with α = 1/2 (see
Lemma 2). In this regime, Theorem 9 yields a linear relationship between adversarial classification and
surrogate risks that is directly analogous to the non-adversarial bound in Proposition 1. Zero adversarial
risk occurs whenever the supports of P0 and P1 are separated by at least 2ϵ (Example 1 and Figure 3a).

Theorem 9 states that if some distribution of optimal adversarial attacks satisfies Massart’s noise condition,
then the excess adversarial surrogate risk is at worst a linear upper bound on the excess adversarial classi-
fication risk. However, if C∗

ϕ(1/2) = ϕ(0), the bound’s constant diverges as α → 0, reflecting the failure of
adversarial consistency when the adversarial Bayes classifier is not unique up to degeneracy. For α ̸= 1/2,
understanding the assumptions on (P0,P1) which ensure Massart’s condition for the distribution of adver-
sarial attacks (P∗

0,P∗
1) remains an open problem. Example 4.6 of Frank (2024) exhibits a distribution that

satisfies Massart’s noise condition and yet the adversarial Bayes classifier is not unique up to degeneracy.
Thus Massart’s noise condition for P0,P1 does not guarantee Massart’s noise condition for P∗

0, P∗
1. See

Example 2 and Figure 3b for an example where Theorem 9 applies with α > 0.

One approach to relaxing the distributional restriction is to apply (14) only on the portion of the distribution
where |η∗ − 1/2| ≥ α and then add back in the risk on |η∗ − 1/2| < α.
Theorem 10. Assume that there exist maximizers P∗

0, P∗
1 of R̄ϕ that are induced by transport maps from

P0, P1, and define P∗ = P∗
1 + P∗

0, η∗ = dP∗
1/dP∗. Let 0 ≤ α, then

Rϵ(f) − Rϵ
∗ ≤ 1

ϕ(0) − C∗
ϕ(1/2 − α)

(
Rϵ

ϕ(f) − Rϵ
ϕ,∗
)

+
(

1
2 + α

)
P∗(|η∗ − 1/2| < α)

Since this holds for all α, the right-hand side can be minimized over α. Prior work from optimal transport
theory verifies the assumption on P∗ under mild conditions: Theorem 3.5 of Jylhä (2014) states that whenever
P0,P1 are absolutely continuous with respect to Lebesgue measure and the norm ∥ · ∥ is strictly convex, the
measures P∗

0,P∗
1 are induced by a transport map. It is unclear whether this holds for common datasets such

as CIFAR-10 or MNIST.

Finally, an alternative approach to removing the distributional restriction is to average bounds of the form
(14) over all values of η∗ yielding a distribution-dependent surrogate bound, valid whenever the adversarial
Bayes classifier is unique up to degeneracy. For a given function f , let the concave envelope of f be the
smallest concave function larger than f :

conc(f) = inf{g :≥ f on dom(f), g concave and upper semi-continuous} (15)
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(a) (b) (c) (d)

Figure 2: Ambiguous images in the MNIST and CIFAR10 datasets. (a) lies between a ‘5’ and a ‘3’, while
(b) is difficult to classify at all, despite being labeled as a ‘5’. In CIFAR10, image (c) is ambiguous between
a ship and an airplane, and image (d) is similarly hard to identify.

Theorem 11. Assume P0(Rd)+P1(Rd) ≤ 1, ϕ is a consistent loss with C∗
ϕ(1/2) = ϕ(0), and the adversarial

Bayes classifier is unique up to degeneracy. Let P∗
0, P∗

1 be maximizers of R̄ϕ for which P∗(η∗ = 1/2) = 0,
with P∗ = P∗

0 + P∗
1 and η∗ = dP∗

1/dP∗. Define H(z) = conc(P∗(|η∗ − 1/2| ≤ z)), Ψ as Theorem 2, and let
Λ̃(z) = Ψ−1(min( z

4 , ϕ(0))). Then

Rϵ(f) − Rϵ
∗ ≤ Φ̃(Rϵ

ϕ(f) − Rϵ
ϕ,∗)

with

Φ̃(z) = 4
(

id + min(1,
√

−eH ln H)
)

◦ Λ̃

This theorem is established under the assumption P0(Rd)+P1(Rd) ≤ 1, which serves as an essential interme-
diate step for extending the result to case where the adversarial Bayes classifier is not uniquely defined up to
degeneracy. See Example 3 and Figure 3c for an example of calculating a distribution-dependent surrogate
risk bound.

The function H is always continuous and satisfies H(0) = 0, ensuring that this bound is non-vacuous (see
Lemma 7 in Section 5). Further notice that H ln H approaches zero as H → 0.

The map Φ̃ combines two components: Λ̃, a modified version of Ψ−1, and H, a modification of the cdf of
|η∗ − 1/2|. The function Λ̃ is a scaled version of Ψ−1, where Ψ is the surrogate risk bound in the non-
adversarial case of Theorem 2. The domain of Ψ−1 is [0, ϕ(0)], and thus the role of the min in the definition
of Λ̃ is to truncate the argument so that it fits into this domain. The factor of 1/4 in this function appears
to be an artifact of our proof, see Section 5 for further discussion. In contrast, the map H translates
the distribution of η∗ into a surrogate risk transformation. Compare with Theorem 4, which states that
consistency fails if P∗(η∗ = 1/2) > 0; accordingly, the function H becomes a poorer bound when more mass
of η∗ is near 1/2.

If P∗(η∗ = 1/2) is small, this result can still provide an informative surrogate bound.

Theorem 12. Assume that there exist maximizers P∗
0, P∗

1 of R̄ϕ that are induced by transport maps from
P∗

0, P∗
1, and define P∗ = P∗

1 + P∗
0, η∗ = dP∗

1/dP∗. Let Φ̃ be the function in Theorem 11, but with H defined
as H(z) = conc(P∗(0 < |η∗ − 1/2| ≤ z)). Then

Rϵ(f) − Rϵ
∗ ≤ Φ̃(Rϵ

ϕ(f) − Rϵ
ϕ,∗) + P∗(η∗ = 1/2)

2

Removing the assumption that P∗
0,P∗

1 are induced by a transport map from Theorems 10 and 12 remains an
open problem. We conjecture that this assumption is, in fact, unnecessary.
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Figure 3: Distributions from Examples 1 to 3 along with attacks that maximize the dual R̄ϕ.

Comparison with real-world datasets

Experimental results from prior work suggest that, in real-world datasets, η∗ is typically concentrated near
0 and 1. Bhagoji et al. (2019) compute lower bounds on the adversarial classification risk for binary tasks,
focusing on classifying digits ‘3’ and ‘7’ in MNIST under ℓ2 perturbations. Their lower bound remains close
to 0 for ϵ ≤ 3 and increases to 0.2 at ϵ = 4. Since C∗(η∗) attains its maximum at η∗ = 1/2, a small adversarial
risk implies that the distribution places little mass in a neighborhood of |η∗ − 1/2| = 0. Similar trends are
observed on Fashion MNIST and CIFAR10. Dai et al. (2023) extend these bounds to the multiclass setting,
though extending adversarial surrogate bounds beyond binary classification remains an open problem.

When the optimal adversarial risk is non-zero, the adversarial Bayes classifier may not be unique up to
degeneracy. Even without adversarial perturbations, datasets like MNIST and CIFAR10 contain inherently
ambiguous examples. Northcutt et al. (2021) identify such cases, four are depicted in Figure 2. One
would expect η(x) = 1/2 for such examples. Bartoldson et al. (2024) show that similar ambiguity arises in
adversarial settings: under ℓ∞ perturbations of size 8/255, approximately 6% of adversarial examples are
ambiguous in the CIFAR10 dataset. In the binary scenario, one would thus expect η∗(x) = 1/2 for these
inputs, and thus one must apply Theorem 10 or Theorem 12. Extending the concept of uniqueness of the
adversarial Bayes classifier to multiclass settings remains an open problem.

Examples

Below we present three examples illustrating the applicability of our main theorems. All examples involve
one-dimensional distributions, and we denote the pdfs of P0 and P1 by p0 and p1.

To start, if Rϵ
∗ = 0 then η∗ ∈ {0, 1} P∗-a.e. for any maximizers of R̄ϕ. Therefore, for any such distribution,

the optimal attack satisfies Massart’s noise condition with α = 1/2, see Appendix J.1 for a proof.
Lemma 2. Assume Rϵ

∗ = 0, let (P∗
0,P∗

1) maximize R̄ϕ, and define P∗ = P∗
0 + P∗

1, η∗ = dP∗
1/dP∗. Then

P∗(η∗ ∈ {0, 1}) = 1.

Any distribution for which the supports of P0, P1 are more than 2ϵ apart must have zero risk.
Example 1 (When Rϵ

∗ = 0). Let

p0(x) =
{

1 if x ∈ [−1 − δ, −δ]
0 otherwise

p1(x) =
{

1 if x ∈ [δ, 1 + δ]
0 otherwise

for some δ > 0. See Figure 3a for a depiction. This distribution satisfies Rϵ
∗ = 0 for all ϵ ≤ δ and thus

Lemma 2 implies that the surrogate bound of Theorem 9 applies.

Examples 2 and 3 require computing maximizers to the dual R̄ϕ; See Appendices J.2 and J.3 for these
calculations. The following example illustrates a distribution for which Massart’s noise condition can be
verified for a distribution of optimal attacks.

9
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Example 2 (Massart’s noise condition). Let δ > 0 and let p be the uniform density on [−1−δ, −δ]∪[δ, 1+δ].
Define η by

η(x) =
{

1
4 if x ∈ [−1 − δ, −δ]
3
4 if x ∈ [δ, 1 + δ]

(16)

see Figure 3b for a depiction of p0 and p1. For this distribution and ϵ ≤ δ, the minimal surrogate and
adversarial surrogate risks are always equal (Rϕ,∗ = Rϵ

ϕ,∗). This fact together with Theorem 7 imply that
optimal attacks on this distribution are P∗

1 = P1 and P∗
0 = P0, see Appendix J.2 for details. Consequently:

the distribution of optimal attacks P∗
0, P∗

1 satisfies Massart’s noise condition with α = 1/4 and as a result
the bounds of Theorem 9 apply. When ϵ ∈ (δ, 1 + δ), pdfs of the distributions that maximize the dual are
p∗

1(x) = p1(x+ϵ), p∗
0(x) = p0(x−ϵ), where p1(x) = η(x)p(x) and p0(x) = (1−η(x))p(x). These distributions

satisfy P∗(η = 1/2) = (ϵ − δ) while P∗(|η − 1/2| ≥ 1/4) = 1 − (ϵ − δ). Thus Theorem 10 provides a surrogate
bound.

The final example presents a case in which Massart’s noise condition fails for the distribution of optimal
adversarial attacks, yet the adversarial Bayes classifier remains unique up to degeneracy. Theorem 11 still
yields an informative surrogate bound.
Example 3 (Gaussian example). Consider an equal-variance Gaussian mixture with µ0 + 2ϵ < µ1 < µ0 +√

2σ:
p0(x) = 1

2 · 1√
2πσ

e− (x−µ0)2

2σ2 , p1(x) = 1
2 · 1√

2πσ
e− (x−µ1)2

2σ2 ,

see Figure 3c for a depiction. The optimal attacks P∗
0, P∗

1 are gaussians centered at µ0 + ϵ and µ1 − ϵ
respecively, with pdfs

p∗
0(x) = 1

2 · 1√
2πσ

e− (x−(µ0+ϵ))2

2σ2 , p∗
1(x) = 1

2 · 1√
2πσ

e− (x−(µ1−ϵ))2

2σ2 . (17)

We verify that P∗
0 and P∗

1 are in fact optimal by finding a function f∗ for which Rϵ
ϕ(f∗) = R̄ϕ(P∗

0,P∗
1),

the strong duality result in Theorem 7 will then imply that P∗
0 and P∗

1 must maximize the dual R̄ϕ, see
Appendix J.3 for details.

Further, when µ1 − µ0 ≤
√

2σ, then the function h(z) = P∗(|η∗ − 1/2| ≤ z) is concave in z and consequently
H = h, see Appendix J.4 for details. Although h is unwieldy function, comparison to its linear approximation
at zero gives the bound

H(z) ≤ min
(

16σ2

µ1 − µ0 − 2ϵ
z, 1
)

. (18)

Again, see Appendix J.4 for details.

When ϵ ≥ (µ1 − µ0)/2, Frank (2024, Example 4.1) demonstrates that the adversarial Bayes classifier is not
unique up to degeneracy. Notably, the bound in preceding example deteriorates as (µ1 − µ0)/2 → ϵ, and
then fails entirely when ϵ = (µ1 − µ0)/2.

4 Proof of Linear Surrogate Bounds

4.1 Proof of Theorem 9

The proof of Theorem 9 relies on decomposing the excess adversarial classification and surrogate risks into
non-negative terms, revealing their structural similarity and allowing for a pointwise comparison.

Let P∗
0,P∗

1 be any maximizers of R̄ϕ. These distributions also maximize R̄ by Theorem 8. Set P∗ = P∗
0 + P∗

1,
η∗ = dP∗

1/dP∗. Let γ∗
0 , γ∗

1 be couplings between P0, P∗
0 and P1, P∗

1 achieving the W∞ distances (11). The
excess classification risk can be decomposed as

Rϵ(f) − Rϵ
∗ = Rϵ(f) − R̄(P∗

0,P∗
1) =

∫
i1(f)dγ∗

1 +
∫

i0(f)dγ∗
0 (19)

10
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with
i1(f) =

(
Sϵ(1f≤0)(x) − 1f≤0(x′)

)
+
(
C(η∗, f) − C∗(η∗)

)
i0(f) =

(
Sϵ(1f>0)(x) − 1f>0(x′)

)
+
(
C(η∗, f) − C∗(η∗)

)
.

The first term measures the discrepancy between the worst-case attack on f and the attack induced by
P∗

0,P∗
1, the optimal attack for the distribution P0,P1. The second term measures the excess conditional risk

under the optimal attack P∗
0,P∗

1. Lemma 1 implies that Sϵ(1f≤0)(x) − 1f≤0(x′) must be positive, while the
definition of C∗ implies that C(η∗, f) − C∗(η∗) ≥ 0.

Similarly, one can express the excess surrogate risk as

Rϵ
ϕ(f) − Rϵ

ϕ,∗ =
∫

iϕ
1 (f)dγ∗

1 +
∫

iϕ
0 (f)dγ∗

0 (20)

with
iϕ
1 (f) =

(
Sϵ(ϕ(f))(x) − ϕ(f)(x′)

)
+
(
Cϕ(η∗, f) − C∗

ϕ(η∗)
)

iϕ
0 (f) =

(
Sϵ(ϕ(−f))(x) − ϕ(−f)(x′)

)
+
(
Cϕ(η∗, f) − C∗

ϕ(η∗)
)

The following lemma is the core inequality linking ik to iϕ
k under Massart’s noise condition. It shows that

each classification-risk term can be bounded by a constant multiple of its surrogate risk counterpart.
Lemma 3. Define iϕ

0 , iϕ
1 as in (20) and assume that the distribution of optimal adversarial attacks P∗

0, P∗
1

satisfies Massart’s noise condition. Then

i0(f) ≤ 1
ϕ(0) − C∗

ϕ(1/2 − α) iϕ
0 (f). (21) i1(f) ≤ 1

ϕ(0) − C∗
ϕ(1/2 − α) iϕ

1 (f). (22)

hold γ∗
0 -a.e. and γ∗

1 -a.e. respectively.

Lemma 3 directly implies Theorem 9 by integration over couplings γ∗
1 , γ∗

0 .

Proof of Theorem 9. Combine (19), Lemma 3, and (20).

4.2 Proof of Lemma 3

The proof proceeds by partitioning the domain Rd ×Rd into regions where the supremum-based classification
either matches (Dk) or exceeds (Ek) the decision under the optimal attack. On each region, we derive a
separate bound relating ik and iϕ

k . Define the sets Dk, Ek,

D0 = {(x, x′) : Sϵ(1f>0)(x) − 1f(x′) = 0} (23)
E0 = {(x, x′) : Sϵ(1f>0)(x) − 1f(x′)>0 = 1} (24)
D1 = {(x, x′) : Sϵ(1f≤0)(x) − 1f(x′)≤0 = 0} (25)
E1 = {(x, x′) : Sϵ(1f≤0)(x) − 1f(x′)≤0 = 1} (26)

By construction, D1 ∪ E1 = Rd × Rd and D0 ∪ E0 = Rd × Rd.

The following lemma records a simple but useful structural property of E0 and E1, which allows us to bound
the surrrogate loss terms from below on these sets.
Lemma 4. Let Ek be as in Equations (24) and (26). Then Sϵ(1f>0)(x) = 1f>0(x′) = 1 γ∗

1 -a.e. on E1 while
Sϵ(1f≤0)(x) = 1f≤0(x′) = 1 γ∗

0 -a.e. on E0.

Proof. We’ll prove the statement for E1, the argument for E0 is analogous. Specifically, we will show that
one cannot simultaneously have Sϵ(1f≤0)(x) − 1f≤0(x′) = 1 and Sϵ(1f>0)(x) − 1f>0(x′) = 1.

Consider (x, x′) ∈ E1: as both Sϵ(1f≤0)(x) and 1f≤0(x′) are 0-1 valued, the relation Sϵ(1f≤0)(x)−1f(x′)≤0 =
1 implies that 1f(x′)≤0 = 0 and thus 1f(x′)>0 = 1. The fact that Sϵ(1f>0)(x) ≥ 1f>0(x′) on supp γ∗

1 and
supp γ∗

1 ⊂ ∆ϵ implies that Sϵ(1f>0)(x) = 1 γ∗
1 -a.e. on E1.

11
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The next result bounds the terms iϕ
k from below.

Lemma 5. The relations (27) and (28) hold on E0 and E1 respectively.

iϕ
0 (f) ≥ ϕ(0) − C∗

ϕ(η∗). (27) iϕ
1 (f) ≥ ϕ(0) − C∗

ϕ(η∗). (28)

Proof. We will prove the statement for E1, the argument for E0 is analogous. Observe that

iϕ
1 (f) = Sϵ(ϕ(f))(x) + (1 − η∗)(ϕ(−f(x′)) − ϕ(f(x′))) − C∗

ϕ(η∗)

Now as Sϵ(1f≤0)(x) = 1, one can conclude that there is a point in z ∈ Bϵ(x) for which f(z) ≤ 0, and thus
Sϵ(ϕ(f))(x) ≥ ϕ(0). Next, Lemma 4 implies that f(x′) > 0 and hence ϕ(−f(x′)) − ϕ(f(x′)) ≥ 0. Therefore,
one can conclude (28).

Furthermore, a simple calculation bounds the ik from above.
Lemma 6. On the set Dk

ik(f) = C(η∗, f) − C∗(η∗) (29)

while on Ek

ik(f) = 1 + C(η∗, f) − C∗(η∗) (30)

Proof. We will show the statement k = 1 the argument for k = 0 is analogous. On D1, Sϵ(1f≤0)(x) −
1f(x′)≤0 = 0, implying (29). Similarly, on E1, Sϵ(1f≤0)(x) − 1f(x′)≤0 = 1, implying (30).

Comparing the upper and lower bounds present in Lemmas 4 and 6 proves Lemma 3.

Proof of Lemma 3. We will discuss (22), the argument for (21) is analogous. We prove the bound separately
on D1 and E1, whose union is Rd. First, notice that (8) implies that

C(η∗(x′), f(x′)) − C∗(η∗(x′)) ≤ 1
ϕ(0) − C∗

ϕ(1/2 − α)
(
Cϕ(η∗(x′), f(x′)) − C∗

ϕ(η∗(x′))
)

P∗-a.e. (31)

On the set D1:
Lemma 6 implies that

i1(f) = C(η∗(x′), f(x′)) − C∗(η∗(x′))

and thus the desired inequality follows from (31) and the fact that Sϵ(ϕ ◦ f)(x) − ϕ ◦ f(x′) ≥ 0 γ∗
1 -a.e.

On the set E1:
On E1,

i1(f) = 1 + C(η∗(x′), f(x′)) − C∗(η∗(x′))

However, due to Lemma 5,

Sϵ(1f≤0)(x) − 1f≤0(x′) = 1 =
ϕ(0) − C∗

ϕ(η∗)
ϕ(0) − C∗

ϕ(η∗) ≤ 1
ϕ(0) − C∗

ϕ(η∗) (Sϵ(ϕ ◦ f)(x) − ϕ(f(x′)) (32)

The last inequality is a consequence of the assumption |η∗ − 1/2| ≤ α. Summing this relation with (31)
shows (22).

12
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4.3 Lower Bounds

The bound in Theorem 9 provides a general guarantee relating the adversarial classification and surrogate
risks. We now show that this bound cannot be substantially improved.

This example describes functions in which the worst-case attack and the attack induced by P∗
0, P∗

1 differ
substantially. This function sequence is the counterexample to consistency proposed in prior work (Meunier
et al., 2022; Li & Telgarsky, 2023). Intuitively, the sign flip causes the classifier to misclassify both classes,
even though a constant function would achieve lower risk for this distribution.
Example 4 (Lower bound for Theorem 9). Let ϕ satisfy C∗

ϕ(1/2) = ϕ(0), and consider a distribution
supported on [−ϵ, ϵ] with P∗(η = 1/2 + α) = 1. Define the sequence of functions

fn =
{

1
n x ̸= 0
− 1

n x = 0
(33)

For this sequence, Rϵ(fn)−Rϵ
∗ = 1/2+α while the adversarial surrogate risk converges to limn→∞ Rϵ

ϕ(fn) =
ϕ(0) − C∗

ϕ(1/2 + α). Consequently,

lim
n→∞

Rϵ(fn) − Rϵ
∗

Rϵ
ϕ(fn) − Rϵ

ϕ,∗
=

1
2 + α

ϕ(0) − C∗
ϕ(1/2 − α) .

It follows that for any δ > 0 there exists f such that

Rϵ(f) − Rϵ
∗ ≥ 1/2 + α

ϕ(0) − C∗
ϕ(1/2 − α)

(
Rϵ

ϕ(f) − Rϵ
ϕ,∗
)

− δ.

In particular, the constant in Theorem 9 is overestimated by factor of at most 1/(1/2 + α) ≤ 2. However,
this example demonstrates that Theorem 9 is tight when α = 1/2.

The constant in Theorem 9 is known to be sub-optimal when α < 1/2. In particular, Theorem 4 of
Frank (2025) proves that Rϵ(f) − Rϵ

∗ ≤ (1/2)/(ϕ(0) − C∗
ϕρ

(1/2))(Rϵ
ϕρ

(f) − Rϵ
ϕρ,∗) for the ρ-margin loss

ϕρ(α) = min(1, max(0, 1 − α/ρ)). We conjecture that the tight constant in Theorem 9 is in fact (1/2 +
α)/(ϕ(0) − C∗

ϕ(1/2 − α)). Together, these observations indicate that the bound in Theorem 9 captures the
correct order of dependence on α and ϕ, and that only the numerican constant can potentially be improved.

5 Proof of Theorem 11

Before proving Theorem 11, we will show that this bound is non-vacuous when the adversarial Bayes classifier
is unique up to degeneracy. The function h(z) = P(|η∗ − 1/2| ≤ z) is a cdf, and is thus right-continuous in
z. Furthermore, if the adversarial Bayes classifier is unique up to degeneracy, then h(0) = 0. The following
lemma implies that if H = conc(h) then H is continuous at 0 with H(0) = 0. See Appendix E for a proof.
This result implies that the bound in Theorem 11 is non-vacuous.
Lemma 7. Let h : [0, 1/2] → R be a non-decreasing function with h(0) = 0 and h(1/2) = 1 that is right-
continuous at 0. Then conc(h) is non-decreasing, continuous on [0, 1/2], and conc(h)(0) = 0.

The first step in proving Theorem 11 is showing an analog of Theorem 9 with α = 0 for which the linear
function is replaced by an η-dependent concave function.
Proposition 2. Let Φ be a concave non-decreasing function for which C(η, α)−C∗(η) ≤ Φ(Cϕ(η, α)−C∗

ϕ(η))
for any η ∈ [0, 1] and α ∈ R. Let P∗

0, P∗
1 be any two maximzers of R̄ϕ for which P∗(η∗ = 1/2) = 0, where

P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗. Let G : [0, ∞) → R be any non-decreasing concave function for which the

quantity

K =
∫ 1

G(ϕ(0) − C∗
ϕ(η∗))dP∗

13
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is finite. Then Rϵ(f) − Rϵ
∗ ≤ Φ̃(Rϵ

ϕ(f) − Rϵ
ϕ,∗), where

Φ̃(z) = 4

√
KG

(
1
4z

)
+ 2Φ

(
1
2z

)
(34)

The proof strategy mirrors that of Theorem 9, but with Φ and G replacing the fixed constant bound.

Uniqueness up to degeneracy and Theorem 1 guarantee that the denominator ϕ(0) − C∗
ϕ(η∗) is strictly

positive P∗-a.e. The function Ψ−1 in Theorem 2 and the surrogate bounds of Zhang (2004) provide examples
of candidate functions for Φ. As before, this result is proved by dividing the risks Rϵ

ϕ, Rϵ as the sum of
four terms as in (19), (20) and then bounding these quantities over the sets Dk, Ek defined in (25),(26)
separately.

The factor of 1/4 in (34) arises as an artifact of the proof technique: one factor of 2 from averaging over two
sets D1, E1, (see (56) in Appendix F), and another factor of 2 from combining the bounds associated with
the two integrals corresponding to class 0 and class 1(see Equations (54) and (56) in Appendix F).

We now turn to the problem of identifying functions G for which the constant K in the preceding proposition
is guaranteed to be finite when the adversarial Bayes classifier is unique, but distribution dependent. Observe
that if h is the cdf of |η − 1/2| and h is continuous, then

∫
1/hrdh is always finite for r ∈ (0, 1). This

calculation suggests Φ = h ◦ Ψ−1, with Ψ defined in Theorem 2. To ensure the concavity of G, we instead
select G = H ◦ Ψ−1 with H = conc(h).
Lemma 8. Assume C∗

ϕ(1/2) = ϕ(0). Let P1, P0, P∗
1, P∗

0, ϕ, H, and Ψ be as in Theorem 11. Let Λ(z) =
Ψ−1(min(z, ϕ(0))). Then for any r ∈ (0, 1),

Rϵ(f) − Rϵ
∗ ≤ Φ̃(Rϵ

ϕ(f) − Rϵ
ϕ,∗) (35)

with

Φ̃(z) = 4

√
1

1 − r
H

(
1
2Λ
(

1
4z

))r

+ 2Λ
(z

2

)
. (36)

Proof. For convenience, let G = (H ◦ 1
2 Λ)r. Then G is concave because it is the composition of a concave

function and an increasing concave function. We will verify that K is finite and yields the constant in the
bound:

K =
∫ 1

G(ϕ(0) − C∗
ϕ(η∗))dP∗ ≤ 1

1 − r

First, ∫ 1
G(ϕ(0) − C∗

ϕ(η∗))dP∗ =
∫ 1

H(|η∗ − 1/2|)r
dP∗ =

∫
[0, 1

2 ]

1
H(s)r

dP∗♯s =
∫

(0, 1
2 ]

1
H(s)r

dP∗♯s

with s = |η∗ − 1/2|. The assumption P∗(|η∗ = 1/2|) = 0 allows us to drop 0 from the domain of integration.
Because the function H is continuous on (0, 1] by Lemma 7, this last expression can be evaluated as a
Riemann-Stieltjes integral with respect to the function h(s) = P(|η∗ − 1/2| ≤ s):

∫
(0, 1

2 ]

1
H(s)r

dP∗♯s =
∫ 1/2

0

1
H(s)r

dh (37)

This result is standard when P∗ is Lebesgue measure, (see for instance Theorem 5.46 of Wheeden & Zygmund
(1977)). We prove equality in (37) for strictly decreasing functions in Proposition 4 in Appendix G.1.

Finally, the integral in (37) can be bounded as∫ 1
H(s)r

dh ≤ 1
1 − r

(38)
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If h were differentiable, then the chain rule would imply∫ 1
H(s)r

dh ≤
∫ 1

h(s)r
dh =

∫ 1
2

0

1
h(s)r

h′(s)dz = 1
1 − r

h(s)1−r

∣∣∣∣ 1
2

0
≤ 1

1 − r
.

This calculation is more delicate for non-differentiable H; we formally prove inequality in (38) in Ap-
pendix G.2.

This calculation proves the inequality (35) with Φ̃ as (36)

To obtain the bound in Theorem 11, first observe that the concavity of Λ together with the fact that Λ(0) = 0
implies that 2Λ(z/2) ≤ 4Λ(z/4). Next, minimizing the bound in Lemma 8 over r then produces Theorem 11,
see Appendix H for details.

6 Proof of Theorems 10 and 12

The main insight behind Theorems 10 and 12 is that a transport map that realizes the optimal adversarial
perturbations also preserves optimality when restricted to certain subsets of Rd, allowing a reduction from
the global to a local problem in both the dual and primal formulations. The following lemma formalizes
the fact that under a transport map structure, restricting the primal problem to the pre-image of a set Q
corresponds exactly to restricting the dual maximizers to Q itself.
Lemma 9. Let P0,P1 be a data distribution and let P∗

0 ∈ B∞
ϵ (P0),P∗

1 ∈ B∞
ϵ (P1) maximize R̄ϕ. Assume

there exists transport maps T0, T1 for which P∗
i = Pi♯Ti with ∥Ti(x) − x∥ ≤ ϵ. Let Q be any set and define

Ui = T −1
i (Q).

If the data is distributed according to P0|U0 ,P1|U1 , then P∗
0|Q, P∗

1|Q maximize R̄ϕ over B∞
ϵ (P0|U0)×B∞

ϵ (P1|U1).

In the remainder of this section it will be useful to include the data distribution in the notation for the
primal problem. Thus, for the remainder of this section, we define

Rϵ
ϕ(f ;P0,P1) =

∫
Sϵ(ϕ ◦ f)dP1 +

∫
Sϵ(ϕ ◦ −f)dP0 Rϵ(f ;P0,P1) =

∫
Sϵ(1f≤0)dP1 +

∫
Sϵ(1f>0)dP0 (39)

Similarly, we’ll denote

Rϵ
ϕ,∗(P0,P1) = inf

f
Rϵ

ϕ(f ;P0,P1), Rϵ
∗(P0,P1) = inf

f
Rϵ(f ;P0,P1) (40)

Observe that for any two sets U0, U1,

Rϵ
ϕ(f ;P0,P1) = Rϵ

ϕ(f ;P0|U0 ,P1|U1) + Rϵ
ϕ(f ;P0|UC

0
,P1|UC

1
)

This decomposition reflects the fact that the adversarial surrogate risk is additive over disjoint measurable
partitions of the data space. If furthermore these sets are induced by transport maps, then the optimal risks
also follow this split.
Lemma 10. Let P∗

0,P∗
1, T0, T1, U0, U1 and Q be as in Lemma 9, and define P∗ = P∗

0 + P∗
1, η∗ = dP∗

1/dP∗.
Then

Rϵ
ϕ,∗(P0,P1) = Rϵ

ϕ,∗(P0|U0 ,P1|U1) + Rϵ
ϕ,∗(P0|UC

0
,P1|UC

1
)

and furthermore, Rϵ
ϕ,∗(P0|UC

0
,P1|UC

1
) =

∫
QC C∗

ϕ(η∗)dP∗.

See Appendix I.2 for a proof of Lemmas 9 and 10.

Proof of Theorem 12. Let Q = {x′ : η∗(x′) = 1/2}. Then Lemma 9 applied to QC shows that (P∗
0|QC ,P∗

1|QC )
maximize R̄ϕ over B∞

ϵ (P0|U0) × B∞
ϵ (P1|U1), with U0 = T −1

0 (QC) and U1 = T −1
1 (QC). Theorem 11
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and Lemma 10 imply that

Rϵ(f ;P0|U0 ,P1|U1) − Rϵ
∗(P0|U0 ,P1|U1) ≤ Φ̃

(
Rϵ

ϕ(f ;P0|U0 ,P1|U1) − Rϵ
ϕ∗(P0|U0 ,P1|U1)

)
≤ Φ̃

(
Rϵ

ϕ(f ;P0,P1) − Rϵ
ϕ∗(P0,P1)

)
.

Next, by Lemma 10, adding Rϵ(f ;P0|UC
0

,P1|UC
1

) − Rϵ
∗(P0|UC

0
,P1|UC

1
) to both sides of the inequality above

results in

Rϵ(f ;P0,P1) − Rϵ
∗(P0,P1) ≤ Φ̃

(
Rϵ

ϕ(f ;P0,P1) − Rϵ
ϕ∗(P0|U0 ,P1)

)
+ Rϵ(f ;P0|UC

0
,P1|UC

1
) −

∫
Q

C∗(η∗)dP∗.

The fact that C∗(η∗) = 1/2 on Q while Sϵ(1f≤0) ≤ 1, Sϵ(1f>0) ≤ 1 implies that Rϵ(f ;P0|UC
0

,P1|UC
1

) −∫
Q

C∗(η∗)dP∗ ≤ 1
2P(η∗ = 1/2). Thus, the excess risk contribution from the region Q is at most P∗(η∗ =

1/2)/2.

The proof of Theorem 10 follows the same steps, except that we take Q = {x′ : |η(x′) − 1/2| < α}, see
Appendix I.3 for a proof.

7 Related Works

Surrogate Risk Bounds: The statistical consistency of surrogate risks in both the standard and adver-
sarial context has been widely studied. Bartlett et al. (2006); Zhang (2004) establish surrogate risk bounds
that apply to the class of all measurable functions while Lin (2004); Steinwart (2007) prove further results on
consistency in the standard setting. Frongillo & Waggoner (2021) study the optimally of such bounds, and
Bao (2023) derive bounds using the modulus of convexity of C∗

ϕ to construct surrogate risk bounds. Several
works (Philip M. Long, 2013; Mingyuan Zhang, 2020; Awasthi et al., 2022; Mao et al., 2023a;b; Awasthi et al.,
2023b) study consistency within a restricted function class; a concept known as H-consistency. Mahdavi
et al. (2014) combine surrogate risk bounds with surrogate generalization bounds to study the generalization
of the classification error.

Adversarial Surrogate Risk Bounds: Most closely related to our results are Li & Telgarsky (2023);
Mao et al. (2023a). Li & Telgarsky (2023) derive a surrogate bound for convex losses in which the threshold
in (10) is optimized rather than fixed at zero. Mao et al. (2023a) establish an adversarial surrogate bound
for a modified ρ-margin loss.

Adversarial Consistency: In the adversarial setting, Meunier et al. (2022); Frank & Niles-Weed (2024a)
characterize which losses are adversarially consistent for all data distributions. Frank (2025) show that under
reasonable distributional assumptions, a consistent loss is adversarially consistent for a specific distribution
iff the adversarial Bayes classifier is unique up to degeneracy. Awasthi et al. (2021) study adversarial
consistency for a well-motivated class of linear functions while Awasthi et al. (2023b); Mao et al. (2023a)
study H-consistency in the adversarial setting for specific surrogate risks. Standard and adversarial surrogate
risk bounds are a central tool in the derivation of the H-consistency bounds in this line of research. Whether
the adversarial surrogate bounds presented in this paper could result in improved adversarial H-consistency
bounds remains an open problem.

The Adversarial Bayes Classifier: Our proofs draw on prior work that investigates adversarial risks
and adversarial Bayes classifiers. Bungert et al. (2021); Pydi & Jog (2021; 2020); Bhagoji et al. (2019);
Awasthi et al. (2023a) establish existence results for the adversarial Bayes classifier, while Frank & Niles-
Weed (2024b); Pydi & Jog (2020; 2021); Bhagoji et al. (2019); Frank (2025) prove minimax theorems for
adversarial surrogate and classification risks. Pydi & Jog (2020) use such results to analyze the adversarial
Bayes classifier, and Frank (2024) employ them to study uniqueness.
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Sample Complexity and Surrogate Risks: The bound of Theorem 2 can be linear even for convex loss
functions. For the hinge loss ϕ(α) = max(1 − α, 0), the function ϕ computes to ϕ(θ) = |θ|. Mahdavi et al.
(2014) emphasize the importance of a linear convergence rate in a surrogate risk bound. They note that
convex surrogates with favorable sample complexity often fail to satisfy strong surrogate risk bounds, due to
Theorem 2 Frongillo & Waggoner (2021): convex losses which are locally strictly convex and Lipschitz achieve
at best a square root surrogate risk rate. Thus, Proposition 1 suggests that favorable sample complexity
guarantees for convex surrogates may require distributional conditions such as Massart’s noise condition,
under which Massart & Nédélec (2006) also show improved sample complexity.

8 Conclusion

In conclusion, we prove surrogate risk bounds for adversarial risks. When ϕ is adversarially consistent or the
distribution of optimal adversarial attacks satisfies Massart’s noise condition, we obtain a linear surrogate
risk bound. In the general case, we prove a concave distribution-dependent bound. Understanding the
optimality of the concave bound remains an open problem, as does understanding how these bounds interact
with the sample complexity of estimating the surrogate risk. While related questions have been studied in
the standard setting (Frongillo & Waggoner, 2021; Mahdavi et al., 2014), the adversarial context remains
largely unexplored. Advancing these directions could bridge the current gap between theoretical guarantees
and practical robustness in adversarial learning.
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A Proof of Theorem 1

Lemma 11. Assume ϕ is consistent. Then C∗
ϕ(η) = ϕ(0) implies that η = 1/2.

This result appeared as Lemma 7 of Frank (2025).

Proof. If ϕ is consistent and 0 minimizes Cϕ(η, α), then 0 must also minimize C(η, α) = η1α≤0 +(1−η)1α>0
and consequently η ≤ 1/2. However Cϕ(η, α) = Cϕ(1 − η, −α) so that 0 must minimize C(1 − η, −α) as well.
Consequently, 1 − η ≤ 1/2 and thus η must actually equal 1/2.

Proof of Theorem 1. Forward direction: Assume that ϕ is consistent. Note that C∗
ϕ(η) ≤ Cϕ(η, 0) = ϕ(0)

for any η. Thus Lemma 11 implies that C∗
ϕ(η) < ϕ(0) for η ̸= 1/2.

Backward direction: Assume that C∗
ϕ(η) < ϕ(0) for all η ̸= 1/2. Notice that if η = 1/2, C(1/2, α) is

constant in α so any sequence αn minimizes C(1/2, ·). We will show if η > 1/2 and αn is a minimizing
sequence of Cϕ(η, ·), then αn > 0 for sufficiently large n, and thus must also minimize C(η, ·). An analogous
argument will imply that if η < 1/2, any minimizing sequence of Cϕ(η, ·) must also minimize C(η, ·) as well.

Assume η > 1/2 and let αn be any minimizing sequence of Cϕ(η, ·). Let α∗ be a limit point of the sequence
αn in the extended real number line R. Then α∗ is a minimizer of Cϕ(η, α). Next, observe that one of ϕ(α∗),
ϕ(−α∗) is larger that or equal to ϕ(0) and the other is less than or equal to ϕ(0). As η > 1/2 and α∗ is a
minimizer of Cϕ(η, ·) and Cϕ(η, α∗) < ϕ(0), one can conclude that ϕ(α∗) < ϕ(0) and consequently α∗ > 0.

Therefore, every limit point of the sequence {αn} is strictly positive. Consequently, one can conclude that
αn > 0 for sufficiently large n.

B Linear Surrogate Risk Bounds—Proof of Proposition 1

In this appendix, we will find it useful to study the function

C−
ϕ (η) = inf

z(2η−1)≤0
Cϕ(η, z)

introduced by Bartlett et al. (2006). This function maps η to the smallest value of the conditional ϕ-risk
assuming an incorrect classification. The symmetry Cϕ(η, α) = Cϕ(1 − η, −α) implies C−

ϕ (η) = C−
ϕ (1 − η).

Further, the function C−
ϕ is concave on each of the intervals [0, 1/2] and [1/2, 1], as it is an infimum of linear

functions on each of these regions. The next result examines the monotonicity properties of C∗
ϕ and C−

ϕ .
Lemma 12. The function C∗

ϕ is non-decreasing on [0, 1/2] and non-increasing on [1/2, 1]. In contrast, C−
ϕ

is non-increasing on [0, 1/2] and non-decreasing on [1/2, 1]

Proof. The symmetry C∗
ϕ(η) = C∗

ϕ(1−η) and C−
ϕ (η) = C−

ϕ (1−η) implies that it suffices to check monotonicity
on [0, 1/2]. Observe that

Cϕ(η, α) − Cϕ(η, −α) = η(ϕ(α) − ϕ(−α)) + (1 − η)(ϕ(−α) − ϕ(α)) = (2η − 1)(ϕ(α) − ϕ(−α)).

If η ≤ 1/2, then this quantity is non-negative when α ≤ 0. Therefore, when computing C∗
ϕ over [0, 1/2], it

suffices to minimize Cϕ(η, α) over α ≤ 0. In other words, for η ≤ 1/2,

C∗
ϕ(η) = inf

α
Cϕ(η, α) = inf

α≤0
Cϕ(η, α)

For any fixed α ≤ 0, the quantity Cϕ(η, α) is non-increasing in η and thus C∗
ϕ(η1) ≤ C∗

ϕ(η2) when η1 ≤ η2 ≤
1/2.

In contrast, for any α ≥ 0, the quantity Cϕ(η, α) is non-decreasing in η and thus C−
ϕ (η1) ≥ C−

ϕ (η2) when
η1 ≤ η2 ≤ 1/2.
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Next we’ll prove a useful lower bound on C−
ϕ .

Lemma 13. For all η ∈ [0, 1],

C−
ϕ (η) ≥ |1 − 2η|ϕ(0) + 2 min(η, 1 − η)C∗

ϕ(η) (41)

Proof. First, assume that η ≤ 1/2 and observe that η is the convex combination η = 2η · 1/2 + (1 − 2η) · 0.
By the concavity of C−

ϕ on [0, 1/2],

C−
ϕ (η) = C−

ϕ

(
2η · 1

2 + (1 − 2η) · 0
)

≥ (1 − 2η)C−
ϕ (0) + 2ηC−

ϕ

( 1
2
)

However, C−
ϕ (0) = ϕ(0) while C−

ϕ (1/2) = C∗
ϕ(1/2). Further, Lemma 12 implies that C∗

ϕ(1/2) ≥ C∗
ϕ(η),

yielding the inequality
C−

ϕ (η) ≥ (1 − 2η)ϕ(0) + 2ηC∗
ϕ(η)

Symmetry C−
ϕ (η) = C−

ϕ (1 − η) then implies (41).

Proof of Proposition 1. If C(η, f)−C∗(η) = 0 then (8) holds trivially. Otherwise, C(η, f)−C∗(η) = |2η −1|.
If C(η, f) = |2η − 1|, then

C(η, f) − C∗(η) = |2η − 1| = |2η − 1| ·
ϕ(0) − C∗

ϕ(η)
ϕ(0) − C∗

ϕ(η)

≤ 1
ϕ(0) − C∗

ϕ(η)
((

|2η − 1|ϕ(0) + (1 − |2η − 1|)C∗
ϕ(η)

)
− C∗

ϕ(η)
) (42)

At the same time, because |η − 1/2| ≥ α P-a.e. Lemma 12 implies that C∗
ϕ(η) ≤ C∗

ϕ(1/2 − α) P-a.e.
Furthermore, the relation 2 min(η, 1 − η) = 1 − |1 − 2η| together with (41) shows that

|2η − 1|ϕ(0) + (1 − |2η − 1|)C∗
ϕ(η) ≤ C−

ϕ (η).

Therefore, (42) is bounded above by

≤ 1
ϕ(0) − C∗

ϕ

( 1
2 − α

) (C−
ϕ (η) − C∗

ϕ(η)
)

≤ 1
ϕ(0) − C∗

ϕ

( 1
2 − α

) (Cϕ(η, f) − C∗
ϕ(η)

)
. (43)

The last equality follows from the supposition C(η, f) − C∗(η) = |2η − 1|, as it implies (2η − 1)f ≤ 0, and
thus Cϕ(η, f) ≥ C−

ϕ (η). Consequently, (43) implies (8).

Integrating (8) with respect to P then produces the surrogate bound (9).

C Proof of Lemma 1

Proof of Lemma 1. If x′ ∈ Bϵ(x) then Sϵ(g)(x) ≥ g(x′). Thus if γ is a coupling between Q and Q′ supported
on ∆ϵ, then Sϵ(g)(x) ≥ g(x′) γ-a.e. Integrating this inequality in γ produces∫

Sϵ(g)dQ ≥
∫

gdQ′.

Taking the supreumum over all Q ∈ B∞
ϵ (Q) then proves the result.
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D Proof of Item 1), Theorem 8

We will work with an alternative primal problem from Frank & Niles-Weed (2024b) that will make it easier
to study the dual. Consider minimizing

Θ(h0, h1) =
∫

Sϵ(h1)dP1 +
∫

Sϵ(h0)dP0

over the convex set

Sϕ =
{

(h0, h1) : h0, h1 : Kϵ → R Borel, 0 ≤ h0, h1 and for
all x ∈ Rd, η ∈ [0, 1], ηh1(x) + (1 − η)h0(x) ≥ C∗

ϕ(η)

}
(44)

Then strong duality holds with Θ in place of Rϵ
ϕ. Furthermore, there exist minimizers over the set of R-valued

functions, where R = R ∪ {−∞, +∞}.
Theorem 13. Define R̄ϕ as in (13).

inf
(h0,h1)∈Sϕ

Θ(h0, h1) = sup
P′

0∈B∞
ϵ (P0)

P′
1∈B∞

ϵ (P1)

R̄ϕ(P′
0,P′

1)

Furthermore, the infimum is attained at some R-valued h∗
0, h∗

1.

See (Frank & Niles-Weed, 2024b, Lemma 14,Lemma 21) for a proof of this result. Theorem 7 already
implies that the dual problem attains its supremum. Complimentary slackness conditions further characterize
minimizers and maximizers.
Theorem 14 (Complementary Slackness). The pair (h∗

0, h∗
1) minimize Θ over Sϕ and the measures (P∗

0,P∗
1)

maximize R̄ϕ over B∞
ϵ (P0) × B∞

ϵ (P1) iff the following two conditions hold:

1) ∫
Sϵ(h∗

1)dP1 =
∫

h∗
1dP∗

1 and
∫

Sϵ(h∗
0)dP0 =

∫
h∗

0dP∗
0

2)
η∗h∗

1 + (1 − η∗)h∗
0 = C∗

ϕ(η∗) P∗-a.e.

See Frank & Niles-Weed (2024b, Lemma 15) for a proof. Theorems 13 and 14 apply to the conditional risk
C∗(η) as C∗(η) = C∗

ϕ(η) for the hinge ϕ(α) = 1
2 (1 − α)+.

We will use a characterization of consistency similar to Theorem 1 in the proof of Item 1), Theorem 8.
Theorem 15. A loss function ϕ is consistent iff C∗

ϕ(η) has a strict maximum at 1/2.

Proof. If C∗
ϕ(1/2) = ϕ(0), this statement is exactly Theorem 1. If C∗

ϕ(1/2) < ϕ(0), Frank & Niles-Weed
(2024a, Proposition 3) implies that ϕ is consistent. It remains to show that if C∗

ϕ(1/2) < ϕ(0), then C∗
ϕ(η)

has a strict maximum at 1/2. As every sequence has a convergent subsequence in R, one can assume that
Cϕ(1/2, ·) has a minimizer α∗ and C∗

ϕ(1/2) < ϕ(0) implies α∗ ̸= 0. Symmetry of Cϕ(1/2, ·) implies that we
can assume α∗ > 0, and thus ϕ(α∗) ≤ ϕ(0) and ϕ(−α∗) ≥ ϕ(0). The fact that C∗

ϕ(1/2, α∗) < ϕ(0) implies
that in fact ϕ(α∗) < ϕ(0) ≤ ϕ(−α∗). Next, observe that for any α,

Cϕ(η, α) = 1
2(ϕ(α) + ϕ(−α)) + (η − 1

2)(ϕ(α) − ϕ(−α))

Thus, one can bound C∗
ϕ(η) by

C∗
ϕ(η) ≤ Cϕ(η, α∗) = 1

2(ϕ(α∗)+ϕ(−α∗))+(η −1/2)(ϕ(α∗)−ϕ(−α∗)) = C∗
ϕ(1/2)+(η −1/2)(ϕ(α∗)−ϕ(−α∗))
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Thus if η > 1/2, then C∗
ϕ(η) < C∗

ϕ(1/2). Symmetry implies that C∗
ϕ(η) < C∗

ϕ(1/2) for all η. Thus C∗
ϕ has a

strict maximum at 1/2.

Next, Theorem 14 implies that minimizers of Θ assume their suprema. This observation will make it easier
to work with these functions.
Lemma 14. If (h∗

0, h∗
1) minimizes Θ over Sϕ, then the functions h∗

0, h∗
1 assume their suprema P0-a.e. and

P1-a.e. respectively

Proof. We will show the statement for h∗
1, the argument for h∗

0 is analogous. Let γ∗
1 be the coupling between

P1 and P∗
1 that achieves the minimum W∞ distance. Lemma 1 and Item 1) of Theorem 14 implies that

Sϵ(h1)(x) = h1(x′) γ∗
1 -a.e.

and thus h∗
1 assumes its maximum over closed ϵ-balls P∗

1-a.e.

Lemma 15. If (h∗
0, h∗

1) ∈ Sϕ, then at any x either h∗
1(x) ≥ C∗

ϕ( 1
2 ) or h∗

0(x) > C∗
ϕ( 1

2 ).

Proof. If (h∗
0, h∗

1) ∈ Sϕ, then at any point x,

1
2h∗

0(x) + 1
2h∗

1(x) ≥ C∗
ϕ(1

2).

The inequality h∗
0(x) ≤ C∗

ϕ(1/2) implies h∗
1(x) ≥ C∗

ϕ(1/2). Thus either h∗
0(x) > C∗

ϕ(1/2) or h∗
1(x) ≥ C∗

ϕ(1/2)
at any point.

Proof of Item 1) of Theorem 8 . Let ϕhinge(α) = 1
2 (1 − α)+, then C∗

ϕhinge
(η) = C∗(η).

Let (h∗
0, h∗

1) minimize Θ over Sϕ and (P∗
0,P∗

1) maximize R̄ϕ over B∞
ϵ (P0) × B∞

ϵ (P1). We will show that the
functions defined by

h̃∗
1(x) = 1h∗

1(x)≥C∗
ϕ

( 1
2 ) h̃∗

0(x) = 1h∗
0(x)>C∗

ϕ
( 1

2 )

maximize Θ over Sϕhinge and (P∗
0,P∗

1) maximize R̄ϕhinge by verifying the constraint (h̃∗
0, h̃∗

1) ∈ Sϕhinge and the
complimentary slackness conditions. The proof thus consists of three steps: verifying (h̃∗

0, h̃∗
1) ∈ Sϕhinge , and

checking the two complementary slackness conditions in Theorem 14.

1) Verifying the constraint defining Sϕhinge : Observe that Lemma 15 implies that at any x, at
least one of h̃∗

0(x) and h̃∗
1(x) is 1, and thus

ηh∗
1(x) + (1 − η)h∗

0(x) ≥ min(η, 1 − η) = C∗
ϕhinge

(η)

2) Verifying Item 1) of Theorem 14: Observe that Lemma 14 implies that Sϵ(1h∗
1≥C∗

ϕ
(1/2))(x) =

1Sϵ(h∗
1)(x)≥C∗

ϕ
(1/2) P∗

1-a.e. Subsequently, the Item 1) of Theorem 14 implies that

Sϵ(1h∗
1≥C∗

ϕ
(1/2))(x) = 1h∗

1(x′)≥C∗
ϕ

(1/2) γ∗
1 -a.e.,

verifying the first complimentary slackness condition for h̃∗
1. Analogous reasoning shows that

Sϵ(1h∗
0>C∗

ϕ
(1/2))(x) = 1h∗

0(x′)>C∗
ϕ

(1/2) γ∗
0 -a.e.

3) Verifying Item 2) of Theorem 14: Theorem 14 implies that η∗h∗
1(x′)+(1−η∗)h∗

0(x′) = C∗
ϕ(η∗) ≤

C∗
ϕ(1/2), and thus Lemma 15 implies that exactly one of h∗

1(x′) and h∗
0(x′) equals 1 and the other

equals 0. We’ll consider the cases η∗(x′) < 1/2, η∗(x′) = 1/2, and η∗(x′) > 1/2 separately. In these
three separate cases, we will explicitly use the formula C∗

ϕhinge
(η) = min(η, 1 − η).
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When η∗(x′) = 1/2: As exactly one of h∗
0(x′) and h∗

1(x′) is 1:

1
2 h̃∗

0(x′) + 1
2 h̃∗

1(x′) = 1
2 = C∗

ϕhinge

(
1
2

)
When η∗(x′) < 1/2: Observe that if h∗

0(x′) > h∗
1(x′), then

η∗h∗
0(x′) + (1 − η∗)h∗

1(x′) < η∗h∗
1(x′) + (1 − η∗)h∗

0(x′) = C∗
ϕ(η∗),

which would violate the constraint on Sϕ. Therefore, h∗
0(x′) ≤ h∗

1(x′). Next, Theorem 15
implies that η∗h∗

1(x′) + (1 − η∗)h∗
0(x′) = C∗

ϕ(η∗) < C∗
ϕ(1/2). These two statements together

with Lemma 15 imply that h∗
0(x′) < C∗

ϕ(1/2) and h∗
1(x′) ≥ C∗

ϕ(1/2). However, h∗
0(x′) =

C∗
ϕ(1/2) would still violate η∗h∗

1(x′) + (1 − η∗)h∗
0(x′) < C∗

ϕ(1/2) and therefore, h∗
0(x′) <

C∗
ϕ(1/2). Therefore,

η∗h̃∗
1 + (1 − η∗)h̃∗

0 = η∗ = C∗
ϕhinge

(η∗)

When η∗(x′) > 1/2: Argument is analogous to the previous case.

E Proof of Lemma 7

We define the concave conjugate of a function h as

h∗(y) = inf
x∈dom(h)

yx − h(x)

Recall that conc(h) as defined in (15) is the biconjugate h∗∗. Consequently, conc(h) can be expressed as

conc(h)(x) = inf{ℓ(x) : ℓ linear, and ℓ ≥ h on dom(h)} (45)

Lemma 7 is a consequence of the properties of concave conjugates.
Lemma 16. Let h : [a, b] → R be a non-decreasing function. Then conc(h) is non-decreasing as well.

Proof. We will argue that if h is non-decreasing, then it suffices to consider the infimum in (45) over non-
decreasing linear functions. Observe that if ℓ is a decreasing linear function with ℓ(x) ≥ h(x) then the
constant function ℓ(b) satisfies

ℓ(x) ≥ ℓ(b) ≥ h(b) ≥ h(x)

for any x ∈ [a, b]. Therefore,

conc(h)(x) = inf{ℓ(x) : ℓ linear, non-decreasing, and ℓ ≥ h}

Lemma 17. Let h : [0, b] → R be a non-decreasing function that is right-continuous at zero with h(0) = 0.
Then supy h∗(y) = 0. Furthermore, there is a sequence yn with yn → ∞ and limn→∞ h∗(yn) = 0.

Proof. First, notice that
h∗(y) = inf

x∈[0,b]
yx − h(x) ≤ y · 0 − h(0) = 0 (46)

for any y ∈ R. It remains to show a sequence yn for which limn→∞ h∗(yn) = 0.

We will argue than any sequence yn with

yn > nh(b) ≥ sup
x∈[1/n,b]

h(x)
x

(47)
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satisfies this property.

If x ∈ [1/n, b] and yn satisfies (47) then

xyn − h(x) = x

(
yn − h(x)

x

)
> 0

and thus (46) implies that
h∗(yn) = inf

x∈[0,1/n)
xyn − h(x)

The monononicity of h then implies that

h∗(yn) ≥ −h(1/n)

and
lim

n→∞
h∗(yn) ≥ 0

because h is right-continuous at zero. This relation together with (46) implies the result.

Proof of Lemma 7. Lemma 16 implies that conc(h) is non-decreasing. Standard results in convex analysis
imply that conc(h) is continuous on (0, 1/2) (Hiriart-Urruty & Lemaréchal, 2001, Lemma 3.1.1) and upper
semi-continuous on [0, 1/2] (Hiriart-Urruty & Lemaréchal, 2001, Theorem 1.3.5). Thus monotonicity implies
that for all x ∈ [0, 1/2], conc(h)(x) ≤ conc(h)(1/2) and thus limx→1/2 conc(h)(x) ≤ conc(h)(1/2). We will
show the opposite inequality, implying that conc h is continuous at 1/2.

First, as the constant function h(1/2) is an upper bound on h, one can conclude that conc(h)(1/2) = h(1/2) =
1. Next, recall that conc(h) can be expressed as an infimum of linear functions as in (45). If ℓ ≥ h, then
ℓ(0) ≥ 0 and ℓ(1/2) ≥ 1. Therefore,

ℓ( 1
2 − δ) = ℓ((1 − 2δ) · 1

2 + 2δ · 0) = (1 − 2δ)ℓ( 1
2 ) + 2δℓ(0) ≥ 1 − 2δ.

Therefore, the representation (45) implies that conc(h)(1/2 − δ) ≥ 1 − 2δ. Taking δ → 0 proves that
limx→1/2 conc(h)(x) ≥ 1. Thus, conc(h) is continuous at 1/2, if viewed as a function on [0, 1/2].

Next, Lemma 17 implies that h∗∗(0) = 0:

h∗∗(0) = inf
y∈R

−h∗(y) = − sup
y∈R

h∗(y) = 0.

Finally, it remains to show that h∗∗ is continuous at 0. The monotonicity of h∗∗ implies that limy→0+ h∗∗(y) =
infy∈(0,1/2] h∗∗(y) and consequently

lim
y→0+

h∗∗(y) = inf
y∈(0,1/2]

inf
x∈R

yx − h∗(x) = inf
x∈R

inf
y∈(0,1/2]

yx − h∗(x) = inf
x∈R

−h∗(x) +
{

0 if x ≥ 0
x
2 if x < 0

= min
(

inf
x≥0

−h∗(x), inf
x<0

x

2 − h∗(x)
)

(48)

However, Lemma 17 implies that
inf
x≥0

−h∗(x) = inf
x∈R

−h∗(x) = 0 (49)

Notice that if x ≤ 0,

h∗(x) = inf
z∈[0,1/2]

xz − h(z) = x

2 − h

(
1
2

)
= x

2 − 1 (50)

Consequently, (49) and (50) implies that (48) evaluates to 0.
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F Proof of Proposition 2

A modified version of Jensen’s inequality will be used at several points in the proof of Proposition 2.
Lemma 18. Let G be a concave function with G(0) = 0 and let ν be a measure with ν(Rd) ≤ 1. Then∫

G(f)dν ≤ G

(∫
fdν

)
Proof. The inequality trivially holds if ν(Rd) = 0, so we assume ν(Rd) > 0. Jensen’s inequality implies that∫

G(f)dν = ν(Rd)
(

1
ν(Rd)

∫
G(f)dν

)
≤ ν(Rd)G

(
1

ν(Rd)

∫
fdν

)
.

As G(0) = 0, concavity implies that

ν(Rd)G
(

1
ν(Rd)

∫
fdν

)
= ν(Rd)G

(
1

ν(Rd)

∫
fdν

)
+ (1 − ν(Rd)G(0) ≤ G

(∫
fdν

)

To facilitate the application of Jensen’s inequality, the proof will be carried out using integrated quantities.
Let P∗

0,P∗
1 be any maximizers of R̄ϕ, which also maximize R̄ by Theorem 8. Set P∗ = P∗

0 +P∗
1, η∗ = dP∗

1/dP∗.
Define

Proof of Proposition 2. Let γ∗
0 , γ∗

1 be the couplings between P0, P∗
0 and P1, P∗

1 respectively that achieve the
infimum in (11). Define I1(f), I0(f), Iϕ

1 (f), and Iϕ
0 (f) by

I1(f) =
∫

i1(f)dγ∗
1 , Iϕ

1 (f) =
∫

iϕ
1 (f)dγ∗

1 , I0(f) =
∫

i0(f)dγ∗
0 , Iϕ

0 (f) =
∫

iϕ
0 (f)dγ∗

0 .

We will prove I0(f) ≤ 1
2Φ̃
(
2Iϕ

0 (f)
)
. (51) I1(f) ≤ 1

2Φ̃
(
2Iϕ

1 (f)
)

(52)

The concavity of Φ̃ then implies that

Rϵ(f) − Rϵ
∗ = I1(f) + I0(f) ≤ 1

2Φ̃
(
2Iϕ

1 (f)
)

+ 1
2Φ̃
(
2Iϕ

0 (f)
)

≤ Φ̃
(1

22Iϕ
1 (f) + 1

22Iϕ
0 (f)

)
= Φ̃

(
Rϵ

ϕ(f) − Rϵ
ϕ,∗
)
.

We will prove (52), the argument for (51) is analogous. Next, let γ∗
1 be the coupling between P1 and P∗

1
supported on ∆ϵ. The assumption on Φ implies that

C(η∗(x′), f(x′)) − C∗(η∗(x′)) ≤ Φ
(
Cϕ(η∗(x′), f(x′)) − C∗

ϕ(η∗(x′))
)

(53)

and consequently,∫
C(η∗(x′), f(x′)) − C∗(η∗(x′))dγ∗

1 ≤ Φ
(∫

Cϕ(η∗(x′), f(x′)) − C∗
ϕ(η∗(x′))dγ∗

1

)
≤ Φ(Iϕ

1 (f)). (54)

To bound the term Sϵ(1f≤0)(x) − 1f(x′)≤0, we consider two different cases for (x, x′). Define the sets D1,
E1 as in (25), (26). We will show that if T1 is any of the sets D1, E1, then∫

T1

Sϵ(1f≤0)(x) − 1f(x′)≤0dγ∗
1

≤

∫ 1
G
((

ϕ(0) − C∗
ϕ(η∗(x′))

)
/2
)dγ∗

1

 1
2

G

(∫
T1

(
(Sϵ(ϕ ◦ f)(x) − ϕ(f(x′))

)
+
(
Cϕ(η∗(x′), f(x′)) − C∗

ϕ(η∗(x′))
)

dγ∗
1

) 1
2

(55)

27



Published in Transactions on Machine Learning Research (10/2025)

Thus because G is concave and non-decreasing, the composition
√

G is as well. Thus summing the inequality
(55) over T1 ∈ {D1, E1} results in

∫
Sϵ(1f≤0)(x) − 1f(x′)≤0dγ∗

1 ≤ 2

∫ 1
G
(

ϕ(0) − C∗
ϕ(η∗(x′))

)dP∗

 1
2

G

(
1
2Iϕ

1 (f)
) 1

2

(56)

Summing (54) and (56) results in (52).

It remains to show the inequality (55) for the two sets D1, E1.

A) On the set D1:

If Sϵ(1f≤0)(x) = 1f(x′)≤0, then
∫

D1
Sϵ(1f≤0)(x) − 1f(x′)≤0dγ∗

1 = 0 while the left-hand side of (55)
is non-negative by Lemma 1, which implies (55) for T1 = D1.

B) On the set E1:
Lemma 1 then implies that Sϵ(ϕ ◦ f)(x) − ϕ(f(x′)) ≥ 0 γ∗

1 -a.e. and thus Lemma 5 implies

Sϵ(1f≤0)(x) − 1f(x′)≤0 = 1 =

√
G
(

ϕ(0) − C∗
ϕ(η∗(x′))

)
√

G
(

ϕ(0) − C∗
ϕ(η∗(x′))

) ≤

√
G
(
Sϵ(ϕ ◦ f)(x) − ϕ(f(x′))

)√
G
(

ϕ(0) − C∗
ϕ(η∗(x′))

) γ∗
1 -a.e.

(57)
Now the Cauchy-Schwartz inequality and Jensen’s inequality(Lemma 18) imply∫

E1

Sϵ(1f≤0)(x) − 1f(x′)≤0dγ∗
1

≤

∫
E1

1
G
(

ϕ(0) − C∗
ϕ(η∗(x′))

)dγ∗
1

 1
2 (∫

E1

G
(
Sϵ(ϕ ◦ f)(x) − ϕ(f(x′))

)
dγ∗

1

) 1
2

≤

∫ 1
G
(

ϕ(0) − C∗
ϕ(η∗(x′))

)dγ∗
1

 1
2

G

(∫
E1

Sϵ(ϕ ◦ f)(x) − ϕ(f(x′))dγ∗
1

) 1
2

,

(58)

which implies (55).

G Technical Integral Lemmas

In this section, we require several technical facts about Riemann–Stieltjes integrals, which we briefly review
here.

Let g : R → R, h : R → R be functions and let P = {z0, z1, . . . , zK} be a partition of an interval I. Then
the lower and upper sums with respect to g, h, P are defined as

L(g, h, P ) =
K−1∑
k=0

inf
z∈[zk,zk+1]

g(z)(h(zk+1) − h(zk)), U(g, h, P ) =
K−1∑
k=0

sup
z∈[zk,zk+1]

g(z)(h(zk+1) − h(zk))

respectively. When g is non-increasing, these simplify as infz∈[zk,zk+1] g(z) = g(zk+1) and supz∈[zk,zk+1] g(z) =
g(zk).

Riemann–Stieltjes integral
∫

I
gdh can be approximated by upper and lower sums, much as in the classical

Riemann case. The following result records the relevant approximation property:
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Proposition 3. Let
∫

I
gdh be a Riemann-Stieltjes integral. If g is continuous and h is monotone, then the

integral exists. Moreover, for any partition P , L(g, h, P ) ≤
∫

I
gdh ≤ U(g, h, P ). In addition, for any δ > 0,

there exists a partition P for which U(g, h, P ) − δ ≤
∫

I
gdh ≤ L(g, h, P ) + δ.

For details, see Apostol (1974, Theorem 7.17) or Theorem 2.24 of Wheeden & Zygmund (1977) for the
existence statement and Apostol (1974, Theorem 7.27) for a discussion of upper and lower integrals.

G.1 The Lebesgue and Riemann–Stieltjes integral of an increasing function

The goal of this section is to prove (37), or namely:
Proposition 4. Let f be a non-increasing, non-negative, continuous function on an interval [a, b] and let Q
be a finite positive measure. Let z be a random variable distributed according to Q and define h(α) = Q(z ≤
α). Then ∫

(a,b]
f(z)dQ(z) =

∫ b

a

f(α)dh(α)

where the integral on the left is defined as the Lebesgue integral in terms of the measure Q while the integral
on the right is defined as a Riemann–Stieltjes integral.

Proof. Recall that when f is monotonic, the Riemann-Stieltjes integral is the value of the limits∫
fdh = lim

∆αi→0

I−1∑
i=0

f(αi)(h(αi+1) − h(αi)) = lim
∆αi→0

I−1∑
i=0

f(αi+1)(h(αi+1) − h(αi)), (59)

where these limits are evaluated as the size of the partition ∆αi = αi+1 − αi approaches 0 (Apostol, 1974,
Exercise 7.3, Theorem 7.19), while the Lebesgue integral

∫
fdQ is defined as∫

fdQ = sup
{∫

gdQ : g ≤ f, g simple function,
}

.

The limits in (59) are upper and lower sums because f is monotonic, and thus by Proposition 3, for any
δ > 0, one can choose a partition {αi}I

i=0 for which each of the sums in (59) is within δ of
∫

fdh.

Next, consider two simple functions g1, g2 defined according to

g1(z) =
I−1∑
i=0

f(αi+1)χz∈(αi,αi+1], g2(z) =
I−1∑
i=0

f(αi)χz∈(αi,αi+1].

By construction, g1(x) ≤ f(x) ≤ g2(x) for all x ∈ (a, b]. Moreover, since f(αi) − f(αi+1) < δ, it follows that
f(x) ≤ g2(x) + δ when x ∈ (a, b]. Now applying the definition of the integral of a simple function, we obtain:∫

fdh − δ ≤
I−1∑
i=0

f(αi+1)
(
h(αi+1) − h(αi)

)
=
∫

(a,b]
g1dQ ≤

∫
(a,b]

fdQ ≤
∫

(a,b]
g2dQ

=
I−1∑
i=0

f(αi)
(
h(αi+1) − h(αi)

)
≤
∫

fdh + δ

As δ is arbitrary, it follows that
∫

fdh =
∫

fdQ.

Notice that because H(0) = 0, the integral in the right-hand side of (37) is technically an improper integral.
Thus to show (37), one can conclude that∫

z∈(δ,1/2]

1
H(z)dQ(z) =

∫ 1/2

δ

1
H(α)dh(α)

from Proposition 4 and then take the limit δ → 0.
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G.2 Proof of the last equality in (38)

The goal of this appendix is to prove the following inequality:
Lemma 19. Let h : [0, 1/2] → [0, 1] be an increasing and right-continuous function with h(0) = 0 and
h(1/2) ≤ 1. Let H be any continuous function with H ≥ h and let r ∈ [0, 1). Then one can bound the
Riemann–Stieltjes integral

∫
1/H(z)rdh by∫ 1/2

0

1
H(z)r

dh ≤ 1
1 − r

Proof. Let δ > 0, then one can pick a partition P = {z0 = 0, z1, . . . , zK = 1/2} for which
∫ 1/2

0 H−rdh ≤
L(H−r, h, P ) + δ. As H−r is non-increasing, L(H−r, h, P ) =

∑K−1
k=0 H−r(zk+1)(h(zk+1) − h(zk)). Therefore,

if we define ak = h(zk), then∫ 1/2

0
H−rdh ≤

K−1∑
k=0

H−r(zk+1)(h(zk+1) − h(zk)) + δ ≤
K−1∑
k=1

h−r(zk+1)(h(zk+1) − h(zk)) + δ

=
K−1∑
k=0

a−r
k+1(ak+1 − ak) + δ

(60)

Because the function y 7→ y−r is decreasing in y, one can bound a−r
k+1(ak+1 − ak) ≤

∫ ak+1
ak

y−rdy and
consequently the sum in (60) is bounded above as

K−1∑
k=0

∫ ak+1

ak

y−rdy =
∫ h(1/2)

0
y−rdy ≤

∫ 1

0
y−rdy = 1

1 − r

Therefore
∫ 1/2

0 H−rdh ≤ 1/(1 − r) + δ. The result follows as δ > 0 is arbitrary.

H Optimizing the Bound of Lemma 8 over r

Proof of Theorem 11. Let
f(r) = 1

1 − r
ar

Then
f ′(r) = 1

(1 − r)2 ar + 1
1 − r

ln aar

solving f ′(r∗) = 0 produces r∗ = 1 + 1
ln a , and

f

(
1 + 1

ln a

)
= − ln aa1+ 1

ln a = −ea ln a

One can verify that this point is a minimum via the second derivative test:

f ′(r) =
(

1
1 − r

+ ln a

)
f(r)

and thus
f ′′(r) =

(
1

1 − r
+ ln a

)
f ′(r) + 1

(1 − r)2 f(r).

Consequently, f ′′(r∗) = ln(a)2f(1 + 1
ln a ) > 0.

However, the point r∗ is in the interval [0, 1] only when a ∈ [0, e−1]. When a > e−1, f is minimized over
[0, 1] at r = 0. Because r∗ is a minimizer when a ∈ [0, e−1], one can bound f(0) ≥ f(r∗) over this set and
thus

f(r) ≤ min (1, −ea ln a)
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I Deferred proofs from Section 6

I.1 Existence of Minimizers and Complementary slackness

The existence and complimentary slackness theorems of Appendix D extend to Rϵ
ϕ. Observe that minimizers

of Rϕ may assume values in R; for example, with the exponential loss ϕ(α) = e−α and the distribution
defined by η(x) ≡ 1, the unique minimizer of Rϕ is +∞. Just as in the non-adversarial scenario, Rϵ

ϕ may
fail to attain its infimum over R-valued functions. Nevertheless, Frank & Niles-Weed (2024a, Lemma 8) and
Frank (2025, Theorem 6) guarantee the existence of a minimizer over R-valued functions.
Theorem 16. Let ϕ satisfy Assumption 1. Then

inf
f R-valued

Rϵ
ϕ(f) = inf

f R-valued
Rϵ

ϕ(f).

Furthermore, equality is attained at some Borel measurable, R-valued function f∗.

Moreover, Theorem 7 of Frank & Niles-Weed (2024b) describes two conditions that characterize minimizers
of Rϵ

ϕ and maximizers R̄ϕ.
Theorem 17 (Complementary Slackness). The function f∗ minimizes Rϵ

ϕ and the measures (P∗
0,P∗

1) max-
imize R̄ϕ over B∞

ϵ (P0) × B∞
ϵ (P1) iff the following two conditions hold:

1) ∫
Sϵ(ϕ(f∗))dP1 =

∫
ϕ(f∗)dP∗

1 and
∫

Sϵ(ϕ(−f∗))dP0 =
∫

ϕ(−f∗)dP∗
0

2)
Cϕ(η∗, f∗) = C∗

ϕ(η∗) P∗-a.e.

I.2 Proof of Lemmas 9 and 10

As a preliminary step, we establish that if P∗
0, P∗

1 are induced by transport maps, then these maps determine
the locations of maximizers of ϕ ◦ f and ϕ ◦ −f .
Lemma 20. Let P∗

0,P∗
1 be maximizers of R̄ϕ induced by the transport maps T0, T1 satisfying ∥T0(x)−x∥ ≤ ϵ,

∥T1(x) − x∥ ≤ ϵ. Then any minimizer f∗ of Rϵ
ϕ satisfies

Sϵ(ϕ ◦ −f∗)(x) = ϕ(−f∗(T0(x)) P0-a.e. (61) Sϵ(ϕ ◦ f∗)(x) = ϕ(f∗(T1(x)) P1-a.e. (62)

Proof. We show (62), the argument for (61) is analogous.

Let f∗ minimize Rϵ
ϕ; such a function exists by Theorem 16. The complementary slackness condition Item 1)

in Theorem 17 yields ∫
Sϵ(ϕ ◦ f∗)(x)dP1 =

∫
ϕ ◦ f∗(x′)dP∗

1 =
∫

ϕ(f∗(T1(x)))dP

As the relation ∥T1(x) − x∥ ≤ ϵ implies Sϵ(ϕ ◦ f∗)(x) ≥ ϕ(f∗(T1(x))) one can conclude (62).

Next, we verify strong duality for these restricted measures, utilizing the notation defined in Equations (39)
and (40). The statement below implies Lemma 9.
Lemma 21. Let P0,P1,P∗

0,P∗
1, T0, T1, U0, U1 and Q be as in Lemma 9, and let f∗ minimize Rϵ

ϕ( · ;P0,P1).
Then

P∗
0|Q ∈ B∞

ϵ (P0|U0), P∗
1|Q ∈ B∞

ϵ (P1|U1) (63)
Rϵ

ϕ(f∗;P0|U0 ,P1|U1) = R̄ϕ(P∗
0|Q,P∗

1|Q).

Consequently f∗ minimizes Rϵ
ϕ( · ;P0|U0 ,P1|U1) while P∗

0|Q, P∗
1|Q maximize R̄ϕ over B∞

ϵ (P0|U0)×B∞
ϵ (P1|U1).
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Proof. By the definitions of Q, U0, U1

P∗
0|Q = P0|U0♯T0, P∗

1|Q = P1|U1♯T1.

The relations ∥T0(x) − x∥ ≤ ϵ, ∥T1(x) − x∥ ≤ ϵ imply (63). Next, let η̃ = dP∗
1|Q/d(P∗

1|Q + P∗
0|Q). On the set

Q,
η̃ = η∗ P∗-a.e. (64)

Next, let f∗ be a minimizer of Rϵ
ϕ(·;P0,P1). Lemma 20 and the definitions of T0, T1 imply that

Rϵ
ϕ(f∗;P0|U0 ,P1|U1) =

∫
Sϵ(ϕ ◦ f∗)(x)1U1(x)dP1 +

∫
Sϵ(ϕ ◦ −f∗)(x)1U0(x)dP0 (65)∫

ϕ(f∗(T1(x)))1Q(T1(x))dP1 +
∫

ϕ(−f∗(T0(x))1Q(T0(x))dP0 (66)

=
∫

ϕ(f∗(x′))1Q(x′)dP1♯T1 +
∫

ϕ(−f∗(x′))1Q(x′)dP0♯T0 (67)

=
∫

Cϕ(η∗, f∗)1QdP∗ (68)

Since f∗ minimizes Rϵ
ϕ(f ;P0,P1), the complimentary slackness condition Item 2) of Theorem 17 implies

Cϕ(η∗, f∗) = C∗
ϕ(η∗). Equation 64 further implies C∗

ϕ(η∗) = C∗
ϕ(η̃) on Q P-a.e. and therefore,∫

Cϕ(η∗, f∗)1QdP∗ =
∫

C∗
ϕ(η̃)dP∗|Q = R̄(P∗

0|Q,P∗
1|Q)

These results show that restricted measures in the dual corresponds directly to restricted measures in the
primal.

Proof of Lemma 9. Applying Theorem 7 to the restricted measures P1|U1 , P0|U0 and invoking Lemma 21
yields the claim.

Finally, one can conclude Lemma 10 by comparing Rϵ
ϕ(f∗;P0|T −1

0 (QC),P1|T −1
1 (QC)) and Rϵ

ϕ(f∗;P0|UC
0

,P1|UC
1

).

Proof of Lemma 10. Observe that UC
0 = T −1

0 (QC), UC
1 = T −1

1 (QC) and let f∗ be a minimizer of
Rϵ

ϕ( · ;P0,P1). Then Lemmas 9 and 21 imply

Rϵ
ϕ,∗(P0|U0 ,P1|U1) = Rϵ

ϕ(f∗;P0|U0 ,P1|U1) =
∫

Q

C∗
ϕ(η∗)dP∗

Rϵ
ϕ,∗(P0|UC

0
,P1|UC

1
) = Rϵ

ϕ(f∗;P0|UC
0

,P1|UC
1

) =
∫

QC

C∗
ϕ(η∗)dP∗ (69)

Summing these:

Rϵ
ϕ(f∗;P0|U0 ,P1|U1) + Rϵ

ϕ(f∗;P0|Ũ0
,P1|Ũ1

) =
∫

C∗
ϕ(η∗)dP∗ = Rϵ

ϕ,∗(f∗;P0,P1)
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I.3 Proof of Theorem 10

Proof of Theorem 10. Let Q = {x′ : |η∗(x′) − 1/2| < α}. Then Lemma 9 applied to QC shows that
(P∗

0|QC ,P∗
1|QC ) maximize R̄ϕ over B∞

ϵ (P0|U0) × B∞
ϵ (P1|U1), with U0 = T −1

0 (QC) and U1 = T −1
1 (QC). Next,

observe that simply scaling the inequality (14) shows that Theorem 9 applies even when P(Rd) ≤ 1. Conse-
quently, Theorem 9 and Lemma 10 imply that

Rϵ(f ;P0|U0 ,P1|U1) − Rϵ
∗(P0|U0 ,P1|U1) ≤ 1

ϕ(0) − C∗
ϕ(1/2 − α)

(
Rϵ

ϕ(f ;P0|U0 ,P1|U1) − Rϵ
ϕ∗(P0|U0 ,P1|U1)

)
≤ 1

ϕ(0) − C∗
ϕ(1/2 − α)

(
Rϵ

ϕ(f ;P0,P1) − Rϵ
ϕ∗(P0,P1)

)
Next, by Lemma 10, adding Rϵ(f ;P0|UC

0
,P1|UC

1
) − Rϵ

∗(P0|UC
0

,P1|UC
1

) to both sides of the inequality above
results in

Rϵ(f ;P0,P1) − Rϵ
∗(P0,P1) ≤

1
ϕ(0) − C∗

ϕ(1/2 − α)
(
Rϵ

ϕ(f ;P0,P1) − Rϵ
ϕ∗(P0|U0 ,P1)

)
+ Rϵ(f ;P0|UC

0
,P1|UC

1
) −

∫
Q

C∗(η∗)dP∗

The fact that C∗(η∗) ≥ 1/2 − α on Q while Sϵ(1f≤0) ≤ 1, Sϵ(1f>0) ≤ 1 implies that Rϵ(f ;P0|UC
0

,P1|UC
1

) −∫
Q

C∗(η∗)dP∗ ≤ ( 1
2 + α)P∗(|η − 1/2| < α). Thus, the excess risk contribution from the region A is at most

(1/2 + α)P∗(|η∗ − 1/2| < α).

J Further details from Examples 1 to 3

In Appendices J.2 and J.3, we use an operation analogous to Sϵ that calculates the infimum of a function
over an ϵ-ball. Formally, we define:

Iϵ(g)(x) = inf
∥x′−x∥≤ϵ

g(x′). (70)

Next, we define a mapping αϕ from η ∈ [0, 1] to minimizers of Cϕ(η, ·) by

αϕ(η) = inf{α : α is a minimizer of Cϕ(η, ·)}. (71)
Lemma 25 of Frank & Niles-Weed (2024b) shows that the function αϕ defined in (71) maps η to the smallest
minimizer of Cϕ(η, ·) and is non-decreasing. This property will be instrumental in constructing minimizers
for Rϵ

ϕ.

J.1 Proof of Lemma 2

Proof of Lemma 2. If Rϵ
∗ = 0, by Theorem 5, for any measures P′

0 ∈ B∞
ϵ (P0), P′

1 ∈ B∞
ϵ (P1) we have

P′(η′ = 0 or 1) = 1, where P′ = P′
0 + P′

1 and η′ = dP′
1/dP′. This statement must also hold for the

P∗
0 ∈ B∞

ϵ (P0), P∗
1 ∈ B∞

ϵ (P1) that maximize R̄ϕ.

J.2 Calculating the optimal P∗
0, P∗

1 for Example 2

First, notice that a minimizer of Rϕ is given by f(x) = αϕ(η(x)) with η(x) as defined in (16). Below, we
construct a minimizer f∗ for Rϵ

ϕ. We’ll do this construction separately for ϵ ≤ δ and ϵ ∈ (δ, 1 − δ).

When ϵ ≤ δ:

Define a function η̃ : [−δ − ϵ − 1, 1 + δ + ϵ] → [0, 1] by

η̃(x) =


1
4 if x ∈ [−1 − δ − ϵ, 0)
1
2 if x = 0
3
4 if x ∈ (0, 1 + δ + ϵ]
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and a function f∗ by f∗(x) = αϕ(η̃(x)).

We’ll verify that this function is a minimizer by showing that Rϵ
ϕ(f∗) = Rϕ(f). As the minimal possi-

ble adversarial risk is bounded below by Rϕ,∗, one can conclude that f∗ minimizes Rϵ
ϕ. Consequently,

R̄ϕ(P0,P1) = Rϵ
ϕ(f) and thus the strong duality result in Theorem 7 would imply that P0, P1 must maxi-

mize the dual problem.

As both η̃ and αϕ are non-decreasing, the function f∗ must be non-decreasing as well. Consequently,
Sϵ(ϕ(f∗))(x) = ϕ(Iϵ(f∗)(x)) = ϕ(f∗(x − ϵ)) and similarly, Sϵ(ϕ(−f∗))(x) = ϕ(−Sϵ(f∗)(x)) = ϕ(−f∗(x + ϵ)).
(Recall the Iϵ operation was defined in (70).)

Therefore,

Rϵ
ϕ(f∗) =

∫
Sϵ(ϕ(f∗))(x)p1(x)dx +

∫
Sϵ(ϕ(−f∗))(x)p0(x)dx =

∫
ϕ(f∗(x − ϵ))p1(x)dx +

∫
ϕ(−f∗(x + ϵ))p0(x)dx

=
∫

ϕ(f∗(x))p1(x + ϵ)dx +
∫

ϕ(−f∗(x))p0(x − ϵ)dx

(72)

Consequently,∫
ϕ(f∗(x))p1(x + ϵ)dx =

∫ −δ−ϵ

−1−δ−ϵ

1
8ϕ
(

αϕ

(1
4

))
dx +

∫ 1+δ−ϵ

δ−ϵ

1
8ϕ
(

αϕ

(3
4

))
dx

=
∫ −δ

−1−δ

1
8ϕ
(

αϕ

(1
4

))
dx +

∫ 1+δ

δ

1
8ϕ
(

αϕ

(3
4

))
dx =

∫
ϕ(f(x))p1(x)dx

Analogously, one can show that∫
ϕ(−f∗(x))p0(x − ϵ)dx =

∫
ϕ(−f(x))p0(x)dx

and consequently Rϵ
ϕ(f∗) = Rϕ(f).

When ϵ ∈ (δ, 1 + δ):

We will show that Rϵ
ϕ(f∗) = R̄ϕ(P∗

0,P∗
1) for the proposed attacks, proving that P∗

0, P∗
1 are dual optimal

distributions. This time, define the function η̃ : [−δ − ϵ − 1, 1 + δ + ϵ] → [0, 1] by

η̃(x) =



0 ifx ∈ [−1 − δ − ϵ, −1 − δ + ϵ)
1
4 if x ∈ [−1 − δ + ϵ, −(ϵ − δ))
1
2 if x ∈ [−(ϵ − δ), (ϵ − δ)]
3
4 if x ∈ ((ϵ − δ), 1 + δ − ϵ]
1 if x ∈ (1 + δ − ϵ, 1 + δ + ϵ]

and again take f∗(x) = αϕ(η̃(x)). The function f∗ is non-decreasing, so again (72) holds. Further, defining
p∗

1, p∗
0 as p∗

1(x) = p1(x + ϵ) and p∗
0(x) = p0(x − ϵ) implies the relation

Rϵ
ϕ(f∗) =

∫
Cϕ(η∗, f∗)p∗(x)dx,

where p∗(x) = p∗
0(x) + p∗

1(x) and η∗ = p∗
1(x)/p∗(x). The function η̃ was defined so that η̃(x) = η∗(x) a.e.

and hence
Cϕ(η∗, f∗) = Cϕ(η∗, αϕ(η∗)) = C∗

ϕ(η∗).

This relation implies Rϵ
ϕ(f∗) = R̄ϕ(P∗

0,P∗
1), where P∗

0, P∗
1 are the distributions with pdfs p∗

0 and p∗
1.
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J.3 Calculating the optimal P∗
0 and P∗

1 for Example 3— Proof of (17)

We will show that the densities in (17) are dual optimal by finding a function f∗ for which Rϵ
ϕ(f∗) =

R̄ϕ(P∗
0,P∗

1). Theorem 7 will then imply that P∗
0, P∗

1 must maximize the dual. Define η∗(x) by

η∗(x) = p∗
1(x)

p∗
1(x) + p∗

0(x) ,

with p∗
0(x) and p∗

1(x) as in (17). For a given loss ϕ we will prove that the optimal function f∗ is given by

f∗(x) = αϕ(η∗(x)).

The function η∗ computes to

η∗(x) = 1

1 + e
µ1−µ0−2ϵ

σ2 ( µ1+µ0
2 −x)

.

If µ1 − µ0 > 2ϵ, the conditional probability η∗(x) is increasing in x and consequently the function f∗ is non-
decreasing. Therefore, Sϵ(ϕ(f∗))(x) = ϕ(Iϵ(f∗)(x)) = ϕ(f∗(x − ϵ)) (recall Iϵ was defined in (70)). Similarly,
one can argue that Sϵ(ϕ(−f∗))(x) = ϕ(−f∗(x + ϵ)), and therefore,

Rϵ
ϕ(f∗) =

∫
Sϵ(ϕ(f∗))(x)p1(x)dx +

∫
Sϵ(ϕ(−f∗))(x)p0(x)dx =

∫
ϕ(f∗(x − ϵ))p1(x)dx +

∫
ϕ(−f∗(x + ϵ))p0(x)dx

=
∫

ϕ(f∗(x))p1(x + ϵ)dx +
∫

ϕ(−f∗(x))p0(x − ϵ)dx.

Next, notice that p1(x + ϵ) = p∗
1(x) and p0(x − ϵ) = p∗

0(x). Define P∗ = P∗
0 + P∗

1. Then

Rϵ
ϕ(f∗) =

∫
η∗ϕ(αϕ(η∗)) + (1 − η∗)ϕ(−αϕ(η∗))dP∗ =

∫
C∗

ϕ(η∗)dP∗ = R̄ϕ(P∗
0,P∗

1)

Consequently, the strong duality result in Theorem 7 implies that P∗
0 P∗

1 must maximize the dual R̄ϕ.

J.4 Showing (18)

Lemma 22. Consider an equal gaussian mixture with variance σ and means µ0 < µ1, with pdfs given by

p0(x) = 1
2 · 1√

2πσ
e− (x−µ0)2

2σ2 , p1(x) = 1
2 · 1√

2πσ
e− (x−µ1)2

2σ2

Let η(x) = p1(x)/(p0(x) + p1(x)). Then |η(x) − 1/2| ≤ z iff x ∈ [ µ0+µ1
2 − ∆(z), µ0+µ1

2 + ∆(z)], where ∆(z)
is defined by

∆(z) = σ2

µ1 − µ0
ln
( 1

2 + z
1
2 − z

)
. (73)

Proof. The function η can be rewritten as η(x) = 1/(1 + p0/p1) while

p0(x)
p1(x) = exp

(
− (x − µ0)2

2σ2 + (x − µ1)2

2σ2

)
= exp

(
µ1 − µ0

σ2

(
µ1 + µ0

2 − x

))

Consequently, |η(x) − 1/2| ≤ z is equivalent to

1
2 − z ≤ 1

exp
(

µ1−µ0
σ2 ( µ1+µ0

2 − x)
)

+ 1
≤ 1

2 + z
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which is equivalent to

µ1 + µ0

2 − σ2

µ1 − µ0
ln
(

1
1
2 − z

− 1
)

≤ x ≤ µ1 + µ0

2 − σ2

µ1 − µ0
ln
(

1
z + 1

2
− 1
)

Finally, notice that

∆(z) = σ2

µ1 − µ0
ln
(

1
1
2 − z

− 1
)

(74)

while
−∆(z) = σ2

µ1 − µ0
ln
(

1
z + 1

2
− 1
)

Lemma 23. Let p0, p1, and η be as in Lemma 22 and let h(z) = P(|η − 1/2| ≤ z). Then if µ1 − µ0 ≤
√

2σ,
then h is concave.

Proof. To start, we calculate the second derivative of ∆(z) and the first derivative of p0.

The first derivative of ∆ is
∆′(z) = σ2

µ1 − µ0
· 1

1
4 − z2 .

and the second derivative of ∆(z) is

∆′′(z) = σ2

µ1 − µ0
· 2z

( 1
4 − z2)2 (75)

Next, one can calculate the derivative of p0 as

p′
0(x) = 1

2 · 1√
2πσ

· −(x − µ0)
σ2 e− (x−µ0)2

2σ2 = − (x − µ0)
σ2 p0(x) (76)

and similarly

p′
1(x) = − (x − µ1)

σ2 p1(x) (77)

Let p(x) = p0 + p1. Lemma 22 implies that the function h is given by h(z) =
∫ µ1+µ0

2 +∆(z)
µ1+µ0

2 −∆(z)
p(z)dz. The first

derivative of h is then

h′(z) =
(

p
(µ1 + µ0

2 + ∆(z)
)

+ p
(µ1 + µ0

2 − ∆(z)
))

∆′(z).

Differentiating h twice results in

h′′(z) =
(

p
(µ1 + µ0

2 + ∆(z)
)

+ p
(µ1 + µ0

2 − ∆(z)
))

∆′′(z)

+
(

p′
(µ1 + µ0

2 + ∆(z)
)

− p′
(µ1 + µ0

2 − ∆(z)
))

(∆′(z))2

=
(

p
(µ1 + µ0

2 + ∆(z)
)

+ p
(µ1 + µ0

2 − ∆(z)
))(

∆′′(z) − ∆(z)∆′(z)2

σ2

)
(78)

+
(

p1

(µ1 + µ0

2 + ∆(z)
)

+ p1

(µ1 + µ0

2 − ∆(z)
))µ1 − µ0

2σ2 (∆′(z))2 (79)

−
(

p0

(µ1 + µ0

2 + ∆(z)
)

+ p0

(µ1 + µ0

2 − ∆(z)
))µ1 − µ0

2σ2 (∆′(z))2. (80)
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where the final equality is a consequence of Equations (76) and (77). Next, we’ll argue that the sum of the
terms in Equations (79) and (80) is zero:(

p1

(µ1 + µ0

2 + ∆(z)
)

+ p1

(µ1 + µ0

2 − ∆(z)
))

−
(

p0

(µ1 + µ0

2 + ∆(z)
)

+ p0

(µ1 + µ0

2 − ∆(z)
))

= 1
2
√

2πσ

((
e−

( µ0−µ1
2 +∆(z))2

2σ2 + e−
( µ0−µ1

2 −∆(z))2

2σ2

)
−

(
e−

( µ1−µ0
2 +∆(z))2

2σ2 + e−
( µ1−µ0

2 −∆(z))2

2σ2

))
= 0

Next, we’ll show that under the assumption µ1 − µ0 ≤
√

2σ, the term (78) is always negative. Define
k = σ2/(µ1 − µ0). Then

∆′′(z) − ∆(z)∆′(z)2

σ2 = 2k

( 1
4 − z2)2

(
z − k2

2σ2 ln
(

1
1
2 − z

− 1
))

(81)

The fact that ∆′′(z) > 0 for all z implies that ln(1/(1/2 − z) − 1) is convex, and this function has derivative
4 at zero. Consequently, ln(1/(1/2 − z) − 1) ≥ 4z and (81) implies

∆′′(z) − ∆(z)∆′(z)2

σ2 ≤ 2k

( 1
4 − z2)2 (z − k2

2σ2 · 4z) = 2kz

( 1
4 − z2)2

(
1 − 2k2

σ2

)
The condition µ1 − µ0 ≤

√
2σ is equivalent to 1 − 2k2/σ2 < 0.

This lemma implies that h(z) ≤ h′(0)z. Noting also that h(z) ≤ 1 for all z produces the bound

h(z) ≤ min
(

16σ2

µ1 − µ0
z, 1
)

applying this bound to the gaussians with densities p∗
0 and p∗

1 results in (18).
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