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Abstract

A central concern in classification is the vulnerability of machine learning models to ad-
versarial attacks. Adversarial training is one of the most popular techniques for training
robust classifiers, which involves minimizing an adversarial surrogate risk. Recent work has
characterized the conditions under which any sequence minimizing the adversarial surro-
gate risk also minimizes the adversarial classification risk in the binary setting, a property
known as adversarial consistency. However, these results do not address the rate at which
the adversarial classification risk approaches its optimal value along such a sequence. This
paper provides surrogate risk bounds that quantify that convergence rate.

1 Introduction

A central concern regarding regarding sophisticated machine learning models is their susceptibility to ad-
versarial attacks. Prior work (Biggio et all 2013} [Szegedy et al.l |2013) demonstrated that imperceptible
perturbations can degrade the performance of neural nets. As such models are deployed in security-critical
applications, including facial recognition (Xu et al |2022)) and medical imaging (Paschali et al. |2018), train-
ing robust models remains a key challenge in machine learning.

In the standard classification setting, the classification risk is the proportion of incorrectly classified data.
Directly minimizing this quantity is a combinatorial optimization problem, so typical machine learning algo-
rithms instead minimize a more tractable surrogate risk via gradient-based methods. A surrogate risk is said
to be consistent for a given data distribution if every minimizing sequence also minimizes the classification
risk for that distribution. Beyond consistency, a central objective is efficiency: minimizing the surrogate risk
should translate into a rapid reduction of the classification risk. This rate can be quantified via surrogate
risk bounds, which bound the excess classification risk in terms of the excess surrogate risk.

In the standard binary classification setting, consistency and surrogate risk bounds are well-studied topics
(Bartlett et al., |2006; |Linl [2004; [Steinwart), [2007; |Zhang], 2004). A typical approach reduces the problem to a
pointwise analysis of the conditional classification and surrogate risks. In contrast, the adversarial setting is
less understood. The adversarial classification risk penalizes instances that can be perturbed into the opposite
class, while the adversarial surrogate risk computes the worst-case value over an e-ball. The dependence on
the value of a function over an e-ball precludes a pointwise decomposition, rendering the classical analysis
inapplicable. |[Frank & Niles-Weed|(2024a)) characterized the risks that are consistent for all data distributions,
and the corresponding losses are referred to as adversarially consistent. Unfortunately, no convex loss
function can be adversarially consistent for all data distributions (Meunier et al.,[2022)). On the other hand,
Frank (2025) showed that such situations are rather atypical— when the data distribution is absolutely
continuous, a surrogate risk is adversarially consistent so long as the adversarial Bayes classifier satisfies a
certain notion of uniqueness. While these results characterize consistency, none describe convergence rates.

Our Contributions:

e We prove a linear surrogate risk bound for adversarially consistent losses (Theorem 9)).
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e When the “distribution of optimal attacks” satisfies a bounded noise condition, we prove a linear
surrogate risk bound under mild conditions on the loss (Theorem 9).

e We establish a distribution-dependent surrogate risk bound that applies whenever a loss is adver-

sarially consistent for the data distribution (Theorem 11)).

Notably, the last result applies to convex loss functions. By prior consistency results (Frankl 2025} Frank &
Niles-Weed|, |2024a; [Meunier et al., |2022), one cannot hope for distribution independent surrogate bounds for
non-adversarially consistent losses. This work presents a framework for surrogate risk bounds that applies
to any supremum-based risk under mild conditions. A detailed comparison with prior work is provided in
Section 7l

2 Background and Preliminaries

2.1 Surrogate Risks

We study binary classification on R? with labels —1 and +1, where Py and P; denote the class-conditional
distributions. For a measurable set A, the classification risk is

R(A):/lAcdpl—l—/lAdPo,

with minimum R* over all Borel sets. Because the indicator function is nondifferentiable, one instead
minimizes a surrogate risk

Ry(f) = / 6(f) dPy + / &(1) dPo,

with minimum Ry . over all Borel functions. The loss ¢ satisfies:

Assumption 1. ¢ is continuous, non-increasing, and limq o ¢(a) = 0.

Thresholding f at zero yields the classifier {f > 0}, whose risk is
R(P) = RS >0) = [1r0dpi+ [ 12020,

It remains to verify that minimizing the surrogate risk R4 will also minimize the classification risk R.

Definition 1. The loss function ¢ is consistent for the distribution IPg, Py if every minimizing sequence of Ry
s also a minimizing sequence of R. The loss function ¢ is consistent if it is consistent for all distributions.

Prior work establishes conditions under which many common loss functions are consistent. For convex ¢,
consistency occurs iff ¢ is differentiable at 0 and ¢’(0) < 0 (Bartlett et all [2006, Theorem 2). |[Frank &
Niles-Weed| (2024a, Proposition 3) show that consistency holds if inf, 5(¢(a) + ¢(—a)) < ¢(0), which is
satisfied by losses such as the p-margin loss ¢,(a) = min(1, max(1 — «/p,0)) and the shifted sigmoid loss
o-(a) =1/(1 +exp(a — 7)), 7 > 0. However, a convex loss ¢ cannot satisfy this inequality:

3 (6(0) + 6(-a)) 2 0 (5o + 5 —a) =6(0). )

2.2 Surrogate Risk Bounds

In addition to consistency, quantifying convergence rates is a key concern. Specifically, prior work (Bartlett
et al.l 2006; |Zhang| 2004) establishes surrogate risk bounds of the form W(R(f) — Rs«) < Ry(f) — Ry« for
some function ¥, linking excess classification risk to excess surrogate risk. These bounds involve pointwise
minima of the conditional classification and surrogate risks.
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Let P =Py + P; and n(x) = dP;/dP. An equivalent formulation of the classification risk is

R(P) = [ €. Fx0)dE ) &)
where C'(n, &) = nla<o + (1 — n)1a>0, with minimal conditional risk
cr (77) = igfc(na a) - min(ﬁ, 1- 77)7 (3)

and thus the minimal classification risk is R, = [ C*(n(x))dP(x). Analogously, the surrogate risk in terms
of n and P is

Ry(f) = /C¢(W(X)7f(X))dIP’7 Co(n,a) =ng(a) + (1 —n)d(-a) (4)

and the minimal surrogate risk is Ry . = [ Cj(n(x))dP(x) with the minimal conditional risk C7(n) defined
by
Cg(n) = inf Cy(n, @). ()

Prior work on consistency typically establishes surrogate risk bounds via pointwise analysis of the conditional
risks, relating the excess conditional surrogate risk Cy(n, o) — Cd*)(n) to the excess conditional classification
risk C(n, a) — C*(n).

The consistency of ¢ can be fully characterized by the properties of the function C; (n).
Theorem 1. A loss ¢ is consistent iff Cj(n) < ¢(0) for all n # 1/2.

Surprisingly, this criterion has not appeared in prior work. See for a proof. In terms of the
function C7, Frank & Niles-Weed (2024a} Proposition 3) states that any loss ¢ with C}(1/2) < ¢(0) is
consistent. The function C7 is a key component of surrogate risk bounds from prior work. Specifically,
[Bartlett et al.| (2006) shows:

Theorem 2 (Tewari & Bartlett| (2007)). Let ¢ be any loss satisfying with C3(1/2) = ¢(0)
and define

w(0) = 6(0) - C; (1;9) .
Then
U(Cn, ) = C*(n) < Cs(n, f) = C5(n) (6)

and consequently

U(R(f) — R.) < Rg(f) — Ry (7)

The inequality is a consequence of (6) and Jensen’s inequality. implies that this bound is
non-vacuous iff ¢ is consistent— compare with Moreover, (6)) yields a distribution-dependent

linear surrogate bound when 7 is bounded away from 1/2. If Massart’s noise condition (Massart & Nédélec,
2006]) holds— namely, there exists a « € [0,1/2] for which |7 —1/2] > « P-a.e., then the distribution admits
a linear surrogate bound.

Proposition 1. Let n, P be a distribution that satisfies |n — 1/2| > « P-a.e. with a constant o € [0,1/2],
and let ¢ be a loss with ¢(0) > C3(1/2 — «). Then for all |n —1/2| > «,

Cn, f)=C*(n) <

- (Cy(n, f) = C5()) (8)

and consequently
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See for a proof of this result. Observe that guarantees that the linear constant is
finite whenever o # 0 and ¢ is consistent. This bound is distribution-independent when ¢(0) > C7(1/2)

with o = 0, and will later be generalized to adversarial risks. Although the constant in is not
optimal, further refinement offers no improvement to our adversarial bounds, so we opt to retain the simpler
form.

2.3 Adversarial Risks

The adversarial classification risk incurs a penalty of 1 whenever a point x can be perturbed into the
opposite class. This penalty can be expressed in terms of supremums of indicator functions— the adversarial
classification risk incurs a penalty of 1 whenever sup |, _yj<c 1a(x’) =1 or sup|x <. 1ac(x’) = 1. Define

Se(g)(x) = sup  g(x').

lx—x'||<e

The adversarial classification and surrogate risks are given respectively byE|

Re(4) = / Se(140)dP; + / S.(La)dPo, R(f) = / S.(B(f))dPy + / S.(6(— ))dPo.

A minimizer of the adversarial classification risk is called an adversarial Bayes classifier. After optimizing
the surrogate risk, a classifier is obtained by thresholding the resulting function f at zero. The associated
adversarial classification error function f is then

RE(f) = RE({f > 0}) = / S.(1<0)dP; + / Su(L0)dPp. (10)

Just as in the standard case, one would hope that minimizing the adversarial surrogate risk would minimize
the adversarial classification risk.

Definition 2. The loss ¢ is adversarially consistent for the distribution Py, Py if any minimizing sequence
of R, is also a minimizing sequence of R°. We say that ¢ is adversarially consistent if it is adversarially
consistent for all distributions.

Theorem 2 of [Frank & Niles-Weed| (2024a)) characterizes the adversarially consistent losses:
Theorem 3 (Frank & Niles-Weed (2024a))). The loss ¢ is adversarially consistent iff Cj(1/2) < ¢(0).

Frank & Niles-Weed| (2024al Proposition 3) guarantees that every adversarially consistent loss is also consis-
tent in the standard sense. Unfortunately, (1) shows that no convex loss is adversarially consistent. However,
distributions for which consistency fails are atypical: for absolutely continuous P, adversarial consistency
holds provided the adversarial Bayes classifier is unique up to degeneracy.

Definition 3. Two adversarial Bayes classifiers A1, As are equivalent up to degeneracy if any set A with
A1NAs C AC AU As is also an adversarial Bayes classifier. The adversarial Bayes classifier is unique
up to degeneracy if any two adversarial Bayes classifiers are equivalent up to degeneracy.

See for an illustration of non-equivalent adversarial Bayes classifiers in a distribution where adver-
sarial consistency fails. Theorem 4 of [Frank| (2025) relates uniqueness of the adversarial Bayes classifier to
the consistency of ¢.

Theorem 4 (Frank| (2025)). Let ¢ be a loss with C(1/2) = ¢(0) and assume that P is absolutely continuous
with respect to Lebesgue measure. Then ¢ is adversarially consistent for the data distribution given by Py,
P, iff the adversarial Bayes classifier is unique up to degeneracy.

Any extension of surrogate risk bounds to the adversarial setting must account for the conditions of
lcems 3 and 4

n order to define the risks be and R€, one must argue that Sc(g) is measurable. Theorem 1 of [Frank & Niles-Weed)| (2024b)
proves that whenever g is Borel, Sc(g) is always measurable with respect to the completion of any Borel measure.
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Figure 1: Adversarial Bayes classifiers for the distribution where Py = PPy are uniform distributions on B(0),
the counterexample from |[Meunier et al.[(2022)). The classifiers in (a) and (b) are equivalent up to degeneracy,
as are those in (c) and (d), but the classifiers in (a) and (c) are not. A sequence minimizing Rf, but not R

is provided in .

2.4 Minimax Theorems

A central tool in analyzing the adversarial consistency of surrogate risks is minimax theorems, which en-
able a ‘pointwise’-style representation of adversarial risks analogous . This section reviews the minimax
representation for both adversarial classification and surrogate risks, which underlie the bounds in

These minimax theorems utilize the co-Wasserstein (W) metric from optimal transport. Informally, this
metric quantifies the smallest radius € such that the mass of one distribution can be transported to match
another without moving any point more than e.

Formally, let Q and Q' be finite positive measures with equal total mass. A Borel measure v on R? x R?
is a coupling between Q and Q' if its first marginal is Q and its second marginal is Q’, or in other words,
y(A x RY) = Q(A) and (R? x A) = Q'(A) for all Borel sets A. Denote the set of couplings between Q and
Q' by II(Q, Q"). Then the W, distance is

Wee(Q,Q) = inf esssupl|x—y|. 11

Q@)= _jnf , el -] (1)
Theorem 2.6 of |Jylhé| (2014) proves that the infimum in is always attained. The e-ball around Q in the
Weo metric is B2 (Q) = {Q': W (Q',Q) < €}.

The next lemma is a standard observation linking adversarial perturbations to W.-balls. We include a
proof in [Appendix C| for completeness; it is a known result and not new to this work (see for instance
Matthew Staib| (2017, Proposition 3.1)).

Lemma 1. Let g be a Borel function. Let v be a coupling between the measures Q and Q' supported on
Ao ={(x,x") : ||x = x'|| <€}. Then Sc(g9)(x) > g(x') v-a.e. and consequently

Se(9)dQ >  sup gdQ'.
[stomez [

€B(Q)

Applying to R¢ shows that inf4 R¢(A) can be expressed as an inf-sup problem. The minimax
theorem of [Pydi & Jog| (2021)) ensures that the order of the inf and sup can be interchanged. Let C*(n) be
as defined in (3)) and define
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_ . [ dP
R = gt [aca® [ 1aar = [0 (g ) 4@+ F). (12)

ore

Theorem 5 ) Let R be as defined in . Then

inf RY(A)= sup R(P),P)).
A Borel P, B> (P;) 0"1

P B (Po)

with equality attained at some Borel A, Py € BX(Py), and P € B (Py).

See [Frank & Niles-Weed| (2024al, Theorem 1) for a proof of this statement. The maximizers P, Pf can be
interpreted as optimal adversarial attacks (see discussion following[Frank & Niles-Weed| (2024b, Theorem 7)).
(2024, Theorem 3.4) provide a criterion for uniqueness up to degeneracy in terms of dual maximizers.

Theorem 6 (Frank| (2025))). The following are equivalent:

A) The adversarial Bayes classifier is unique up to degeneracy
B) There are maximizers P, P} of R for which P*(n* = 1/2) = 0, where P* = P{+P% and n* = dP} /dP*

Thus, uniqueness corresponds to the situation in which the set where both classes are equally probable has
measure zero under some optimal adversarial attack.

The analogous dual problem to R uses Cj(n) from

B, / / / d]P)I / /
R4 (Py,Py) = inf /¢ f)dP; + /(b )Py = /C¢< @ +]P')> d(Py+P)) (13)

f Borel

and the analogous minimax theorem states (Frank & Niles-Weed, 2024b|, Theorem 6):
Theorem 7 (]Frank & Niles—Weed| 42024b[)). Let Ry be defined as in . Then

inf RY(f)= sup  Ry(PhPp).
§ Borel, P, B (b))
-value IP’()EBE‘X’ (Po)

with mazimizers P € B2 (Py), P € B2 (Py) attained.

Finally, optimal attacks for the surrogate problem are also optimal for the classification problem:

Theorem 8. Consider mazimizing the dual objectives Ry and R over B> (Py) x B> (Py).

1) If ¢ is consistent, then any mazimizer (P§, ;) of Ry over BX(Py) x BX(Py) also mazimizes R.

2) | If the adversarial Bayes classifier is unique up to degeneracy, then there exists a
mazimizer (P§,P}) of Ry with P*(n* =1/2) = 0, where P* =P + P} and n* = dP}/dP*.

See [Appendix D|for a proof of is shown in Theorems 5 and 7 of (2025). This minimax

machinery links the adversarial Bayes classifier, optimal attacks, and surrogate risks, establishing the dual
formulations used in Section 3 to derive adversarial surrogate risk bounds.

3 Main Results

Prior work has characterized when a loss ¢ is adversarially consistent with respect to a distribution Py, P;.
shows that a distribution-independent surrogate risk bound is possible only when C7(1/2) < ¢(0).
When C7(1/2) = ¢(0), indicates that any such bound must depend on the marginal distribution
of n* under P*, and moreover, is possible only if P*(n* = 1/2) = 0.
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Compare these statements with [Proposition 1t [Theorems 3 andtogether imply if either C7(1/2) < ¢(0) or
if there exist some maximizers of R¢ that satisfy Massart’s noise condition, then ¢ is adversarially consistent

for Py, P;. Alternatively, due to one can equivalently assume that there are maximizers of
R, satisfying Massart’s noise condition. Our first result extends [Proposition 1| to the adversarial scenario,

replacing Py, P; with the distribution of optimal adversarial attacks.

Theorem 9. Let ¢ be consistent and let Py, P1 be a distribution for which there are mazimizers P, P of the
dual problem Ry that satisfy [n* —1/2| > a P*-a.e. for some constant o € [0,1/2] with C}(1/2 — a) < $(0),
where P* = P§ + P}, n* = dP;/dP*. Then

1

B~ P < gy (U~ FG) (14)

When Cj(1/2) < ¢(0), setting a = 0 in yields a distribution-independent bound. As noted

earlier, two losses satisfying this condition are the p-margin loss and the shifted sigmoid loss. Likewise,
ensures that the linear constant is finite whenever o # 0 and ¢ is consistent.

The constant appearing in is nearly optimal: shows that it can be improved by at
most a factor of two, and this gap is attained by a known counterexample to consistency. Thus, the result
provides a sharp characterization of how tightly the adversarial classification risk can be controlled by the
surrogate risk across all consistent convex losses.

Furthermore, the theorem parallels the classical realizable-case guarantee from the non-adversarial setting.
If the optimal adversarial risk satisfies RS = 0, then Massart’s noise condition holds with a@ = 1/2 (see
Lemma 2f). In this regime, yields a linear relationship between adversarial classification and
surrogate risks that is directly analogous to the non-adversarial bound in [Proposition 1} Zero adversarial
risk occurs whenever the supports of Py and P; are separated by at least 2¢ (Example 1] and [Figure 3al).

states that if some distribution of optimal adversarial attacks satisfies Massart’s noise condition,
then the excess adversarial surrogate risk is at worst a linear upper bound on the excess adversarial classi-
fication risk. However, if C}(1/2) = ¢(0), the bound’s constant diverges as o — 0, reflecting the failure of
adversarial consistency when the adversarial Bayes classifier is not unique up to degeneracy. For o # 1/2,
understanding the assumptions on (Pg,[P;) which ensure Massart’s condition for the distribution of adver-
sarial attacks (P§,P7) remains an open problem. Example 4.6 of exhibits a distribution that
satisfies Massart’s noise condition and yet the adversarial Bayes classifier is not unique up to degeneracy.
Thus Massart’s noise condition for Py, P; does not guarantee Massart’s noise condition for P§, Pj. See
[Example 2] and [Figure 3b| for an example where applies with o > 0.

One approach to relaxing the distributional restriction is to apply only on the portion of the distribution
where |n* — 1/2| > a and then add back in the risk on |n* — 1/2| < a.

Theorem 10. Assume that there exist maximizers Py, P} of R¢ that are induced by transport maps from
Py, Py, and define P* = P 4+ P§, n* = dP;/dP*. Let 0 < «, then

1
$(0)—Cj

€ € € € 1 * *
RY(f) - B < (BN =15 + (3 +a) Pl — 172 <)

Since this holds for all «, the right-hand side can be minimized over a. Prior work from optimal transport
theory verifies the assumption on P* under mild conditions: Theorem 3.5 of states that whenever
Py, P; are absolutely continuous with respect to Lebesgue measure and the norm || - || is strictly convex, the
measures P§,P] are induced by a transport map. It is unclear whether this holds for common datasets such
as CIFAR-10 or MNIST.

Finally, an alternative approach to removing the distributional restriction is to average bounds of the form
over all values of n* yielding a distribution-dependent surrogate bound, valid whenever the adversarial
Bayes classifier is unique up to degeneracy. For a given function f, let the concave envelope of f be the
smallest concave function larger than f:

conc(f) = inf{g :> f on dom(f), g concave and upper semi-continuous} (15)
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MNIST Label: 5 MNIST Label: 5 CIFAR1O Label: airplane CIFAR1O Label: airplane

. . rl. g
(a) (b) (c) (d)

Figure 2: Ambiguous images in the MNIST and CIFARI10 datasets. (a) lies between a ‘5" and a ‘3’, while
(b) is difficult to classify at all, despite being labeled as a ‘5. In CIFARI10, image (c) is ambiguous between
a ship and an airplane, and image (d) is similarly hard to identify.

Theorem 11. Assume Py(R?) +P;(R?) < 1, ¢ is a consistent loss with C5(1/2) = ¢(0), and the adversarial
Bayes classifier is unique up to degeneracy. Let Py, P be maximizers of R¢, for which P*(n* = 1/2) = 0,
with P* = Py + P} and n* = dPj/dP*. Define H(z) = conc(P*(|n* — 1/2| < z)), ¥ as[Theorem 3 and let
A(z) = U1 (min(Z, ¢(0))). Then

10

with

$(z) =4 (id+min(1, m)) oA

This theorem is established under the assumption Py(R?)+P;(R?) < 1, which serves as an essential interme-
diate step for extending the result to case where the adversarial Bayes classifier is not uniquely defined up to
degeneracy. See |[Example 3| and [Figure 3¢/ for an example of calculating a distribution-dependent surrogate
risk bound.

The function H is always continuous and satisfies H(0) = 0, ensuring that this bound is non-vacuous (see
[Lemma 7|in [Section 5)). Further notice that H In H approaches zero as H — 0.

The map ® combines two components: A, a modified version of ¥~1, and H, a modification of the cdf of
|n* — 1/2|. The function A is a scaled version of U~!, where ¥ is the surrogate risk bound in the non-
adversarial case of The domain of ¥~! is [0, ¢(0)], and thus the role of the min in the definition
of A is to truncate the argument so that it fits into this domain. The factor of 1 /4 in this function appears
to be an artifact of our proof, see for further discussion. In contrast, the map H translates
the distribution of n* into a surrogate risk transformation. Compare with which states that
consistency fails if P*(n* = 1/2) > 0; accordingly, the function H becomes a poorer bound when more mass
of n* is near 1/2.

If P*(n* = 1/2) is small, this result can still provide an informative surrogate bound.

Theorem 12. Assume that there exist mazimizers P, Py of R¢ that are induced by transport maps from
Py, Pi, and define P* = P} + P§, n* = dPj/dP*. Let ® be the function in|Theorem 11|, but with H defined

as H(z) = conc(P*(0 < |n* —1/2| < 2)). Then

~ P*(n* =1/2
RU() B < SR () -~ Ry 4 1)

Removing the assumption that P, P} are induced by a transport map from and [I2 remains an
open problem. We conjecture that this assumption is, in fact, unnecessary.
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Example 1 Example 2 Example 3

Py (x) . Py (x) p1(x)
=== P ()

pi(x)
05 Po(x)

Probability Density
Probability Density
Probability Density

Figure 3: Distributions from [Examples 1| to 3| along with attacks that maximize the dual R¢.

Comparison with real-world datasets

Experimental results from prior work suggest that, in real-world datasets, n* is typically concentrated near
0 and 1. [Bhagoji et al.| (2019) compute lower bounds on the adversarial classification risk for binary tasks,
focusing on classifying digits ‘3" and ‘7’ in MNIST under {2 perturbations. Their lower bound remains close
to 0 for e < 3 and increases to 0.2 at € = 4. Since C*(n*) attains its maximum at n* = 1/2, a small adversarial
risk implies that the distribution places little mass in a neighborhood of |n* —1/2| = 0. Similar trends are
observed on Fashion MNIST and CIFAR10. |Dai et al.| (2023) extend these bounds to the multiclass setting,
though extending adversarial surrogate bounds beyond binary classification remains an open problem.

When the optimal adversarial risk is non-zero, the adversarial Bayes classifier may not be unique up to
degeneracy. Even without adversarial perturbations, datasets like MNIST and CIFAR10 contain inherently
ambiguous examples. [Northcutt et al| (2021) identify such cases, four are depicted in One
would expect n(x) = 1/2 for such examples. Bartoldson et al.| (2024]) show that similar ambiguity arises in
adversarial settings: under /., perturbations of size 8/255, approximately 6% of adversarial examples are
ambiguous in the CIFAR10 dataset. In the binary scenario, one would thus expect n*(z) = 1/2 for these
inputs, and thus one must apply [Theorem 10| or [Theorem 12| Extending the concept of uniqueness of the
adversarial Bayes classifier to multiclass settings remains an open problem.

Examples

Below we present three examples illustrating the applicability of our main theorems. All examples involve
one-dimensional distributions, and we denote the pdfs of Py and Py by py and p;.

To start, if RS = 0 then * € {0,1} P*-a.e. for any maximizers of Ry. Therefore, for any such distribution,
the optimal attack satisfies Massart’s noise condition with oo = 1/2, see |[Appendix J.1| for a proof.

Lemma 2. Assume RS = 0, let (P, P}) mazimize Ry, and define P* = B + P, n* = dP}/dP*. Then
P*(n* € {0,1}) = 1.

Any distribution for which the supports of Py, P, are more than 2¢ apart must have zero risk.

Example 1 (When RS = 0). Let

po(x):{1 if 2 € [~1 -8, ~] pl(x):{l if € [6,1+ 0]

0 otherwise 0 otherwise

for some § > 0. See for a depiction. This distribution satisfies R¢ = 0 for all ¢ < § and thus
implies that the surrogate bound of applies.

Examples 2| and [3| require computing maximizers to the dual R¢; See [Appendices J.2| and for these

calculations. The following example illustrates a distribution for which Massart’s noise condition can be
verified for a distribution of optimal attacks.
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Example 2 (Massart’s noise condition). Let ¢ > 0 and let p be the uniform density on [-1—4, —§]U[d, 1+4].

Define n by
1 .
7 ifze[-1-46,-4] L
= 6
n(w) {Z if z € (8,144 (16)

see [Figure 3D)] for a depiction of py and p;. For this distribution and e < §, the minimal surrogate and
adversarial surrogate risks are always equal (Ry . = = R§ ,). This fact together with [Theorem 7|imply that
optimal attacks on this distribution are P} = P; and PO = Py, see [Appendix J.2| for details. Consequently:
the distribution of optimal attacks Pf, P satisfies Massart’s noise condition with oo = 1/4 and as a result
the bounds of apply. When € € (4,1 + ¢), pdfs of the distributions that maximize the dual are
pi(x) = p1(x+e), p§(x) = po(z —¢€), where p1(z) = n(z)p(z) and po(z) = (1 —n(z))p(x). These distributions
satisfy P*(n = 1/2) = (e —¢) while P*(|n—1/2] > 1/4) = 1— (e — §). Thus provides a surrogate
bound.

The final example presents a case in which Massart’s noise condition fails for the distribution of optimal
adversarial attacks, yet the adversarial Bayes classifier remains unique up to degeneracy. still
yields an informative surrogate bound.

Example 3 (Gaussian example). Consider an equal-variance Gaussian mixture with pg + 2e < py < po +

\@0:
1 1 _ (z=pg)? 1 1 _(e=pp)?

r)=— - ——=¢ 202 r)=—-— - ——=¢ 202
po(z) = 5 s pi(z) =5 s
see for a depiction. The optimal attacks Pf, P are gaussians centered at po + € and u; — €
respecively, with pdfs

1 1 (@—(ug+e)? 1 1 (z—(ny—e))?
* — . - ) * = —. - o2 . 17
po(l') 2 \/ﬂge 2 ) IS (1‘) 2 27_(_0_6 2 ( )

We verify that P§ and P} are in fact optimal by finding a function f* for which R§(f*) = R(z,(]P’S,]P”{),
the strong duality result in will then imply that P} and P; must maximize the dual Ry, see

for details.

Further, when p; — po < /20, then the function h(z) = P*(|n* —1/2| < 2) is concave in z and consequently
H = h, see[Appendix J.4]for details. Although h is unwieldy function, comparison to its linear approximation

at zero gives the bound
. 1602
H(z) <min | ————=z,1 . (18)

p1 — po — 2€
Again, see for details.

When € > (1 — po)/2, [Frank| (2024, Example 4.1) demonstrates that the adversarial Bayes classifier is not
unique up to degeneracy. Notably, the bound in preceding example deteriorates as (u1 — 1o)/2 — €, and
then fails entirely when e = (u; — po)/2.

4 Proof of Linear Surrogate Bounds

4.1 Proof of [Theorem 9

The proof of Theorem 9 relies on decomposing the excess adversarial classification and surrogate risks into
non-negative terms, revealing their structural similarity and allowing for a pointwise comparison.

Let P, P§ be any maximizers of Ry. These distributions also maximize R by Set P* = P§ + Py,
n* = dPi/dP*. Let 7§, 75 be couplings between Py, P§ and Py, P} achieving the W, distances . The
excess classification risk can be decomposed as

RE(f) - RS = RE(f) — R(P, ;) = / () + / io(f)dng (19)

10
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with

i1(f) = (Se(Ly<0)(x) = Ly<o(x)) + (C(n7, f) = C*(n"))

io(f) = (Se(1y>0)(x) = 1y50(x)) + (C(n*, f) = C*(n7)).
The first term measures the discrepancy between the worst-case attack on f and the attack induced by
P, P}, the optimal attack for the distribution Py, P;. The second term measures the excess conditional risk

under the optimal attack Pg, P}. implies that Se(15<o)(x) — 1y<o(x’) must be positive, while the
definition of C* implies that C'(n*, f) — C*(n*) > 0.

Similarly, one can express the excess surrogate risk as

RY(f) — RS, = / i2(f)dr; + / i(f)dng (20)
with
— (S.(6(5)() — SN + (Col ) — Cn))
zz?( > (S:(6 ( PIE) = (=) + (Cols 1) — C)

The following lemma is the core inequality linking 75 to zf under Massart’s noise condition. It shows that
each classification-risk term can be bounded by a constant multiple of its surrogate risk counterpart.

Lemma 3. Define ig, z‘f as in and assume that the distribution of optimal adversarial attacks P§, P}
satisfies Massart’s noise condition. Then

, 1 , ‘ 1
o) < sEmEarmah ) @ i(f) <

~0(0) - C3(1/2 - a)
hold ~g-a.e. and i -a.e. respectively.
directly implies by integration over couplings v;, v .
Proof of [Theorem 9 Combine (T9)), and (20). O
4.2 Proof of [emma 3l

it (f)- (22)

The proof proceeds by partitioning the domain R? x R¢ into regions where the supremum-based classification
either matches (Dy) or exceeds (Fj) the decision under the optimal attack. On each region, we derive a

separate bound relating i; and zf Define the sets Dy, Ey,

Do = {(x,x') : Se(150)(x) — 1y(x) = 0} (23)
Eo = {(x¢,x") : Se(1750) (%) = Lyxy>0 = 1} (24)
Dy ={(x,x) : e(lf 0)(%) = 15x)<0 = 0} (25)
By ={(x,x) : Se(1r<0) (%) = 15x)<o = 1} (26)

By construction, D; U E; = R x R? and Dy U Ey = R? x R,

The following lemma records a simple but useful structural property of Ey and E;, which allows us to bound
the surrrogate loss terms from below on these sets.

Lemma 4. Let Ej, be as in|Equations (24)| and|(26)] Then Sc(1¢s0)(x) = 1¢50(x") = 1 v{-a.e. on Ey while
Se(1r<0)(x) = 17<0(x') =1 7§-a.e. on Ey.

Proof. We'll prove the statement for E7, the argument for Fy is analogous. Specifically, we will show that
one cannot simultaneously have Se(17<o)(x) — 1y<o(x’) =1 and Se(1550)(x) — 1yso(x’) = 1.

Consider (x,x") € E1: as both Sc(17<0)(x) and 17<o(x’) are 0-1 valued, the relation S(1y<o)(x)—1fx)<o =
1 implies that 1xy<o = 0 and thus ]-f(x/)>0 = 1. The fact that S, (1f>0)( ) > 1y50(x’) on supp~y; and
supp i C A implies that Sc(1¢s0)(x) = 1 7{-a.e. on Ej.

O

11
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The next result bounds the terms zﬁ from below.

Lemma 5. The relations and (@ hold on Ey and Ey respectively.

i§(f) = 6(0) = C3 (") (27) it (f) = 6(0) = C3(n")- (28)
Proof. We will prove the statement for F7, the argument for Ej is analogous. Observe that

i1(f) = S(¢()) () + (L= ") (S~ (X)) = (X)) = C3(n")

Now as Se(1f<o)(x) = 1, one can conclude that there is a point in z € Bc(x) for which f(z) < 0, and thus
0.

Se(¢(f))(x) > ¢(0). Next, [Lemma 4] implies that f(x’) > 0 and hence ¢(—f(x')) — ¢(f(x’)) > 0. Therefore,

one can conclude (28]).

O
Furthermore, a simple calculation bounds the i, from above.
Lemma 6. On the set D,
iK(f)=C" f) —C*(n") (29)
while on B},
in(f) =1+C0" f) = C*(n") (30)

Proof. We will show the statement k¥ = 1 the argument for £ = 0 is analogous. On Di, Se(17<o)(x) —
1¢(x)<o = 0, implying . Similarly, on Fy, Sec(15<0)(X) — 1(xy<o = 1, implying .
O

Comparing the upper and lower bounds present in and [6] proves

Proof of[Lemma_3 We will discuss (22), the argument for is analogous. We prove the bound separately
on D; and E;, whose union is R?. First, notice that implies that

1
= 50— 312 —a)

Clr(x), f(x)) = C* (" (x)) (Coln" (), F(X)) = C3(n" (%)) Pr-ae.  (31)

On the set D;:
implies that

i(f) = Cln"(x'), f(x')) = C" (0" (x'))
and thus the desired inequality follows from and the fact that Se(¢o f)(x) — ¢po f(x') > 0 ~f-a.e.
On the set Ey:

On El,
However, due to

o, 000)=C3n) 1
Se(Lr<o)(x) = 1p<o(x') =1= * < #(0) — C:;(n*)

(Se(¢ 0 f)(x) — (f(x)) (32)

The last inequality is a consequence of the assumption |n* — 1/2| < «. Summing this relation with
shows ([22)). O
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4.3 Lower Bounds

The bound in provides a general guarantee relating the adversarial classification and surrogate
risks. We now show that this bound cannot be substantially improved.

This example describes functions in which the worst-case attack and the attack induced by P§, Pj differ
substantially. This function sequence is the counterexample to consistency proposed in prior work (Meunier,
et al.l 2022} [Li & Telgarskyl 2023)). Intuitively, the sign flip causes the classifier to misclassify both classes,
even though a constant function would achieve lower risk for this distribution.

Example 4 (Lower bound for [Theorem 9). Let ¢ satisfy C7(1/2) = ¢(0), and consider a distribution
supported on [—¢, €] with P*(n = 1/2 + a) = 1. Define the sequence of functions

1 X
fnz{”l Xig (33)

For this sequence, R¢(f,) — RS = 1/2+ « while the adversarial surrogate risk converges to lim,, R;( fn) =
¢(0) — C3(1/2 + «). Consequently,

€ e 1
lim o) =R 212

n—oo RG(fn) = Ry, 6(0) = C5(1/2 = o)

It follows that for any § > 0 there exists f such that

e/ p e 12+«
F == 5o - i —a

In particular, the constant in is overestimated by factor of at most 1/(1/2 + «) < 2. However,
[Theorem 9

this example demonstrates that [Theorem 9|is tight when « = 1/2.

(R4 (f) — R .,.) — .

The constant in is known to be sub-optimal when o < 1/2. In particular, Theorem 4 of
Frank| (2025) proves that R°(f) — RS < (1/2)/(¢(0) — Cg (1/2)) (R (f) — R ) for the p-margin loss
¢p(a) = min(1,max(0,1 — «/p)). We conjecture that the tight constant in is in fact (1/2 +
@)/(¢(0) — C3(1/2 — «)). Together, these observations indicate that the bound in captures the
correct order of dependence on a and ¢, and that only the numerican constant can potentially be improved.

5 Proof of Theorem 11I

Before proving we will show that this bound is non-vacuous when the adversarial Bayes classifier
is unique up to degeneracy. The function h(z) = P(|n* — 1/2| < z) is a cdf, and is thus right-continuous in
z. Furthermore, if the adversarial Bayes classifier is unique up to degeneracy, then h(0) = 0. The following
lemma implies that if H = conc(h) then H is continuous at 0 with H(0) = 0. See for a proof.
This result implies that the bound in is non-vacuous.

Lemma 7. Let h:[0,1/2] — R be a non-decreasing function with h(0) = 0 and h(1/2) = 1 that is right-
continuous at 0. Then conc(h) is non-decreasing, continuous on [0,1/2], and conc(h)(0) = 0.

The first step in proving is showing an analog of with @ = 0 for which the linear

function is replaced by an n-dependent concave function.

Proposition 2. Let ® be a concave non-decreasing function for which C(n, a)—C*(n) < ®(Cy(n, a)—C%(n))
for any n € [0,1] and a € R. Let P}, P% be any two maximzers of Ry for which P*(n* = 1/2) = 0, where
P* = P§ + Py and n* = dP;/dP*. Let G : [0,00) — R be any non-decreasing concave function for which the
quantity

dp*

1
K:/Gwm—%mw
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is finite. Then R(f) — RS < ®( s(f) — R ), where

®(2) =44/ KG (iz) + 20 (;) (34)

The proof strategy mirrors that of but with ® and G replacing the fixed constant bound.

Uniqueness up to degeneracy and guarantee that the denominator ¢(0) — C(n*) is strictly
n[Theorem 2)

positive P*-a.e. The function ¥~! in|Theorem 2|and the surrogate bounds of (2004) provide examples
of candidate functions for ®. As before, this result is proved by dividing the risks Rg, R® as the sum of
four terms as in , and then bounding these quantities over the sets Dy, Ej defined in ,
separately.

The factor of 1/4 in (34)) arises as an artifact of the proof technique: one factor of 2 from averaging over two
sets Dy, F1, (see (b6) in|Appendix F)), and another factor of 2 from combining the bounds associated with

the two integrals corresponding to class 0 and class 1(see [Equations (54)| and [(56)] in [Appendix F)).

We now turn to the problem of identifying functions G for which the constant K in the preceding proposition
is guaranteed to be finite when the adversarial Bayes classifier is unique, but distribution dependent. Observe

that if A is the cdf of |n — 1/2| and h is continuous, then [ 1/h"dh is always finite for r € (0,1). This
calculation suggests ® = ho U1, with ¥ defined in To ensure the concavity of G, we instead
select G = H o U1 with H = conc(h).

Lemma 8. Assume C}(1/2) = ¢(0). Let Py, Py, P7, PG, ¢, H, and ¥ be as in|Theorem 11, Let A(z) =
U~ (min(z,¢(0))). Then for any r € (0,1),

R°(f) — R < ®(R5(f) — ;) (35)

&(2) :4\/1;11(;/\ (iz))rwA (%) (36)

Proof. For convenience, let G = (H o %A)T. Then G is concave because it is the composition of a concave
function and an increasing concave function. We will verify that K is finite and yields the constant in the

bound: :
K= P* <
/ G(o * ))0Z “1-7

with

First,

1 1 1 1
dP* = - dP* = —dP*ts = —dP*#s
/ G(6(0) — C3 (7)) / H(lp" —1/2])" oy T ! /w IO

with s = |n* — 1/2|. The assumption P*(|n* = 1/2|) = 0 allows us to drop 0 from the domain of integration.
Because the function H is continuous on (0,1] by this last expression can be evaluated as a
Riemann-Stieltjes integral with respect to the function h(s) = P(jn* — 1/2] < s):

1 ; /29
P*ts =
0.3 H(s)" o H(s)

dh (37)

This result is standard when P* is Lebesgue measure, (see for instance Theorem 5.46 of Wheeden & Zygmund|
(1977)). We prove equality in for strictly decreasing functions in [Proposition 4fin |[Appendix G.1}

Finally, the integral in can be bounded as

/H e (35)
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If h were differentiable, then the chain rule would imply

L L — %L / S)dz = 1 S 1—7r 2 1
/H(S)T'dhg/h(s)rdh /0 O pL O N

This calculation is more delicate for non-differentiable H; we formally prove inequality in in

This calculation proves the inequality with @ as (36)) O

To obtain the bound in[Theorem 11} first observe that the concavity of A together with the fact that A(0) =0
implies that 2A(z/2) < 4A(z/4). Next, minimizing the bound in[Lemma 8 over r then produces[Theorem 11
see for details.

6 Proof of [Theorems 10 and

The main insight behind and [T2]is that a transport map that realizes the optimal adversarial
perturbations also preserves optimality when restricted to certain subsets of R, allowing a reduction from
the global to a local problem in both the dual and primal formulations. The following lemma formalizes
the fact that under a transport map structure, restricting the primal problem to the pre-image of a set Q
corresponds exactly to restricting the dual maximizers to @ itself.

Lemma 9. Let Py, Py be a data distribution and let Py € B> (Py),P; € BX(Py) mazimize Ry. Assume
there exists transport maps To, Ty for which P = R8T, with |T;(x) — x|| < €. Let Q be any set and define
U; =T, Q).

If the data is distributed according to Po|u,, P1|u, , then Pjlg, Pi|o mazimize Ry over BX(Py|u, ) x B (Py|w, ).

In the remainder of this section it will be useful to include the data distribution in the notation for the
primal problem. Thus, for the remainder of this section, we define

RS(f;Po, By) = / Se(éo f)dPy + / S(do—f)dBy R°(f:Po,By) = / Se(17<0)dPy + / S.(1750)dPy (39)
Similarly, we’ll denote

Rg (Po,PPq) = il}fpr(ﬁPo,Pl), RE(Po, Py) = irflfRE(ﬂPo,Pl) (40)

Observe that for any two sets Uy, Uy,
Ry (f:Po,P1) = Ry (f; Poluy, Piluy) + R (f: Polye, Pilye)

This decomposition reflects the fact that the adversarial surrogate risk is additive over disjoint measurable
partitions of the data space. If furthermore these sets are induced by transport maps, then the optimal risks
also follow this split.

Lemma 10. Let P§, P}, 10,141, Up, Ur and @ be as z'n and define P* = Py + Py, n* = dP;/dP*.
Then
R . (Po,P1) = Ry (Poluy, P1luy) + R . (Polye, Pilye)

and furthermore, Ry  (Polye,P1[yec) = fQC Cy(n*)dP*.

Sec for a proof of [emmas 0] and [I0

maximize Ry over BX(Poly,) x BX(Pi|y,), with Uy = T, (QF) and U; = T, 1(Q°)

Proof of [Theorem 18 Let Q = {x' : n*(x') = 1/2}. Thenapplied to Q@ shows that (P§|ge, Piloc)
R . ﬁTheorem 11
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and imply that

RE(f;Poluy, Pilv,) — RE(Poluy, Pilu,) < @ (R5(f: Poluy, Pilu,) — R (Polu,, Pilu, )
< @ (R4(f;Po, P1) — RS, (Po,P1)) .

Next, by adding R°(f;Polyc,P1lye) — RL(Polye, Piye) to both sides of the inequality above

results in
R(f;Po,P1) — RS (Po,P1) < @ (RS (f;Po, P1) — RS, (Poluy, P1)) + RE(f;Polye, P1lye) —/ C*(n*)dP".
Q

The fact that C*(n*) = 1/2 on Q while S¢(15<0) < 1, Se(1y50) < 1 implies that R(f;Polyc, Pilye) —
fQ C*(n*)dP* < 1P(n* = 1/2). Thus, the excess risk contribution from the region @ is at most P*(n* =
1/2)/2. O

The proof of [Theorem 10| follows the same steps, except that we take Q = {x’ : |[n(x’) — 1/2| < a}, see
for a proof.

7 Related Works

Surrogate Risk Bounds: The statistical consistency of surrogate risks in both the standard and adver-
sarial context has been widely studied. Bartlett et al.| (2006)); Zhang| (2004) establish surrogate risk bounds
that apply to the class of all measurable functions while |[Lin| (2004); |Steinwart| (2007)) prove further results on
consistency in the standard setting. [Frongillo & Waggoner| (2021)) study the optimally of such bounds, and
l%‘ 2023) derive bounds using the modulus of convexity of C to construct surrogate risk bounds. Several
works (Philip M. Long} [2013; Mingyuan Zhang), 2020; |Awasthi et al.l|2022} Mao et al., 2023ajjb; |Awasthi et al.,
2023b) study consistency within a restricted function class; a concept known as H-consistency. [Mahdavi
et al| combine surrogate risk bounds with surrogate generalization bounds to study the generalization
of the classification error.

Adversarial Surrogate Risk Bounds: Most closely related to our results are [Li & Telgarsky| (2023);
Mao et al.|(2023a). [Li & Telgarsky| (2023)) derive a surrogate bound for convex losses in which the threshold
in (10 is optimized rather than fixed at zero. Mao et al. (2023a)) establish an adversarial surrogate bound
for a modified p-margin loss.

Adversarial Consistency: In the adversarial setting, Meunier et al.| (2022)); [Frank & Niles-Weed| (2024a))
characterize which losses are adversarially consistent for all data distributions. [Frank (2025) show that under
reasonable distributional assumptions, a consistent loss is adversarially consistent for a specific distribution
iff the adversarial Bayes classifier is unique up to degeneracy. [Awasthi et al| (2021 study adversarial
consistency for a well-motivated class of linear functions while [Awasthi et al.| (2023b); Mao et al.| (2023a)
study H-consistency in the adversarial setting for specific surrogate risks. Standard and adversarial surrogate
risk bounds are a central tool in the derivation of the H-consistency bounds in this line of research. Whether
the adversarial surrogate bounds presented in this paper could result in improved adversarial H-consistency
bounds remains an open problem.

The Adversarial Bayes Classifier: Our proofs draw on prior work that investigates adversarial risks
and adversarial Bayes classifiers. Bungert et al. (2021); [Pydi & Jog| (2021} |2020); Bhagoji et al.| (2019);
Awasthi et al.| (2023a)) establish existence results for the adversarial Bayes classifier, while Frank & Niles-
Weed| (2024b); [Pydi & Jog) (2020} [2021); Bhagoji et al.| (2019); [Frank| (2025) prove minimax theorems for
adversarial surrogate and classification risks. [Pydi & Jog| (2020) use such results to analyze the adversarial

Bayes classifier, and (2024) employ them to study uniqueness.
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Sample Complexity and Surrogate Risks: The bound of[Theorem 2| can be linear even for convex loss
functions. For the hinge loss ¢(«) = max(1 — «,0), the function ¢ computes to ¢(¢) = |0]. [Mahdavi et al.
(2014) emphasize the importance of a linear convergence rate in a surrogate risk bound. They note that
convex surrogates with favorable sample complexity often fail to satisfy strong surrogate risk bounds, due to
Theorem 2 Frongillo & Waggoner| (2021)): convex losses which are locally strictly convex and Lipschitz achieve
at best a square root surrogate risk rate. Thus, suggests that favorable sample complexity
guarantees for convex surrogates may require distributional conditions such as Massart’s noise condition,
under which [Massart & Nédélec| (2006) also show improved sample complexity.

8 Conclusion

In conclusion, we prove surrogate risk bounds for adversarial risks. When ¢ is adversarially consistent or the
distribution of optimal adversarial attacks satisfies Massart’s noise condition, we obtain a linear surrogate
risk bound. In the general case, we prove a concave distribution-dependent bound. Understanding the
optimality of the concave bound remains an open problem, as does understanding how these bounds interact
with the sample complexity of estimating the surrogate risk. While related questions have been studied in
the standard setting (Frongillo & Waggoner} [2021; Mahdavi et al.| [2014), the adversarial context remains
largely unexplored. Advancing these directions could bridge the current gap between theoretical guarantees
and practical robustness in adversarial learning.
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A Proof of [Theorem 1]

Lemma 11. Assume ¢ is consistent. Then Cj(n) = ¢(0) implies that n =1/2.

This result appeared as Lemma 7 of [Frank| (2025)).

Proof. If ¢ is consistent and 0 minimizes Cy (7, ), then 0 must also minimize C(n, o) = nla<o+ (1 —7)1as0
and consequently n < 1/2. However Cy(n, a) = Cy(1 — 1, —) so that 0 must minimize C(1 —n, —a) as well.
Consequently, 1 —n < 1/2 and thus 7 must actually equal 1/2. O

Proof of [Theorem 1, Forward direction: Assume that ¢ is consistent. Note that C5(n) < Cy(n,0) = $(0)
for any n. Thus implies that C7(n) < ¢(0) for n # 1/2.

Backward direction: Assume that Cj(n) < ¢(0) for all n # 1/2. Notice that if n = 1/2, C(1/2,a) is
constant in « so any sequence «, minimizes C(1/2,-). We will show if n > 1/2 and «,, is a minimizing
sequence of Cy(n, -), then a,, > 0 for sufficiently large n, and thus must also minimize C(7,-). An analogous
argument will imply that if < 1/2, any minimizing sequence of Cy4(n, -) must also minimize C(7, -) as well.

Assume 1 > 1/2 and let a, be any minimizing sequence of Cy(n,-). Let o* be a limit point of the sequence
a, in the extended real number line R. Then a* is a minimizer of Cy(n, ). Next, observe that one of ¢(a*),
¢(—a*) is larger that or equal to ¢(0) and the other is less than or equal to ¢(0). As n > 1/2 and a* is a
minimizer of Cy(n,-) and Cy(n, a*) < ¢(0), one can conclude that ¢(a*) < ¢(0) and consequently a* > 0.

Therefore, every limit point of the sequence {«,} is strictly positive. Consequently, one can conclude that
o, > 0 for sufficiently large n.

O

B Linear Surrogate Risk Bounds—Proof of [Proposition 1]

In this appendix, we will find it useful to study the function

Cotn) =, f  Colnz)

introduced by [Bartlett et al. (2006). This function maps 7 to the smallest value of the conditional ¢-risk
assuming an incorrect classification. The symmetry Cy(n, a) = Cy(1 —n, —a) implies Cy (n) = C (1 —n).
Further, the function C} is concave on each of the intervals [0,1/2] and [1/2,1], as it is an infimum of linear
functions on each of these regions. The next result examines the monotonicity properties of Cj and C;.

Lemma 12. The function C; is non-decreasing on [0,1/2] and non-increasing on [1/2,1]. In contrast, Cy

is mon-increasing on [0,1/2] and non-decreasing on [1/2,1]

Proof. The symmetry C(n) = Cj(1—n) and C, (n) = C; (1—n) implies that it suffices to check monotonicity
on [0,1/2]. Observe that

Co(n, @) = Cy(n, =) = n(¢(a) — ¢(—a)) + (1 = n)(¢(—a) — ¢(a)) = (2n — 1)(d(@) — (—a)).

If n < 1/2, then this quantity is non-negative when a < 0. Therefore, when computing C} over [0,1/2], it
suffices to minimize Cy(n, @) over a < 0. In other words, for n < 1/2,

C3ln) = int Cyln,) = inf Cy(n.)

For any fixed o < 0, the quantity Cy(n, @) is non-increasing in 7 and thus C’;(m) < Cj;(m) when 71 < 1o <
1/2.

In contrast, for any o > 0, the quantity Cy(n, @) is non-decreasing in n and thus C (1) > Cy (n2) when
m <m2 <1/2.

O
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Next we’ll prove a useful lower bound on C’;.

Lemma 13. For alln € [0,1],

Cy(n) = 11 —2n|¢(0) + 2min(n,1 —n)Cg(n) (41)

Proof. First, assume that n < 1/2 and observe that 7 is the convex combination nn = 2n-1/2+ (1 — 27) - 0.
By the concavity of Cj on [0,1/2],

Cy(n)=0Cy (277 . % +(1—2n)- 0) > (1-2n)Cy(0) +2nC; (3)

However, € (0) = ¢(0) while Cj(1/2) = Cj(1/2). Further, implies that C73(1/2) > Cj(n),

yielding the inequality
Cy (n) = (1 —2n)¢(0) + 2nCg(n)
Symmetry Cy (n) = C4 (1 —n) then implies l|
O

Proof of [Proposition 1. If C(n, f)—C*(n) = 0 then (8) holds trivially. Otherwise, C(n, f)—C*(n) = [2n—1].
If C(n, f) = |2n — 1], then

* ¢(0) = C3(n)
1 3(0) — C3) -
< m ((|277 —1]é(0) + (1 — |2 — 1|)C;;(77)) _ C;(U))

At the same time, because |n — 1/2| > a P-a.e. implies that Cj(n) < C3(1/2 — a) P-ae.

Furthermore, the relation 2min(n,1 —n) =1 — |1 — 25] together with shows that
127 = 1|$(0) + (1 = [2n = 1[)Cg(n) < Cy (n).
Therefore, is bounded above by

1

_ 1
~9(0)-C5

$(0) = Cy (5 —a

oy (G —Cim) < 7 (Coln. )= i) (43)

The last equality follows from the supposition C(n, f) — C*(n) = |2n — 1|, as it implies (2n — 1)f < 0, and
thus Cy(n, f) > Cy (n). Consequently, implies @j

Integrating with respect to P then produces the surrogate bound @
O

C Proof of Lemma 1

Proof of[Lemma 1] If x" € B(x) then Sc(g)(x) > g(x’). Thus if 7 is a coupling between Q and Q' supported
on A, then Sc(g)(x) > g(x’) y-a.e. Integrating this inequality in v produces

[s.@az [ ga0.

Taking the supreumum over all Q € B>(Q) then proves the result. O
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D Proof of Item 1), [Theorem 8§

We will work with an alternative primal problem from Frank & Niles-Weed| (2024b)) that will make it easier
to study the dual. Consider minimizing

O (ho, hy) = /Se(hl)d]P’l +/Se(h0)d]P’0

over the convex set
(ho,h1): ho,h1: K¢ — R Borel, 0 < hg, hy and for
s = (44)

all x € RY, 7 € [0,1], nha(x) + (1 = n)ho(x) > C(n)

Then strong duality holds with © in place of Rj. Furthermore, there exist minimizers over the set of R-valued
functions, where R = R U {—o00, +00}.
Theorem 13. Define Ry as in .

inf  O(ho,h1) = sup Ry(Py,P)

(ho,h1)€S¢ PBEBSO(]PO)
P eBX(Py)

Furthermore, the infimum is attained at some R-valued hj, h}.

See (Frank & Niles-Weed, [2024b, Lemma 14,Lemma 21) for a proof of this result. already
implies that the dual problem attains its supremum. Complimentary slackness conditions further characterize
minimizers and maximizers.

Theorem 14 (Complementary Slackness). The pair (hg, hi) minimize © over Sy and the measures (Pg, PY)
mazimize Ry over BX(Py) x B (P1) iff the following two conditions hold:

1)
/Se(h’{)d]P’l = /h’{dP’{ and /Se(h;;)d]?o = /hngP’(’;

2)
0ohi + (L= kg = C3(n°) Pr-ace,

See [Frank & Niles-Weed| (2024b, Lemma 15) for a proof. [Theorems 13| and [14] apply to the conditional risk
C*(n) as C*(n) = Cj(n) for the hinge ¢(a) = (1 —a);.

We will use a characterization of consistency similar to in the proof of [[tem 1)| [Theorem 8|

Theorem 15. A loss function ¢ is consistent iff Cjj(n) has a strict mazimum at 1/2.

Proof. 1f C3(1/2) = ¢(0), this statement is exactly If C3(1/2) < ¢(0), Frank & Niles-Weed|

(20244, Proposition 3) implies that ¢ is consistent. It remains to show that if 02(112) < ¢(0), then C7(n)

has a strict maximum at 1 / 2. As every sequence has a convergent subsequence in R, one can assume that
Cy(1/2,-) has a minimizer a* and C(1/2) < ¢(0) implies a* # 0. Symmetry of Cs(1/2,-) implies that we
can assume o > 0, and thus ¢(a*) < ¢(0) and ¢(—a*) > ¢(0). The fact that C7(1/2,a") < ¢(0) implies
that in fact ¢p(a*) < ¢(0) < ¢p(—a*). Next, observe that for any «,

1

Coln @) = 3 (9(a) + 6(~a)) + (1~ 5)(9(a) ~ o(~a)

Thus, one can bound C}(n) by
Co(n) < Cy(n, 0") = %(¢(a*)+¢(—a*))+(n—1/2)(¢(a*)—</>(—04*)) = C5(1/2)+(n=1/2)(¢(a”) = p(—a”))
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Thus if n > 1/2, then Cj(n) < Cj;(1/2). Symmetry implies that C7(n) < C3(1/2) for all . Thus C} has a

strict maximum at 1/2.

O

Next, implies that minimizers of © assume their suprema. This observation will make it easier
to work with these functions.

Lemma 14. If (h§, h}) minimizes © over Sy, then the functions hiy, h} assume their suprema Py-a.e. and
Pi-a.e. respectively

Proof. We will show the statement for h], the argument for hj is analogous. Let 7] be the coupling between
P, and P} that achieves the minimum W, distance. [Lemma 1| and [[tem 1)| of [Theorem 14| implies that

Se(h1)(x) = hi(x")  ~f-ae.

and thus h] assumes its maximum over closed e-balls Pj-a.e. O

Lemma 15. If (h§, hi) € Sy, then at any x either hi(x) > C;(%) or hi(x) > C;(%)

Proof. If (h§,h}) € Sy, then at any point x,

1, 1, 1

§h0(x) + §h1(x) > C¢(§)-

The inequality h¢(x) < Cj(1/2) implies h(x) > C3(1/2). Thus either hf(x) > Cj(1/2) or hi(x) > C3(1/2)
at any point. O

Proof of [Item 1)| of[Theorem § . Let ¢pinge(a) = 3(1 — a)4, then C e (M) = C*(n).

Let (hg, h}) minimize © over S and (Pj, P}) maximize Ry over B> (Py) x B>(P;). We will show that the
functions defined by 3 y

hi(x) = 1nzozcsd) ho(X) = Lhs >0 (d)

maximize © over Sy, . and (P§, P{) maximize Ry,,,,. by verifying the constraint (hg, hi) € Sg,,,. and the

complimentary slackness conditions. The proof thus consists of three steps: verifying (hg, h}) € Sppinges and
checking the two complementary slackness conditions in

1) Verifying the constraint defining Sy, . .: Observe that implies that at any x, at
least one of h#(x) and h%(x) is 1, and thus

nhi(x) + (1 =n)hg(x) > min(n, 1 —n) = C, . ()

2) Verifying |Item 1)| of |Theorem 14|: Observe that [Lemma 14fimplies that Se(lh’;z();(l/z))(x) =
1S€(h1)(x)20;(1/2) Pj-a.e. Subsequently, the |Item 1)|0f|Theorem 14| implies that

Se(lnyzcs1/2)(X) = Inyxnyzcz1/2) Y1-a-e.,
verifying the first complimentary slackness condition for ET Analogous reasoning shows that

S€(1h3>0;(1/2))(x) = 1h(§(x’)>C;(1/2) Y5-a-€.

3) Verifying[Item 2)| of Theorem 14} [Theorem 14implies that n*h7(x")+(1—1*)hi(x") = Cj(n*) <
C3(1/2), and thus|Lemma 15 implies that ezactly one of hj(x') and hg(x') equals 1 and the other
equals 0. We’ll consider the cases n*(x') < 1/2, n*(x') = 1/2, and n*(x') > 1/2 separately. In these
three separate cases, we will explicitly use the formula C = () = min(n,1 —n).

hinge
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When n*(x’) = 1/2: As exactly one of h§(x’) and h}(x’) is 1:
1-, 1-, 1 1
ih’o(xl) + §h1 (X/) = § = C¢lxixxge (2)
When 7n*(x’) < 1/2: Observe that if h$(x’) > hj(x’), then
1 ho(x) + (1= n)hi(x) <n"hi(xX) + (1= n")hs(x") = C5(n"),

which would violate the constraint on S4. Therefore, hfj(x’) < hi(x’). Next, [Theorem 15
implies that n*h7(x") + (1 — n*)hs(x") = C;(n*) < C;(1/2). These two statements together
with imply that hg(x') < C5(1/2) and hi(x) > Cj3(1/2). However, hg(x') =
C3(1/2) would still violate n*hj(x") + (1 — n*)hg(x') < C3(1/2) and therefore, hf(x’) <
C;(1/2). Therefore,

nhi+ (1 =" hg=n"=Cj, . (n)

When 7*(x’) > 1/2: Argument is analogous to the previous case.

E Proof of Lemma 7|

We define the concave conjugate of a function h as

hi(y) = inf —h
() =, dnt v~ h0o)

Recall that conc(h) as defined in is the biconjugate h... Consequently, conc(h) can be expressed as

conc(h)(z) = inf{l(z) : £ linear, and £ > h on dom(h)} (45)

is a consequence of the properties of concave conjugates.
Lemma 16. Let h: [a,b] = R be a non-decreasing function. Then conc(h) is non-decreasing as well.

Proof. We will argue that if h is non-decreasing, then it suffices to consider the infimum in over non-
decreasing linear functions. Observe that if ¢ is a decreasing linear function with ¢(x) > h(z) then the

constant function ¢(b) satisfies
£(x) > £(b) > h(b) > h(z)

for any x € [a,b]. Therefore,
conc(h)(z) = inf{l(z) : £ linear, non-decreasing, and £ > h}
O
Lemma 17. Let h : [0,b] — R be a non-decreasing function that is right-continuous at zero with h(0) = 0.

Then sup,, h.(y) = 0. Furthermore, there is a sequence y, with Y, — 00 and lim, o0 hu(y,) = 0.

Proof. First, notice that
hi(y) = inf yx—h(z) <y-0-"h(0)=0 (46)
z€1[0,b)
for any y € R. It remains to show a sequence y,, for which lim,, o h«(y,) = 0.
We will argue than any sequence y,, with

h
yn > nh(b) > sup ﬂ (47)
z€[1/n,b] Y
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satisfies this property.
If x € [1/n,b] and y,, satisfies then
h
JCyn—h(.T):l‘(yn—(I)) >0

X

and thus implies that

ha(y,) = inf . —h
(Yn) it 2y (z)

The monononicity of h then implies that

ha(yn) > —h(1/n)
and

lim h.(y,) >0

n—00

because h is right-continuous at zero. This relation together with implies the result.
O

Proof of[Lemma 7} [Lemma 16| implies that conc(h) is non-decreasing. Standard results in convex analysis
imply that conc(h) is continuous on (0,1/2) (Hiriart-Urruty & Lemaréchal, 2001, Lemma 3.1.1) and upper
semi-continuous on [0, 1/2] (Hiriart-Urruty & Lemaréchal, [2001, Theorem 1.3.5). Thus monotonicity implies
that for all = € [0,1/2], conc(h)(z) < conc(h)(1/2) and thus lim,_,; /5 conc(h)(x) < conc(h)(1/2). We will
show the opposite inequality, implying that conc h is continuous at 1/2.

First, as the constant function h(1/2) is an upper bound on h, one can conclude that conc(h)(1/2) = h(1/2) =
1. Next, recall that conc(h) can be expressed as an infimum of linear functions as in ([45). If £ > h, then
2(0) > 0 and ¢(1/2) > 1. Therefore,

05 —06)=0((1—20) -5 +25-0) = (1—26)0(5) +260(0) > 1 — 20.

Therefore, the representation implies that conc(h)(1/2 — §) > 1 — 26. Taking 6 — 0 proves that
lim,_,1 /2 conc(h)(z) > 1. Thus, conc(h) is continuous at 1/2, if viewed as a function on [0, 1/2].

Next, implies that h..(0) = 0:

hex(0) = inf —h,(y) = —sup h.(y) = 0.
yeR y€eR

Finally, it remains to show that h.. is continuous at 0. The monotonicity of A, implies that limy o+ M (y) =
infye(0,1/2] h«(y) and consequently

0 ifxz>0
lim Ay = inf inf — hy = inf inf — hy = inf —h, -
i )= B )= BE ) =)+
= min (igfo —h (gc)7;ré% 5 s (m)) (48)
However, implies that
inf —h.(x) = inf —h,(z)=0 (49)
x>0 z€R

Notice that if x <0,

T 1 T
he(z)= inf —hz)==-h|l=z]==-1 50
(@)= nf #2=h(z) =3 (2) 2 (50)
Consequently, (49) and (50) implies that (48]) evaluates to 0.
O
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F Proof of |Proposition 2|

A modified version of Jensen’s inequality will be used at several points in the proof of
Lemma 18. Let G be a concave function with G(0) = 0 and let v be a measure with v(R?) < 1. Then

/G(f)du <@ (/ fdu)

Proof. The inequality trivially holds if #(R?) = 0, so we assume v(R?) > 0. Jensen’s inequality implies that

/G(f)du:y(]Rd( ) /G ><de (V(%{d)/fdy)

As G(0) = 0, concavity implies that

v(RHG (@/m) = v(RYG (I/(Hl%d) /fdu) + (1 - v(RHG(0) < G (/ fdu)

To facilitate the application of Jensen’s inequality, the proof will be carried out using integrated quantities.
Let IPf;, P} be any maximizers of R4, which also maximize R by Set P* = P§+P;, n* = dP}/dP*.
Define

O

Proof of |Proposition 2 Let ~j, i be the couplings between Py, P§ and Py, P} respectively that achieve the
infimum in (11)). Define Iy (f), Io(f), I?(f), and Ig)(f) by

L(f) = / W)y, IS = / (v, To(f) = / io(fdg,  I9(f) = / i ().

We will prove In(f) < %é(g[g’( ) (51) L(f) < %é(ﬂf( ) (52)
The concavity of ® then implies that
1= 1- ot 1 -

R(f) = RS = L(f) + () < 50CI() + 50 @I0() < &(5200() + 5215(f)) = B(Re(F) - RS ).
We will prove , the argument for is analogous. Next, let 7{ be the coupling between P; and Pj
supported on A,. The assumption on ® implies that

Cln*(x), f(x)) = C" (" (%)) < @(Co(n" (x'), f(x)) = C3(n" (x'))) (53)
and consequently,

/C(n*(X’)af(X’)) —C* (" (xX))dyi < @ (/ Co(n"(x'), f(x')) = CI;(??”‘(X’WWT) <O(IL(f).  (54)

To bound the term Se(1f<0)(X) — 15x)<0, we consider two different cases for (x,x’). Define the sets Dy,
FE; as in . We will show that if 77 is any of the sets D1, E7, then
| 501200 = 15000t

1 Ay o
</ * it | 6 ([ (500 00 = 6r6D) + (Cola (). 76N — 307 ()

G((6(0) - Cy(x))) /2) n
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Thus because G is concave and non-decreasing, the composition v/G is as well. Thus summing the inequality
(55) over Ty € {D1, F;} results in

[ 505009 ~ Lyrzoiri <2 | [ ) a(510) (50

Summing and results in .
It remains to show the inequality for the two sets Dy, Ej.

A) On the set Dy:

If Se(lfgo)(x) = 1f(x/)§0a then fDl Sg(lfgo)@() — 1f(x’)§0d’7ik = 0 while the left-hand side of
is non-negative by which implies for 71 = D;.

B) On the set Ej:
then implies that Sc(¢p o f)(x) — ¢(f(x’)) > 0 4f-a.e. and thus implies

\/G (¢>(0) - th(n*(X’))) ) \/G(SE((;SO HE) = o(f(x)))

Se(1p<0)(x) = 1yxn<o = 1= Vi-ae.
e (o -ciren) e (o0 - i)
(57)
Now the Cauchy-Schwartz inequality and Jensen’s inequality imply
[ S0 = 10 ot
1 : 2z
< dv; G(S.(do - x')))d
<\ Lz (600) = o) </E (51160 )60~ ))ib ) (59)
<[/ 1 ai) 6 ([ soenm - o)
G (6(0) = €307 (x))) 2
which implies (55]).
O

G Technical Integral Lemmas

In this section, we require several technical facts about Riemann—Stieltjes integrals, which we briefly review
here.

Let g : R — R, A : R — R be functions and let P = {zy, 21,...,2K } be a partition of an interval I. Then
the lower and upper sums with respect to g, h, P are defined as

K-1 K—1
Lig:h,P) =% inf  g(2)(h(zk1) = h(z)), Ulg,h,P)=Y_  sup  g(z)(A(zr41) — hlz1)

P 2€[zk,2k+1] ko Z€lzk2h11]

respectively. When g is non-increasing, these simplify as inf. ¢z, ..., 9(2) = g(zr41) and SUPL e[z 2001 g9(z) =
9(2k)-

Riemann—Stieltjes integral |, ; 9dh can be approximated by upper and lower sums, much as in the classical
Riemann case. The following result records the relevant approximation property:
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Proposition 3. Let fI gdh be a Riemann-Stieltjes integral. If g is continuous and h is monotone, then the
integral exists. Moreover, for any partition P, L(g,h, P) < f] gdh < U(g,h, P). In addition, for any § > 0,
there exists a partition P for which U(g, h, P) — 6 < [, gdh < L(g,h,P)+4.

For details, see |Apostol| (1974, Theorem 7.17) or Theorem 2.24 of [Wheeden & Zygmund| (1977) for the
existence statement and |Apostol (1974, Theorem 7.27) for a discussion of upper and lower integrals.

G.1 The Lebesgue and Riemann—Stieltjes integral of an increasing function

The goal of this section is to prove (37), or namely:

Proposition 4. Let f be a non-increasing, non-negative, continuous function on an interval [a,b] and let Q
be a finite positive measure. Let z be a random variable distributed according to Q and define h(a) = Q(z <
«). Then

b
2)dQ(z) = a)dh(a
MELE /Gf() ()

where the integral on the left is defined as the Lebesgue integral in terms of the measure Q while the integral
on the right is defined as a Riemann—Stieltjes integral.

Proof. Recall that when f is monotonic, the Riemann-Stieltjes integral is the value of the limits

I-1 I—-1
/fdh = AEEOZ flag)(h(aig1) — h(ay)) = Alai_fgo Z flaiv1)(h(aiv1) — h(ai)), (59)
Y =0 =0

where these limits are evaluated as the size of the partition Aa; = «;41 — «; approaches 0 (Apostol, (1974,
Exercise 7.3, Theorem 7.19), while the Lebesgue integral [ fdQ is defined as

/fdQ = sup {/gd@ : g < f, g simple function, } .

The limits in are upper and lower sums because f is monotonic, and thus by |[Proposition 3| for any
§ > 0, one can choose a partition {a;}!_, for which each of the sums in is within § of [ fdh.

Next, consider two simple functions g1, go defined according to
I-1
gl(z) = Zf(ai+1)XzE(ai7ai+1]7 QQ(Z) = f(ai)XZE(ai7ai+1]'

=0 i3

~
=

Il
=

By construction, g;(x) < f(z) < go(x) for all z € (a,b]. Moreover, since f(«a;) — f(a;y1) < 9, it follows that
f(x) < ga(x) + 6 when z € (a,b]. Now applying the definition of the integral of a simple function, we obtain:

I—1
/ fdh—6 < ;f(am)(h(am) ~ h(ew)) = / naos [ g /( e

(a,b] a.b

~

-1

= 3 (@) (hlawsr) — hla) < / fdh +

@
I
<

As 4 is arbitrary, it follows that [ fdh = [ fdQ. O

Notice that because H(0) = 0, the integral in the right-hand side of is technically an improper integral.
Thus to show , one can conclude that

[ i) - QLI
ze(s,1/2) H(z) s H(a)

from and then take the limit § — 0.
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G.2 Proof of the last equality in (38

The goal of this appendix is to prove the following inequality:

Lemma 19. Let h : [0,1/2] — [0,1] be an increasing and right-continuous function with h(0) = 0 and
h(1/2) < 1. Let H be any continuous function with H > h and let r € [0,1). Then one can bound the
Riemann-Stieltjes integral [1/H(z)"dh by

/2 4
dh <
o HE" ~1-r
Proof. Let 6 > 0, then one can pick a partition P = {zy = 0,21,...,2x = 1/2} for which f01/2 H"dh <

L(H™",h,P)+4. As H™" is non-increasing, L(H ™", h, P) = kK;Ol H"(zg+1)(h(2k+1) — h(zk)). Therefore,
if we define ax, = h(zy), then

1/2 K-1 K-1
H"dh <> H " (2r41) (Mze11) = h(28)) + 0 < Y b7 (2kp1) (A(zk41) — hlzk)) + 6
0 k=0 k=1 (60)
K—-1
= ap7y(akpr —ax) +06
k=0

Because the function y — y~" is decreasing in y, one can bound a; " (apr1 — ap) < [“**'y~"dy and
y =y g iny oy (@ oy Ty

consequently the sum in is bounded above as

K-1 fapiq h(1/2) 1 1
> / y "y = / y "dy < / ydy =
o Jax 0 0 -r
Therefore f01/2 H="dh <1/(1 —r)+d. The result follows as § > 0 is arbitrary. O

H Optimizing the Bound of [Lemma § over r
Proof of [Theorem 11]. Let

Then

5 a" + Inaa”

solving f/(r*) = 0 produces r* =1+ ﬁ, and

Ina

One can verify that this point is a minimum via the second derivative test:

f(r)= <1 +lna> f(r)

1 1
f <1+> = —lnae'™me = —ealna

1—17r
and thus

70) = (1 +1a) S0+ 2 0

Consequently, f”(r*) =In(a)f(1+ ) > 0.
However, the point r* is in the interval [0,1] only when a € [0,e7!]. When a > e~!, f is minimized over
[0,1] at r = 0. Because 7* is a minimizer when a € [0,e~!], one can bound f(0) > f(r*) over this set and

thus
f(r) <min (1, —ealna)
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| Deferred proofs from

1.1 Existence of Minimizers and Complementary slackness

The existence and complimentary slackness theorems of extend to Rj. Observe that minimizers

of R4y may assume values in R; for example, with the exponential loss ¢(a) = e~ and the distribution
defined by n(x) = 1, the unique minimizer of Ry is +00. Just as in the non-adversarial scenario, R may
fail to attain its infimum over R-valued functions. Nevertheless, Frank & Niles-Weed| (20244, Lemma 8) and
Frank| (2025, Theorem 6) guarantee the existence of a minimizer over R-valued functions.

Theorem 16. Let ¢ satisfy[Assumption 1. Then
o(f) = _inf  RG(f).

f R-valued f R-valued
Furthermore, equality is attained at some Borel measurable, R-valued function f*.

Moreover, Theorem 7 of [Frank & Niles-Weed| (2024b)) describes two conditions that characterize minimizers
of Ry and maximizers Ry.

Theorem 17 (Complementary Slackness). The function f* minimizes R and the measures (Pg, PY) maz-
imize Ry over B> (Py) x BX(Py) iff the following two conditions hold:

1)
/ Se(6(f7))dPy = / o(f)dP;  and / Su(é(—f*))dPy = / o(— ")}
2)
Coln, ) = C307°) P*-a.e.
1.2 Proof of Lemmas 9 and

As a preliminary step, we establish that if P§j, P; are induced by transport maps, then these maps determine
the locations of maximizers of ¢ o f and ¢po —f.

Lemma 20. Let P}, P} be mazimizers of Ry induced by the transport maps Ty, Ty satisfying || To(x) —x|| < e,
T1(x) —x[| < €. Then any minimizer f* of Ry satisfies

S(oo—f)X) = o1 (Tx)) Bo-ae  (o1) S0 =OIEO) Frae(62)

Proof. We show , the argument for is analogous.

Let f* minimize R ; such a function exists by [Theorem 16| The complementary slackness condition
in yields

[ 500 1600 = [0 1z = [ otr* (T ap
As the relation ||T(x) — x|| < € implies Se(¢ o f*)(x) > ¢(f*(T1(x))) one can conclude (62)). O

Next, we verify strong duality for these restricted measures, utilizing the notation defined in [Equations (39)|
and The statement below implies
Lemma 21. Let Py, Py, P5, P, Ty, 11, Uy, Ur and Q be as in and let f* minimize Ry (-;Po,P1).
Then
Pole € B (Polvy),  Pile € BX(Piluv,) (63)
Ry (%5 Polvg, Prlvn) = Ry (Bola, Pil)-

Consequently f* minimizes R (- Polu,, P1lu,) while P5lq, Pi|q mazimize Ry over B> (Po|y, ) x BE(P1|r,)-

31



Published in Transactions on Machine Learning Research (10/2025)

Proof. By the definitions of @, Uy, Uy
Polo = Polus8To,  Pile = Pifv, T3
The relations || Ty(x) — x| <, [|Ti(x) — x|| < € imply (63). Next, let 7 = dPj|q/d(P;|q + Pjlo). On the set
Q,
n=mn" P*ae. (64)

Next, let f* be a minimizer of R;(~; Py, Py). and the definitions of Ty, 77 imply that

RG( BolusPrlu) = [ Su(60 £)0010, ()P + [ 8,00 %) (o)L (020 (65)
[ ot @10t ap: + / 6(—F* (To(x)) 1o (Ty (x))dBo (66)

= [t NG + [ 6~ ()L dEoET: (67)

= [ cutr s (69)

Since f* minimizes Rg(f;Po,P1), the complimentary slackness condition [ltem 2)| of [Theorem 17| implies
Co(n*, f*) = C3(n"). [Equation 64f further implies C(n*) = Cj(7]) on @ P-a.e. and therefore,

[ ot £110a8 = [ Ci@aPlo = R(Blo.Pilo)

O

These results show that restricted measures in the dual corresponds directly to restricted measures in the
primal.

Proof of[Lemma 9 Applying to the restricted measures Py|y,, Poly, and invoking

yields the claim. O

Finally, one can conclude by comparing R (f*; P0|TO’1(QC)7P1|T1’1(QC)) and RY(f*; Polye, Pilye).

Proof of[Lemma 10 Observe that US = T5;4(Q%), US = T7HQF) and let f* be a minimizer of

R;( ;s Pg,Py). Then and 21| imply

Ry, (Polue: P1lvy) = Ry (f*: Poluy, Pilu,) = /ch(n*)d]P’*

RS, (Polyg: Palye) = RS(f*5 Polye, Pilye) = /Q G )P (69)

Summing these:

Ry (f*3Poluy, Piluy) + Re(f3 Pol g, Pilg, ) Z/Cé(n*)dﬁ”* = R§ .(f*; Py, Py)
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.3 Proof of [Theorem 10|

Proof of [Theorem 10 Let Q = {x' : |n*(x') — 1/2| < a}. Then applied to Q€ shows that
(P§lge Pi|ge) maximize }_{¢ over BX(Py|u,) x BX(P1|y,), with Uy = T, ' (QY) and U = Tfl(Qc). Next,
observe that simply scaling the inequality shows that applies even when P(R?) < 1. Conse-
quently, [Theorem 9| and |[Lemma 10| imply that

1

Re(f;P0|anP1|U1) - R:(P0|U0aP1|U1) < d)(O) — 02(1/2 — Oé) (

1 e .
S SO = Ci(ijz—a) (FoUFoFr) = Biu(Bo,Py))

Next, by adding R(f;Polyc,P1lye) — RS (Polye, Pilye) to both sides of the inequality above
results in

RE(f;Po,P1) — R (Po,P1) <

1
R.(f; Py, P1) — RS, (P P Re(f;P P - C*(n*)dP*

¢(0) —C;(I/Q—a) ( ¢(fa 0 1) d)*( O‘an 1)) + (f7 0|U(§77 1|Ulc) /Q (77 )
The fact that C*(n*) = 1/2 — a on Q while Sc(1y<0) <1, Se(1y50) < 1 implies that R°(f;Polyc,P1lye) —
fQ C*(n*)dP* < (3 + )P*(|Jn — 1/2| < «). Thus, the excess risk contribution from the region A is at most
(1/2 + «)P*(In* — 1/2| < ). O

pr(f;]P)O|UmIP1|U1) - R;*(PO|U07]P)1|U1))

J  Further details from to 3]

In and [J.3] we use an operation analogous to S, that calculates the infimum of a function
over an e-ball. Formally, we define:
I(9)(x) = inf g(x'). (70)

lIx"—x||<e

Next, we define a mapping oy from n € [0, 1] to minimizers of Cyg(n,-) by

ag(n) = inf{a : o is a minimizer of Cy(7n,-)}. (71)
Lemma 25 of Frank & Niles-Weed| (2024b) shows that the function a4 defined in maps 7 to the smallest

minimizer of Cy(n,-) and is non-decreasing. This property will be instrumental in constructing minimizers

for Rfﬁ.

J.1 Proof of

Proof of[Lemma 3. If RS = 0, by for any measures P € BX(Py), P € BX(P;) we have
P'(n = 0or1) = 1, where P = P + P} and 1’ = dP}/dP’. This statement must also hold for the
P§ € B (Py), P7 € BX(P1) that maximize Rg. O
J.2 Calculating the optimal P}, P} for

First, notice that a minimizer of Ry is given by f(z) = ay(n(z)) with n(z) as defined in (I6). Below, we
construct a minimizer f* for Ry. We'll do this construction separately for € < 6 and € € (6,1 —=19).

When ¢ < §:
Define a function 7 : [-6 —e — 1,1+ + ¢ — [0,1] by
ifxe[-1-9—¢0)

ifx=0
ifx € 0,146+ ¢

Rl
—~
8
SN~—
Il
00 N[ s =
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and a function f* by f*(z) = ag(7(x)).

We'll verify that this function is a minimizer by showing that R§(f*) = Re(f). As the minimal possi-
ble adversarial risk is bounded below by R ., one can conclude that f* minimizes Rj. Consequently,

Ry(Py,Py) = Rg(f) and thus the strong duality result in would imply that Py, P; must maxi-
mize the dual problem.

As both 7 and a4 are non-decreasing, the function f* must be non-decreasing as well. Consequently,

Se(o(fN(w) = d(Ie(f*)(x)) = 6(f* (z —€)) and similarly, Se(¢(—f*))(x) = ¢(=S5e(f*)(2)) = o(—f"(z +¢)).
(Recall the I, operation was defined in (70).)

Therefore,
:/Sé(qb(f* x)p1(x dx—i—/S x)po(z dx—/¢ (z —€)p1(x dx—l—/qS *(x + €)po(x)dx
/¢ P1$+€d$+/¢ z))po(z — €)dz
(72)
Consequently,
[otr @+t = [ 66 s0(as (7)) + /:H 59 (e (7)) e

Analogously, one can show that

[ o1 @mie - ado = [ o f@)p(w)is
and consequently Rg(f*) = Ry(f).

When € € (6,1 +9):

We will show that Rg(f*) = R(z,(]P’aIP’{) for the proposed attacks, proving that P, P7 are dual optimal
distributions. This time, define the function 77 : [-d —e — 1,146 4+ €] — [0, 1] by

ifre[-1-0—¢,—-1—-30+¢)
ifre[-1-350+¢€—(e—9))
if z € [—(e = 9), (e = 9)]
ifxe((e—0),1406—¢
ifze(l4+6—¢1+d+¢

B
—~
8
N
Il
=Wl = O

and again take f*(z) = ag(7(x)). The function f* is non-decreasing, so again (72 holds. Further, defining
Dy, Py as pi(x) = p1(x + €) and pi(x) = po(r — €) implies the relation

(f) = / Coln”, 10" (2)dx

where p*(z) = p§(z) + pi(z) and n* = pi(z)/p*(x). The function 7j was defined so that 7j(z) = n*(z) a.e.
and hence

Co(n™, [7) = Co ("5 (7)) = C4(n").

This relation implies R (f*) = Ry(Pg, Py), where P}, P§ are the distributions with pdfs pj and pj.
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J.3 Calculating the optimal P} and P; for [Example 3|— Proof of

We will show that the densities in are dual optimal by finding a function f* for which R;( M =
Ry(Pg, PY). will then imply that P§, P} must maximize the dual. Define n*(z) by

pi(z)
pi(z) +po(x)’

with p§(z) and pi(z) as in (7). For a given loss ¢ we will prove that the optimal function f* is given by

n(z) =

The function n* computes to

* —
n (.’E) - u1*uo*2€(u1+uo
T2 pl

1+e

If py — o > 2, the conditional probability n*(x) is increasing in x and consequently the function f* is non-
decreasing. Therefore, Sc((f*))(z) = ¢(I(f*)(z)) = ¢(f*(z — €)) (recall I was defined in (70)). Similarly,
one can argue that S.(¢(—f*))(z) = ¢(—f*(z + ¢€)), and therefore,

—2) :

:/SE(¢(f*) z)p1 (@ dx+/S x)po(x dx—/qﬁ (x —€)p1(z dx+/¢ *(z + €))po(x)dx
/¢ ))p1( :c+ed:c+/¢ z))po(z — €)da.

Next, notice that p1(z + ¢) = pj(x) and po(z — €) = p§(x). Define P* = P§ + Pi. Then
Ry(1) = [ 0°6(asn)) + (1= n")o(—aslnaB* = [ C307)dP* = Ro(s. )
Consequently, the strong duality result in implies that P§ P} must maximize the dual R¢.

J.4  Showing (18)

Lemma 22. Consider an equal gaussian mizture with variance o and means po < p1, with pdfs given by

1 1 _(@=n)? 1 1 (w—pp)?
po(x):§- 271'06 R pl(ac)zi- \/%Ue ”

Let n(x) = p1(2)/(po(@) + p1(2). Then n() — 1/2] < = iff o € [Ho5 — A(2), L5 4 A(2)], where A(z)

is defined by X
2 1
Alz)=—2 I (f +Z>. (73)

H1 — Mo 5 — %

Proof. The function n can be rewritten as n(z) = 1/(1 + po/p1) while

) = (L R o (1 (00 )

Consequently, |n(x) — 1/2| < z is equivalent to

1 1 1
5 %< <s+z
2 exp (#1 lio(lﬂ;uo _ x)) +1 2
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which is equivalent to

2 2 1
H1it+po O 1n(1 _1>§x§,u1+uo o ln( 1_1)
2 M1 — Ho 5—2 2 11— Mo z24 3
Finally, notice that
o? 1
Az) = In{ 5 -1 (74)
M1 — Mo 5 — %

while

O
Lemma 23. Let pg,p1, and n be as in and let h(z) = P(jn — 1/2| < 2). Then if 1 — po < V20,

then h is concave.

Proof. To start, we calculate the second derivative of A(z) and the first derivative of pg.

The first derivative of A is

2
1
N(z)=—"— ——.
) fn—po  §— 22
and the second derivative of A(z) is
2 2z
A(z) = —2—. 75
® o —po (§—2%)? (75)
Next, one can calculate the derivative of py as
royv 11 —(z—po) woee®  (z— po)
pO(x) - 2 ma o2 e 2 - o2 pO(x) (76)
and similarly
T —
phia) = =TI (77)
B1tio FA(2)
Let p(x) = po + p1. [Lemma 22{implies that the function & is given by h(z) = [, 2.0 A p(2)dz. The first
derivative of h is then ’
1y K1+ po K1+ po /
B (z) = (p( 04 A@) + (M A(z))) A'(2).
Differentiating h twice results in
"oy K1+ o M1t o 7
) = (p(M5 1 4 AE) +p(M 5 - am) ) ae)
(Pt Ho e e 102
(M ) - (M - A6) ) ()
_ (p(tatro mtp nin — BEA RS
= (p(" 52 2E) oM - 20) ) (a7 - 2P (78)
M1+ o M1+ o [ L WINTIRNY
# (i (B 4 20) i (B0 - 20) ) A ) (79)
- w1+ o M1+ Ho H1 = Ho o ar \\2
(po(B20 4 80)) (M2 - 2) ) Lo e (50)
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where the final equality is a consequence of [Equations (76) and [(77)] Next, we’ll argue that the sum of the
terms in [Equations (79)|and |(80)|is zero:

(25 0] (52 00) (257 505) (52 -500)

1 << _(”0;“1 +A(Z))2 _(Mo;m A(Z))2> ( _(”1;%0 +A(z))2 _(H’lglﬂ) A(z))2>>
_ e 202 +e 202 —le 202 +e 202
24/ 2o

Next, we’ll show that under the assumption p; — pug < /20, the term is always negative. Define
k=0%/(p1 — po). Then

A"(z) — A(Z)Mj)Q = _2";2)2 (z - 2’“722111 < B 1)> (81)

The fact that A”(z) > 0 for all z implies that In(1/(1/2 — z) — 1) is convex, and this function has derivative
4 at zero. Consequently, In(1/(1/2 — z) — 1) > 4z and implies

A1) - 86T < P ) = s (1- )

o2 T (1-2?) 20 (32 o2

The condition u; — po < v/20 is equivalent to 1 — 2k? /02 < 0.

This lemma implies that h(z) < h'(0)z. Noting also that h(z) <1 for all z produces the bound

2
h(z) < min ( 160 z, 1)

M1 — Ho

applying this bound to the gaussians with densities p§ and p} results in (18).
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