
Published as a conference paper at ICLR 2024

LARGE LANGUAGE MODELS AS OPTIMIZERS

Chengrun Yang* Xuezhi Wang Yifeng Lu Hanxiao Liu
Quoc V. Le Denny Zhou Xinyun Chen*

{chengrun, xuezhiw, yifenglu, hanxiaol}@google.com
{qvl, dennyzhou, xinyunchen}@google.com

Google DeepMind * Equal contribution

ABSTRACT

Optimization is ubiquitous. While derivative-based algorithms have been powerful
tools for various problems, the absence of gradient imposes challenges on many
real-world applications. In this work, we propose Optimization by PROmpting
(OPRO), a simple and effective approach to leverage large language models (LLMs)
as optimizers, where the optimization task is described in natural language. In
each optimization step, the LLM generates new solutions from the prompt that
contains previously generated solutions with their values, then the new solutions are
evaluated and added to the prompt for the next optimization step. We first showcase
OPRO on linear regression and traveling salesman problems, then move on to our
main application in prompt optimization, where the goal is to find instructions
that maximize the task accuracy. With a variety of LLMs, we demonstrate that
the best prompts optimized by OPRO outperform human-designed prompts by
up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks. Code at
https://github.com/google-deepmind/opro.

0 50 100 150
steps

50.0

60.0

70.0

80.0

tra
in

in
g

ac
cu

ra
cy

GSM8K

(a) GSM8K

0 50 100 150 200
steps

60.0

80.0

100.0

tra
in

in
g

ac
cu

ra
cy

BBH
movie_recommendation

(b) BBH movie_recommendation

Figure 1: Prompt optimization on GSM8K (Cobbe et al., 2021) and BBH (Suzgun et al., 2022)
movie_recommendation. The optimization on GSM8K has pre-trained PaLM 2-L as the scorer and
the instruction-tuned PaLM 2-L (denoted PaLM 2-L-IT) as the optimizer; the optimization on
BBH movie_recommendation has text-bison as the scorer and PaLM 2-L-IT as the optimizer.
Each dot is the average accuracy across all (up to 8) generated instructions in the single step, and the
shaded region represents standard deviation. See Section 5 for more details on experimental setup.

Table 1: Top instructions with the highest GSM8K zero-shot test accuracies from prompt optimization
with different optimizer LLMs. All results use the pre-trained PaLM 2-L as the scorer.

Source Instruction Acc

Baselines
(Kojima et al., 2022) Let’s think step by step. 71.8
(Zhou et al., 2022b) Let’s work this out in a step by step way to be sure we have the right answer. 58.8

(empty string) 34.0

Ours
PaLM 2-L-IT Take a deep breath and work on this problem step-by-step. 80.2
PaLM 2-L Break this down. 79.9

gpt-3.5-turbo A little bit of arithmetic and a logical approach will help us quickly arrive at
the solution to this problem.

78.5

gpt-4 Let’s combine our numerical command and clear thinking to quickly and
accurately decipher the answer.

74.5

1

https://github.com/google-deepmind/opro

Published as a conference paper at ICLR 2024

1 INTRODUCTION

Optimization is critical for all areas. Many optimization techniques are iterative: the optimization
starts from an initial solution, then iteratively updates the solution to optimize the objective func-
tion (Amari, 1993; Qian, 1999; Kingma & Ba, 2015; Bäck & Schwefel, 1993; Rios & Sahinidis,
2013; Reeves, 1993). The optimization algorithm typically needs to be customized for an individual
task to deal with the specific challenges posed by the decision space and the performance landscape,
especially for derivative-free optimization.

In this work, we propose Optimization by PROmpting (OPRO), a simple and effective approach to
utilize large language models (LLMs) as optimizers. With the advancement of prompting techniques,
LLMs have achieved impressive performance in various domains (Wei et al., 2022; Kojima et al.,
2022; Wang et al., 2022; Zhou et al., 2022a; Madaan et al., 2023; Bai et al., 2022; Chen et al., 2023e).
Their ability to understand natural language lays out a new possibility for optimization: instead of
formally defining the optimization problem and deriving the update step with a programmed solver,
we describe the optimization problem in natural language, then instruct the LLM to iteratively generate
new solutions based on the problem description and the previously found solutions. Optimization
with LLMs enables quick adaptation to different tasks by changing the problem description in the
prompt, and the optimization process can be customized by adding instructions to specify the desired
properties of the solutions.

To demonstrate the potential of LLMs for optimization, we first present case studies on linear
regression and the traveling salesman problem, which are two classic optimization problems that
underpin many others in mathematical optimization, computer science, and operations research. On
small-scale optimization problems, we show that LLMs are able to find good-quality solutions simply
through prompting, and sometimes match or surpass hand-designed heuristic algorithms.

Next, we demonstrate the ability of LLMs to optimize prompts: the goal is to find a prompt that
maximizes the task accuracy. Specifically, we focus on natural language tasks where both the task
input and output are texts. LLMs are shown to be sensitive to the prompt format (Zhao et al., 2021;
Lu et al., 2021; Wei et al., 2023; Madaan & Yazdanbakhsh, 2022); in particular, semantically similar
prompts may have drastically different performance (Kojima et al., 2022; Zhou et al., 2022b; Zhang
et al., 2023), and the optimal prompt formats can be model-specific and task-specific (Ma et al., 2023;
Chen et al., 2023c). Therefore, prompt engineering is often important for LLMs to achieve good
performance (Reynolds & McDonell, 2021). However, the large and discrete prompt space makes it
challenging for optimization, especially when only API access to the LLM is available. Following
prior work on continuous and discrete prompt optimization (Lester et al., 2021; Li & Liang, 2021;
Zhou et al., 2022b; Pryzant et al., 2023), we assume a training set is available to compute the training
accuracy as the objective value for optimization, and we show in experiments that optimizing the
prompt for accuracy on a small training set is sufficient to reach high performance on the test set.

The prompt to the LLM serves as a call to the optimizer, and we name it the meta-prompt. Figure 3
shows an example. The meta-prompt contains two core pieces of information. The first piece is
previously generated prompts with their corresponding training accuracies. The second piece is the
optimization problem description, which includes several exemplars randomly selected from the
training set to exemplify the task of interest. We also provide instructions for the LLM to understand
the relationships among different parts and the desired output format. Different from recent work
on using LLMs for automatic prompt generation (Zhou et al., 2022b; Pryzant et al., 2023), each
optimization step in our work generates new prompts that aim to increase the test accuracy based on
a trajectory of previously generated prompts, instead of editing one input prompt according to natural
language feedback (Pryzant et al., 2023) or requiring the new prompt to follow the same semantic
meaning (Zhou et al., 2022b). Making use of the full optimization trajectory, OPRO enables the
LLM to gradually generate new prompts that improve the task accuracy throughout the optimization
process, where the initial prompts have low task accuracies.

We conduct comprehensive evaluation on several LLMs, including text-bison and Palm 2-L
in the PaLM-2 model family (Anil et al., 2023), as well as gpt-3.5-turbo and gpt-4 in the GPT
model family. We optimize prompts on GSM8K (Cobbe et al., 2021) and Big-Bench Hard (Suzgun
et al., 2022), which are reasoning benchmarks where prompting techniques have achieved remarkable
performance breakthrough (Wei et al., 2022; Kojima et al., 2022; Suzgun et al., 2022). Starting
from initial prompts with low task accuracies, we show that all LLMs in our evaluation are able to

2

Published as a conference paper at ICLR 2024

scores

generated
solutions

LLM as
optimizer

objective function
evaluator

return top solutions
when finish meta-prompt

solution-score pairs

task description

Figure 2: An overview of the OPRO framework. Given the meta-prompt as the input, the LLM
generates new solutions to the objective function, then the new solutions and their scores are added
into the meta-prompt for the next optimization step. The meta-prompt contains the solution-score
pairs obtained throughout optimization, a natural language description of the task, and (in prompt
optimization) a few task exemplars. Figure 3 shows a sample meta-prompt for prompt optimization.

serve as optimizers, which consistently improve the performance of the generated prompts through
iterative optimization until convergence (see Figure 1). In particular, while these LLMs generally
produce instructions of different styles (see Table 1), with zero-shot prompting, their best generated
instructions match the few-shot chain-of-thought prompting performance when applied to PaLM
2-L, outperforming the zero-shot performance with human-designed prompts by up to 8% on
GSM8K. Additionally, we observe that the OPRO-optimized prompts transfer to other benchmarks
of the same domain and also deliver notable performance gain.

2 OPRO: LLM AS THE OPTIMIZER

Figure 2 illustrates the overall framework of OPRO. In each optimization step, the LLM generates
candidate solutions to the optimization task based on the optimization problem description and
previously evaluated solutions in the meta-prompt. Then the new solutions are evaluated and added to
the meta-prompt for the subsequent optimization process. The optimization process terminates when
the LLM is unable to propose new solutions with better optimization scores, or a maximum number
of optimization steps has reached. We first outline the desired features of LLMs for optimization,
then describe the key design choices based on these desirables.

2.1 DESIRABLES OF OPTIMIZATION BY LLMS

Making use of natural language descriptions. The main advantage of LLMs for optimization is
their ability of understanding natural language, which allows people to describe their optimization
tasks without formal specifications. For instance, in prompt optimization where the goal is to find a
prompt that optimizes the task accuracy, the task can be described with a high-level text summary
along with input-output examples.

Trading off exploration and exploitation. The exploration-exploitation trade-off is a fundamental
challenge in optimization, and it is important for LLMs serving as optimizers to balance these two
competing goals. This means that the LLM should be able to exploit promising areas of the search
space where good solutions are already found, while also exploring new regions of the search space
so as to not miss potentially better solutions.

2.2 META-PROMPT DESIGN

As the input to the optimizer LLM, the meta-prompt contains the following two essential parts.

Optimization problem description. The first part is the text description of the optimization problem,
including the objective function and solution constraints. For example, for prompt optimization,
the LLM can be instructed to “generate a new instruction that achieves a higher accuracy”, and we
denote such instructions in the meta-prompt as meta-instructions. We can also provide customized

3

Published as a conference paper at ICLR 2024

meta-instructions as an informal regularization of the generated solutions, such as “the instruction
should be concise and generally applicable”.

Optimization trajectory. Besides understanding natural language instructions, LLMs are also
shown to be able to recognize patterns from in-context demonstrations (Wei et al., 2023; Madaan &
Yazdanbakhsh, 2022; Mirchandani et al., 2023). Our meta-prompt makes use of this property and in-
structs the LLM to leverage the optimization trajectory for generating new solutions. Specifically, the
optimization trajectory includes past solutions and their optimization scores, sorted in the ascending
order. Including optimization trajectory in the meta-prompt allows the LLM to identify similarities of
solutions with high scores, encouraging the LLM to build upon existing good solutions to construct
potentially better ones without the need of explicitly defining how the solution should be updated.

2.3 SOLUTION GENERATION

At the solution generation step, the LLM generates new solutions with the meta-prompt as input. The
following are the key optimization challenges we address in this stage.

Optimization stability. In the optimization process, not all solutions achieve high scores and
monotonically improve over prior ones. Due to the sensitivity of in-context learning to the prompt,
LLM output can be drastically affected by low-quality solutions in the input optimization trajectory,
especially at the beginning when the solution space has not been adequately explored. This sometimes
results in optimization instability and large variance. To improve stability, we prompt the LLM to
generate multiple solutions at each optimization step, allowing the LLM to simultaneously explore
multiple possibilities and quickly discover promising directions to move forward.

Exploration-exploitation trade-off. We tune the LLM sampling temperature to balance between
exploration and exploitation. A lower temperature encourages the LLM to exploit the solution space
around the previously found solutions and make small adaptations, while a high temperature allows
the LLM to more aggressively explore solutions that can be notably different.

3 MOTIVATING EXAMPLE: MATHEMATICAL OPTIMIZATION

We first demonstrate the potential of LLMs in serving as optimizers for mathematical optimization.
We present a case study on linear regression as an example of continuous optimization, and another
case study on the Traveling Salesman Problem (TSP) (Jünger et al., 1995; Gutin & Punnen, 2006) as
an example of discrete optimization. We present the numerical results in Table 2 and 3, and defer their
experiment setups to Appendix B. On both tasks, we see LLMs properly capture the optimization
directions on small-scale problems merely based on the past optimization trajectory provided in the
meta-prompt. We also see limitations and failure cases of using LLMs as optimizers, and we defer
the discussion to Appendix C.

Table 2: Linear regression by optimizer LLMs: the mean ± standard deviation of the number of steps
and the number of unique (w, b) pairs explored before reaching the global optima. Both w and b start
from 5 random starting points in [10, 20]. We use temperature 1.0 for all models. We run each setting
5 times. The starting points are the same across optimizer LLMs but are different across 5 runs, and
are grouped by: within the starting region, outside and close to the starting region, and outside and
farther from the starting region. Bold numbers indicate the best among three LLMs in each setting.
See Appendix B.1 for experiment setup.

wtrue btrue
number of steps number of unique (w, b) pairs explored

text-bison gpt-3.5-turbo gpt-4 text-bison gpt-3.5-turbo gpt-4

15 14 5.8 ± 2.6 7.6 ± 4.5 4.0 ± 1.5 40.0 ± 12.4 36.0 ± 15.2 17.2 ± 5.1

17 17 4.0 ± 1.8 12.6 ± 6.0 6.0 ± 3.7 33.4 ± 11.7 53.8 ± 16.9 26.0 ± 10.6

16 10 3.8 ± 2.2 10.4 ± 5.4 6.2 ± 3.1 30.2 ± 13.4 42.8 ± 16.3 24.2 ± 8.2

3 5 9.8 ± 2.8 10.8 ± 2.7 12.2 ± 2.0 55.8 ± 16.1 39.6 ± 10.1 33.0 ± 4.0

25 23 19.6 ± 11.4 26.4 ± 18.3 12.2 ± 3.7 104.0 ± 52.3 78.6 ± 26.2 44.2 ± 8.3

2 30 31.4 ± 6.3 42.8 ± 9.7 38.0 ± 15.9 126.4 ± 17.7 125.6 ± 21.7 99.0 ± 24.6

36 -1 35.8 ± 6.4 45.4 ± 16.9 50.4 ± 18.8 174.0 ± 28.2 142.2 ± 31.2 116.4 ± 32.7

4

Published as a conference paper at ICLR 2024

Table 3: Results of the Traveling Salesman Problem (TSP) with different number of nodes n, where
each n contains 5 problems. “# steps” calculates the mean ± standard error of optimization steps
for successful runs that find the optimal solution. “# successes” counts the number of problems that
OPRO results in the optimal solution. When no optimal solution is found for any evaluated problem,
the corresponding number of steps is N/A. See Appendix B.2 for experiment setup.
n

optimality gap (%) # steps (# successes)

NN FI text-bison gpt-3.5-turbo gpt-4 text-bison gpt-3.5-turbo gpt-4

10 13.0 ± 1.3 3.2 ± 1.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 40.4 ± 5.6 (5) 46.8 ± 9.3 (5) 9.6 ± 3.0 (5)
15 9.4 ± 3.7 1.2 ± 0.6 4.4 ± 1.3 1.2 ± 1.1 0.2 ± 0.2 N/A (0) 202.0 ± 41.1 (4) 58.5 ± 29.0 (4)
20 16.0± 3.9 0.2± 0.1 30.4 ± 10.6 4.4 ± 2.5 1.4 ± 0.6 N/A (0) 438.0 ± 0.0 (1) 195.5 ± 127.6 (2)
50 19.7 ± 3.1 9.8 ± 1.5 219.8 ± 13.7 133.0 ± 6.8 11.0 ± 2.6 N/A (0) N/A (0) N/A (0)

I have some texts along with their corresponding scores. The texts are arranged in ascending order
based on their scores, where higher scores indicate better quality.

text:
Let’s solve the problem.
score:
63

(. . . more instructions and scores . . .)

The following exemplars show how to apply your text: you replace <INS> in each input with your
text, then read the input and give an output. We say your output is wrong if your output is different
from the given output, and we say your output is correct if they are the same.

input:
Q: Alannah, Beatrix, and Queen are preparing for the new school year and have been given books
by their parents. Alannah has 20 more books than Beatrix. Queen has 1/5 times more books than
Alannah. If Beatrix has 30 books, how many books do the three have together?
A: <INS>
output:
140

(. . . more exemplars . . .)

Write your new text that is different from the old ones and has a score as high as possible. Write the
text in square brackets.

Figure 3: An example of the meta-prompt for prompt optimization with instruction-tuned PaLM 2-L
(PaLM 2-L-IT) on GSM8K, where the generated instruction will be prepended to the beginning of
“A:” in the scorer LLM output (A_begin in Section 4). <INS> denotes the position where the generated
instruction will be added. The blue text contains solution-score pairs; the purple text describes the
optimization task and output format; the orange text are meta-instructions. Appendix E.2 presents the
full meta-prompts for other optimizer LLMs.

4 APPLICATION: PROMPT OPTIMIZATION

Next, we demonstrate the effectiveness of OPRO on prompt optimization, where the objective is to
find the prompt that maximizes task accuracy.

We focus on prompt optimization for natural language tasks, where both the input and output are in
the text format. The task is represented as a dataset with training and test splits, where the training
set is used to calculate the training accuracy as the objective value during the optimization process,
and we compute the test accuracy on the test set after the optimization finishes. While traditional
optimization often requires a decently large training set, our experiment shows that a small number or
fraction of training samples (e.g., 3.5% of the training set for GSM8K, 20% for Big-Bench Hard) is
sufficient. The objective function evaluator is an LLM to which the optimized prompt will be applied,

5

Published as a conference paper at ICLR 2024

and it can be the same or different from the LLM for optimization. We denote the LLM for objective
function evaluation as the scorer LLM, and the LLM for optimization as the optimizer LLM.

The output of the optimizer LLM is an instruction, which is concatenated to the question part of every
exemplar and prompts the scorer LLM. We consider the following positions to insert the instruction:
Q_begin (the instruction is added before the original question), Q_end (the instruction is added
after the original question), and A_begin (the instruction is added to the beginning of the scorer
LLM output. This is applicable to pretrained LLMs without instruction tuning, where the prompt is
formatted as a sequence of QA pairs). We show examples of these prompting formats in Appendix D.

Figure 3 shows an example of the meta-prompt for prompt optimization on GSM8K (Cobbe et al.,
2021). The meta-prompt includes three parts: task examples – a few exemplars from the training set
to show how the task looks like and where the generated instructions will be added to; optimization
trajectory – the instructions generated in previous optimization steps, along with their scores (only
showing the top ones in ascending order); meta-instructions – the instructions to the optimizer LLM
that explain the optimization goal and instruct the model how to use the above information.

5 PROMPT OPTIMIZATION EXPERIMENTS

We present prompt optimization results in this section. Our experiments demonstrate that OPRO
brings a significant performance gain across the board, with different optimizer and scorer LLMs.

5.1 EVALUATION SETUP

Models. The LLMs we use as optimizer are pre-trained PaLM 2-L, instruction-tuned PaLM 2-L
(denoted PaLM 2-L-IT), text-bison, gpt-3.5-turbo, and gpt-4; the LLMs we use
as scorer are pre-trained PaLM 2-L and text-bison. We search for A_begin instructions on
pre-trained PaLM 2-L, and for Q_begin and Q_end instructions on text-bison.

Benchmarks. Our primary evaluation benchmarks for prompt optimization are GSM8K (Cobbe
et al., 2021) and Big-Bench Hard (BBH) (Suzgun et al., 2022). To examine the transferability of
the optimized instructions, we also evaluate the instructions optimized for GSM8K on two other
mathematical reasoning datasets, i.e., MultiArith (Roy & Roth, 2016) and AQuA (Ling et al., 2017).

Implementation details. We use temperature 0 (greedy decoding) to evaluate generated instructions.
We set the default temperature to 1.0 for optimizer LLMs to generate diverse instructions. In each step,
we prompt the optimizer LLM with the meta-prompt 8 times to generate 8 instructions. Our meta-
prompt contains the best 20 instructions so far and 3 randomly picked exemplars from the training
set. The 3 exemplars are independently sampled at each step to reduce the risk of overfitting on the
given exemplars. We study the effect of different hyperparameters in ablation studies (Section 5.3).

5.2 MAIN RESULTS

Here we show prompt optimization curves on GSM8K and two BBH tasks. The curves on other
BBH tasks are deferred to Appendix I, and the tables containing all accuracy numbers are in
Appendix J. Appendix L analyzes overfitting in prompt optimization. Appendix M compares the
prompt optimization performance of meta-prompts in OPRO and EvoPrompt (Guo et al., 2023).

5.2.1 GSM8K

For GSM8K, we randomly sample 3.5% examples from the training set, and the same subset is used
throughout optimization. This balances evaluation cost with generalization performance. After the
optimization finishes, we evaluate the found instructions on the entire GSM8K test set.

Figure 1(a) in Section 1 shows the prompt optimization curve with pre-trained PaLM 2-L as scorer
and PaLM 2-L-IT as optimizer, and the initial instruction is “Let’s solve the problem” with a
(approximated, and same below) training accuracy 60.5. The curve has an overall upward trend with
several leaps throughout the optimization process. The curve also shows a decrease of the variance
among the accuracies of instructions generated at each step, indicating the optimizer LLM generates

6

Published as a conference paper at ICLR 2024

-20

0

20

40

ac
cu

ra
cy

 d
iff

er
en

ce

(a) ours minus “Let’s think step by step.”

0

20

40

60

ac
cu

ra
cy

 d
iff

er
en

ce

(b) ours minus empty starting point

Figure 4: On 23 BBH tasks, the accuracy differences among instructions found by prompt optimiza-
tion (with the PaLM 2-L scorer and the PaLM 2-L-IT optimizer), “Let’s think step by step.”, and
the empty string (optimization starting point). The bar charts with task names and those with the
text-bison scorer are deferred to Figure 19 in Appendix J.1.

distributionally better instructions throughout optimization. Appendix F shows similar trends when
using text-bison as scorer and when using pre-trained PaLM 2-L itself as optimizer.

Table 1 summarizes top instructions. We see the styles of instructions found by different optimizer
LLMs vary a lot: PaLM 2-L-IT and text-bison ones are concise; GPT ones are long and
detailed. And although some top instructions contain the “step-by-step” phrase, most others achieve
a comparable accuracy with different semantic meanings.

5.2.2 BBH

On BBH, the optimization starts from an empty string as the initial instruction by default. For each
task, we utilize a subset of 20% examples for prompt optimization, and the rest examples are for
testing. As shown in Figure 1(b), we also observe an upward trend in the optimization curve on BBH.
See Figure 17 and 18 in Appendix I for curves on all BBH tasks from the text-bison scorer
and the PaLM 2-L-IT optimizer. We show experimental results on different scorer and optimizer
LLMs, instruction positions, and starting points in Appendix J.

Figure 4 visualizes the per-task accuracy difference on all 23 BBH tasks compared to the instruction
“Let’s think step by step.” (Kojima et al., 2022) and the empty instruction, and we detail the accuracy
values in Table 6 of Appendix J. We show that the instructions found by OPRO outperform “Let’s
think step by step.” on almost all tasks by a large margin: with the PaLM 2-L scorer, our instructions
outperform by over 5% on 19/23 tasks. Our prompt optimization algorithm also improves instructions
from the empty starting point by over 5% on most tasks: 20/23 with the PaLM 2-L scorer.

5.2.3 TRANSFERABILITY OF FOUND INSTRUCTIONS

We assess the transferability of found prompts to different datasets in the same domain, where we
evaluate the top instructions found for GSM8K on MultiArith and AQuA. Table 4 shows our optimized
prompts also outperform baseline prompts with different scorer LLMs on these two benchmarks.

5.3 ABLATION STUDIES

We use text-bison as scorer and PaLM 2-L as optimizer for all ablation studies. The tasks we
evaluate are GSM8K (math reasoning) and BBH sports_understanding (non-math reasoning).

Meta-prompt design: instruction ordering. The meta-prompt design is crucial in achieving good
prompt optimization performance. Here we investigate the order of the previous instructions. We
compare the following: (1) lowest to highest (default setting); (2) highest to lowest; (3) random.
Figures 5(a) and 5(b) show that the default setting achieves better final accuracies and converges
faster. One hypothesis is that the optimizer LLM output is affected more by the past instructions
closer to the end of the meta-prompt. This is consistent with the recency bias observed in Zhao et al.
(2021), which states that LLMs are more likely to generate tokens similar to the end of the prompt.

The number of generated instructions per step. Computing a mini-batch of gradients reduces the
variance of a stochastic gradient descent procedure. Similarly, generating multiple instructions in each

7

Published as a conference paper at ICLR 2024

Table 4: Transferability across datasets: accuracies of top instructions found for GSM8K on Multi-
Arith and AQuA.

Scorer Source Instruction
position Instruction Accuracy

MultiArith AQuA

Baselines
PaLM 2-L (Kojima et al.,

2022)
A_begin Let’s think step by step. 85.7 44.9

PaLM 2-L (Zhou et al.,
2022b)

A_begin Let’s work this out in a step by step way to be
sure we have the right answer.

72.8 48.4

PaLM 2-L A_begin Let’s solve the problem. 87.5 44.1

PaLM 2-L A_begin (empty string) 69.3 37.8

text-bison (Kojima et al.,
2022)

Q_begin Let’s think step by step. 92.5 31.9

text-bison (Zhou et al.,
2022b)

Q_begin Let’s work this out in a step by step way to be
sure we have the right answer.

93.7 32.3

text-bison Q_begin Let’s solve the problem. 85.5 29.9

text-bison Q_begin (empty string) 82.2 33.5

Ours
PaLM 2-L PaLM 2-L-IT

on GSM8K
A_begin Take a deep breath and work on this problem

step-by-step.
95.3 54.3

text-bison PaLM 2-L-IT
on GSM8K

Q_begin Let’s work together to solve math word
problems! First, we will read and discuss the

problem together to make sure we understand it.
Then, we will work together to find the solution.
I will give you hints and help you work through

the problem if you get stuck.

96.8 37.8

0 100 200
steps

50

60

70

ac
cu

ra
cy

ascending (default)
descending
random

(a) instruction ordering
(GSM8K)

0 100 200
steps

0

50

100

ac
cu

ra
cy

ascending (default)
descending
random

(b) instruction ordering
(sports_understanding)

0 800 1600
evaluated instructions

50

60

70

ac
cu

ra
cy

1
2
4

8 (default)
16

(c) # single-step instruc-
tions (GSM8K)

0 800 1600
evaluated instructions

0

50

100

ac
cu

ra
cy

1
2
4

8 (default)
16

(d) # single-step instruc-
tions (sports_understanding)

Figure 5: Ablation studies. The dots are the average values across 3 optimization repetitions, and
the shaded regions represent standard deviations. In Figure (c) and (d), the x-axis represents the total
number of evaluated instructions through the optimization; e.g., we run 200 optimization steps when
sampling 8 instructions in each step, run 400 steps when sampling 4 instructions in each step, etc.

step improves the optimization stability with LLMs. On the other hand, to achieve better performance
with a fixed budget for the number of instructions to evaluate, the number of per-step instructions
should not be too large, so as to allow more optimization steps to incorporate richer information of
past instructions with their accuracies. Taking both aspects into consideration, Figure 5(c) and 5(d)
compares the optimization performance of sampling 1 / 2 / 4 / 8 (default) / 16 instructions in each
step, showing that sampling 8 instructions at each step overall achieves the best performance.

We show ablation studies of other algorithmic aspects in Appendix K.

6 RELATED WORK

Prompt optimization. Prior works have developed soft prompt-tuning methods that optimize the
prompt represented as task-specific continuous vectors (Lester et al., 2021; Li & Liang, 2021; Liu et al.,

8

Published as a conference paper at ICLR 2024

2021; Qin & Eisner, 2021), as well as performing discrete prompt optimization by gradient-guided
search (Shin et al., 2020; Wen et al., 2023; Gao et al., 2020; Chen et al., 2023d) and reinforcement
learning (Deng et al., 2022; Zhang et al., 2023). These approaches become inapplicable when there is
only API access to the LLM. Other works designed edit-based approaches for gradient-free prompt
optimization (Xu et al., 2022; Prasad et al., 2022), where the editing can be done with human-
defined operations (e.g., swapping two phrases) (Prasad et al., 2022) or language models (e.g., back
translation) (Xu et al., 2022). Some recent works investigate LLMs for prompt optimization (Zhou
et al., 2022b; Pryzant et al., 2023; Xu et al., 2023). Specifically, APE (Zhou et al., 2022b) first uses
the LLM to generate initial instructions. Afterwards, APE selects top instructions with the highest
accuracies, then prompts the LLM with each individual instruction to generate a semantically similar
variant of the initial instruction. APO (Pryzant et al., 2023) in each step instructs the LLM to produce
text feedback on how to update an old instruction. Different from edit-based approaches, the optimizer
LLM in our work directly generates new instructions at each optimization step, and the optimizer
LLM is merely asked to improve the task accuracy without being required to imitate past instructions.
Compared to Zhou et al. (2022b) and Pryzant et al. (2023), our optimization process incorporates
the past generated instructions with their scores in the meta-prompt, enabling the optimizer LLM to
discover common patterns of high-quality instructions.

Tuning language models for optimization. Some previous works tune or prompt language models
to behave as mutation and crossover operators in evolutionary algorithms. Meyerson et al. (2023)
uses language models with few-shot exemplars to propose evolutionary cross-overs on tasks like
image and code generation. In Lehman et al. (2022), the LLM trained on code diff generation is
used as the mutation operator, and they further design a fine-tuning method to improve performance
in the Sodarace domain for robot simulation. EvoPrompting (Chen et al., 2023a) uses LLMs to
evolve neural network architectures, where they combine evolution with soft prompt tuning. With
respect to taking the trajectory as the input for optimization, OptFormer (Chen et al., 2022) trains a
transformer model on large collections of hyperparameter optimization data. On the other hand, our
work performs optimization solely by prompting without additional training.

7 CONCLUSION

We embark on employing LLMs as optimizers, where the LLM progressively generates new solutions
to optimize an objective function. We first motivate OPRO with linear regression and traveling
salesman problems, then proceed to prompt optimization as a concrete application. Our evaluation
demonstrates that LLMs have the capacity of gradually improving the generated solutions based on
the past optimization trajectory. Interestingly, on small-scale traveling salesman problems, OPRO
performs on par with some hand-crafted heuristics. For prompt optimization, optimized prompts
outperform human-designed on GSM8K and BBH by a significant margin, sometimes over 50%.

A number of unresolved questions are open for future research on LLMs for optimization. In general,
how to reduce the sensitivity to initialization and better balance exploitation with exploration remains
a challenge. Specifically, for prompt optimization, one limitation of our current implementation is
that the optimizer LLM does not effectively utilize error cases in the training set to infer promising
directions to improve the generated instructions. In our experiments, we tried including error cases in
the meta-prompt rather than randomly sampling from the training set at each optimization step, but the
results are similar, indicating that the error cases alone are not informative enough for the optimizer
LLM to grasp the cause of the wrong prediction. Another limitation is that prompt optimization
requires a training set to compute the accuracy that guides the optimization process. Currently the
training set at least contains tens of samples, so that the optimized prompt does not severely overfit
to the training samples. A promising direction is to incorporate richer feedback about the error
cases besides the aggregated accuracy, and summarize the key features that distinguish between
high-quality and low-quality generated prompts in the optimization trajectory. Such information may
inform the optimizer LLM of how to more efficiently improve over the past generated instructions,
and potentially further reduce the example set size needed for prompt optimization.

9

Published as a conference paper at ICLR 2024

ETHICS STATEMENT

This work uses synthetic math problems for linear regression and traveling salesman problems, and
uses public datasets like GSM8K and Big-Bench Hard for prompt optimization. These tasks have
been commonly used in similar works and should not be regarded controversial. There is a peril that
LLMs may generate harmful information that poses safety risks; how to safeguard model behavior
remains valuable future work.

REPRODUCIBILITY STATEMENT

We evaluate on public benchmarks. The text-bison API is available at: https://cloud.
google.com/vertex-ai/docs/generative-ai/learn/models. The GPT models
are available here: http://openai.com/api/. This work uses gpt-3.5-turbo-0613
and gpt-4-0613.

ACKNOWLEDGMENTS

We thank Daiyi Peng, Yanqi Zhou, Jerry Wei, Shuo Chen, Tim Rocktäschel, Chrisantha Fernando,
Dylan Banarse, Henryk Michalewski, Simon Osindero, and Ed H. Chi for their valuable feedback,
and thank several anonymous reviewers for helpful comments.

REFERENCES

Shun-ichi Amari. Backpropagation and stochastic gradient descent method. Neurocomputing, 5(4-5):
185–196, 1993.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook. Concorde tsp solver, 2006.

Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algorithms for parameter
optimization. Evolutionary computation, 1(1):1–23, 1993.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and Denny Zhou. Large language models as
tool makers. arXiv preprint arXiv:2305.17126, 2023.

Angelica Chen, David M Dohan, and David R So. Evoprompting: Language models for code-level
neural architecture search. arXiv preprint arXiv:2302.14838, 2023a.

Angelica Chen, Jérémy Scheurer, Tomasz Korbak, Jon Ander Campos, Jun Shern Chan, Samuel R
Bowman, Kyunghyun Cho, and Ethan Perez. Improving code generation by training with natural
language feedback. arXiv preprint arXiv:2303.16749, 2023b.

Jiuhai Chen, Lichang Chen, Heng Huang, and Tianyi Zhou. When do you need chain-of-thought
prompting for chatgpt? arXiv preprint arXiv:2304.03262, 2023c.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. Instructzero: Efficient
instruction optimization for black-box large language models. arXiv preprint arXiv:2306.03082,
2023d.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization.
Advances in Neural Information Processing Systems, 32, 2019.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023e.

10

https://cloud.google.com/vertex-ai/docs/generative-ai/learn/models
https://cloud.google.com/vertex-ai/docs/generative-ai/learn/models
http://openai.com/api/

Published as a conference paper at ICLR 2024

Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Richard Zhang, David Dohan, Kazuya
Kawakami, Greg Kochanski, Arnaud Doucet, Marc’aurelio Ranzato, et al. Towards learning
universal hyperparameter optimizers with transformers. Advances in Neural Information Process-
ing Systems, 35:32053–32068, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
learning. arXiv preprint arXiv:2205.12548, 2022.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin Rousseau.
Learning heuristics for the tsp by policy gradient. In International Conference on the Integration of
Constraint Programming, Artificial Intelligence, and Operations Research, pp. 170–181. Springer,
2018.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rock-
täschel. Promptbreeder: Self-referential self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

Deep Ganguli, Amanda Askell, Nicholas Schiefer, Thomas Liao, Kamilė Lukošiūtė, Anna Chen,
Anna Goldie, Azalia Mirhoseini, Catherine Olsson, Danny Hernandez, et al. The capacity for
moral self-correction in large language models. arXiv preprint arXiv:2302.07459, 2023.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723, 2020.

Bruce Golden, Lawrence Bodin, T Doyle, and W Stewart Jr. Approximate traveling salesman
algorithms. Operations research, 28(3-part-ii):694–711, 1980.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. arXiv preprint arXiv:2309.08532, 2023.

Gregory Gutin and Abraham P Punnen. The traveling salesman problem and its variations, volume 12.
Springer Science & Business Media, 2006.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12, 2017.

Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi. The traveling salesman problem. Handbooks
in operations research and management science, 7:225–330, 1995.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ByxBFsRqYm.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley.
Evolution through large models. arXiv preprint arXiv:2206.08896, 2022.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

11

https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm

Published as a conference paper at ICLR 2024

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146,
2017.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. arXiv preprint arXiv:2103.10385, 2021.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786, 2021.

Xiao Ma, Swaroop Mishra, Ahmad Beirami, Alex Beutel, and Jilin Chen. Let’s do a thought
experiment: Using counterfactuals to improve moral reasoning. arXiv preprint arXiv:2306.14308,
2023.

Aman Madaan and Amir Yazdanbakhsh. Text and patterns: For effective chain of thought, it takes
two to tango. arXiv preprint arXiv:2209.07686, 2022.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

Elliot Meyerson, Mark J Nelson, Herbie Bradley, Arash Moradi, Amy K Hoover, and Joel
Lehman. Language model crossover: Variation through few-shot prompting. arXiv preprint
arXiv:2302.12170, 2023.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas,
Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines.
arXiv preprint arXiv:2307.04721, 2023.

Varun Nair, Elliot Schumacher, Geoffrey Tso, and Anitha Kannan. Dera: Enhancing large language
model completions with dialog-enabled resolving agents. arXiv preprint arXiv:2303.17071, 2023.

MohammadReza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takac. Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems, pp. 9861–9871, 2018.

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-Lezama.
Demystifying gpt self-repair for code generation. arXiv preprint arXiv:2306.09896, 2023.

Gurobi Optimization et al. Gurobi optimizer reference manual, 2020.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free, edit-based
instruction search for prompting large language models. arXiv preprint arXiv:2203.07281, 2022.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with" gradient descent" and beam search. arXiv preprint arXiv:2305.03495, 2023.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):
145–151, 1999.

Guanghui Qin and Jason Eisner. Learning how to ask: Querying lms with mixtures of soft prompts.
arXiv preprint arXiv:2104.06599, 2021.

Colin R Reeves. Modern heuristic techniques for combinatorial problems. John Wiley & Sons, Inc.,
1993.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1–7, 2021.

12

Published as a conference paper at ICLR 2024

Luis Miguel Rios and Nikolaos V Sahinidis. Derivative-free optimization: a review of algorithms and
comparison of software implementations. Journal of Global Optimization, 56:1247–1293, 2013.

Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis, II. An analysis of several heuristics
for the traveling salesman problem. SIAM journal on computing, 6(3):563–581, 1977.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint
arXiv:1608.01413, 2016.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv preprint arXiv:2302.04761, 2023.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. arXiv preprint
arXiv:2010.15980, 2020.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently. arXiv
preprint arXiv:2303.03846, 2023.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery.
arXiv preprint arXiv:2302.03668, 2023.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv
preprint arXiv:2304.12244, 2023.

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yanggang Wang, Haiyu Li, and Zhilin Yang. Gps:
Genetic prompt search for efficient few-shot learning. arXiv preprint arXiv:2210.17041, 2022.

Weizhe Yuan, Kyunghyun Cho, and Jason Weston. System-level natural language feedback. arXiv
preprint arXiv:2306.13588, 2023.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, and Joseph E Gonzalez. Tempera:
Test-time prompt editing via reinforcement learning. In The Eleventh International Conference on
Learning Representations, 2023.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International Conference on Machine Learning, pp.
12697–12706. PMLR, 2021.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
in large language models. arXiv preprint arXiv:2205.10625, 2022a.

13

Published as a conference paper at ICLR 2024

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. arXiv preprint
arXiv:2211.01910, 2022b.

14

Published as a conference paper at ICLR 2024

A RELATED WORK ON PROMPTING WITH NATURAL LANGUAGE FEEDBACK

A recent line of work investigates approaches to improve the LLM performance by prompting with
natural language feedback to revise the model output, which has shown effectiveness in reducing
harmful LLM outputs (Bai et al., 2022; Ganguli et al., 2023), improving reasoning (Shinn et al.,
2023; Madaan et al., 2023) and code generation performance (Chen et al., 2023e; Olausson et al.,
2023; Shinn et al., 2023; Chen et al., 2023b), dialogue applications (Nair et al., 2023; Madaan et al.,
2023; Yuan et al., 2023), and so on (Kim et al., 2023; Wang et al., 2023). Specifically, Yuan et al.
(2023) develops a human-in-the-loop framework for deriving system-level feedback from a collection
of instance-level feedback, which is then used for refining data. In our work, the optimizer LLM
utilizes the optimization trajectory in the prompt, which implicitly requires the LLM to summarize
the common characteristics among solutions with similar scores. We consider incorporating explicit
natural language feedback on generated solutions for later optimization steps as future work.

B EXPERIMENT SETUPS OF MOTIVATING EXAMPLES ON MATHEMATICAL
OPTIMIZATION

B.1 LINEAR REGRESSION

In linear regression problems, the goal is to find the linear coefficients that probabilistically best
explain the response from the input variables. We study the setting in which the independent
and dependent variables X and y are both one-dimensional and an intercept b is present, so that
there are two one-dimensional variables w, b to optimize over. In a synthetic setting, we sample
ground truth values for one-dimensional variables wtrue and btrue, and generate 50 data points by
y = wtruex + btrue + ε, in which x ranges from 1 to 50 and ε is the standard Gaussian noise. Our
optimization starts from 5 randomly sampled (w, b) pairs. In each step, we prompt an instruction-
tuned LLM with a meta-prompt that includes the best 20 (w, b) pairs in history and their sorted
objective values. The meta-prompt then asks for a new (w, b) pair that further decreases the objective
value. A sample meta-prompt is shown in Figure 12 of Appendix E.1. We prompt the meta-prompt 8
times to generate at most 8 new (w, b) pairs in each step to improve optimization stability. Then we
evaluate the objective value of the proposed pair and add it to history. We do black-box optimization:
the analytic form does not appear in the meta-prompt text. This is because the LLM can often
calculate the solution directly from the analytic form.

Table 2 in main paper Section 3 summarizes the results with one of the following optimizer LLMs:
text-bison, gpt-3.5-turbo, and gpt-4. We study three settings of wtrue and btrue: within
the starting region [10, 20] × [10, 20], “near outside” (each of wtrue and btrue is outside the starting
region but the distance is less than 10), and “far outside” (each of wtrue and btrue is outside the starting
region and the distance is greater than 10). We see:

• The number of unique (w, b) pairs explored by each model is fewer than exhaustive search,
indicating these models are able to to do black-box optimization: compare the numbers and
propose a descent direction.

• The text-bison and gpt-4 models outperform gpt-3.5-turbo in convergence speed:
they arrive at the optima with fewer steps. The gpt-4 model also outperforms in finding the
optima with fewer explored unique points. Taking a closer look at the optimization trajectory, we
see gpt-4 is the best at proposing a reasonable next step from the history: for example, when
the history shows the objective values of (w, b) = (8, 7), (w, b) = (8, 6), and (w, b) = (8, 5)
are decreasing, it has a highest chance to propose (w, b) = (8, 4) for evaluation.

• The problem becomes harder for all models when the ground truth moves farther from the
starting region: all models need more explorations and more steps.

B.2 TRAVELING SALESMAN PROBLEM (TSP)

TSP is a classical combinatorial optimization problem with numerous algorithms proposed in lit-
erature, including heuristic algorithms and solvers (Rosenkrantz et al., 1977; Golden et al., 1980;
Optimization et al., 2020; Applegate et al., 2006; Helsgaun, 2017), and approaches based on training
deep neural networks (Kool et al., 2019; Deudon et al., 2018; Chen & Tian, 2019; Nazari et al., 2018).

15

Published as a conference paper at ICLR 2024

Specifically, given a set of n nodes with their coordinates, the TSP task is to find the shortest route
that traverses all nodes from the starting node and finally returns to the starting node.

Our optimization process with LLMs starts from 5 randomly generated solutions, and each optimiza-
tion step produces at most 8 new solutions. We present the meta-prompt in Figure 13 of Appendix E.1.
We generate the problem instances by sampling n nodes with both x and y coordinates in [−100, 100].
We use the Gurobi solver (Optimization et al., 2020) to construct oracle solutions and compute the
optimality gap for all approaches, where the optimality gap is defined as the difference between the
distance in the solution constructed by the evaluated approach and the distance achieved by the oracle
solution, divided by the distance of the oracle solution. Besides evaluating OPRO with different
LLMs including text-bison, gpt-3.5-turbo and gpt-4, we also compare OPRO to the
Nearest Neighbor (NN) and Farthest Insertion (FI) heuristics.

We present the results in main paper Section 3 Table 3. We randomly generate 5 problem instances
for each number of nodes n. In addition to measuring the optimality gap, on problems where the
LLM finds the optimal solutions, we also show the number of optimization steps taken to reach the
global optimum. First, we observe that gpt-4 significantly outperforms gpt-3.5-turbo and
text-bison across all problem sizes. Specifically, on smaller-scale problems, gpt-4 reaches
the global optimum about 4× faster than other LLMs. On larger-scale problems, especially with
n = 50, gpt-4 still finds solutions with a comparable quality to heuristic algorithms, while both
text-bison and gpt-3.5-turbo get stuck at local optima with up to 20× worse optimality
gaps.

On the other hand, the performance of OPRO degrades dramatically on problems with larger sizes.
When n = 10, all LLMs find the optimal solutions for every problem; as the problem size gets larger,
the OPRO optimality gaps increase quickly, and the FI heuristic starts to outperform all LLMs.

C SOME FAILURE CASES

Although LLMs show the power of optimizing basic math problems (Section 3) and prompts (Sec-
tion 4), we see some limitations across all optimizer LLMs that may impede their power of solving
more challenging problems. These limitations include:

• Hallucinating the values that need to come from math calculation: The optimizer LLMs
often output contents like “the function value at (5, 3) is 15” despite that the true value is not 15.
The model will get it right if external tools that can reliably calculate the value are triggered.
When and how to trigger such tool use cases remains an interesting topic (see e.g., (Schick et al.,
2023; Cai et al., 2023)).

• Generating solutions already appeared in context even if we tell it to "Give me a new (w,
b) pair that is different from all pairs above": the optimizer LLMs do not 100% reliably
follow this instruction even if its own outputs often include sentences like “I will provide a new
pair that is different”, making the output self-contradictory. The output is almost guaranteed to
be different from in-context old solutions when the model output contains a comparison of the
new pair and all old pairs, though. Thus (implicitly) triggering such behaviors may be a solution.
How to implement this feature without harming the instruction following performance of other
parts remains an interesting topic to study.

• In black-box math optimization, getting stuck at a point that is neither global nor local
optimal: This often occurs in two linear regression cases: (a) The in-context exemplars all share
the same w or b that is different from wtrue or btrue. This case is more likely to be avoided when
a larger number of past solutions are included in the meta-prompt; (b) one or several of the best
previous solutions in the meta-prompt have ws and bs in quantitatively opposite directions from
the global optima wtrue and btrue: for example, the ws are all smaller than wtrue while the bs are
all larger than btrue. Since the optimizer model often proposes to only increase w or decrease b
when the past solutions in meta-prompt share w or b, the optimization will get stuck if either
increasing w or decreasing b would increase the objective value. This issue is mitigated by
sampling multiple new solutions (thus more exploration) at each step.

• Hard to navigate a bumpy loss landscape: Like other optimizers, it is harder for the optimizer
LLM to optimize black-box functions when the loss landscape gets more complicated. For
example, when minimizing the Rosenbrock function f(x, y) = (a−x)2+b(y−x2)2 with a = 20

16

Published as a conference paper at ICLR 2024

(whose global optimal point is x = 20, y = 400) with 5 starting points in [10, 20] × [10, 20],
the optimization often gets stuck at around (0, 0). This is because the optimizer LLM sees a
decrease of objective value when it drastically decreases both x and y to 0. Then starting from
(0, 0), the optimizer LLM is hard to further navigate x and y along the narrow valley in the loss
landscape towards (20, 400) (Figure 6).

x

0
5

10
15

20y
0 100 200 300 400

f(x, y)

50000

100000

150000

Figure 6: A visualization of the landscape of the Rosenbrock function f(x, y) = (a−x)2+b(y−x2)2
with a = 20 and b = 1. The global optima is at x = 20, y = 400 with function value 0. The function
value at x = 0, y = 0 is 400. The landscape has a narrow valley between (0, 0) and (20, 400).

D PROMPTING FORMATS FOR SCORER LLM

Figure 7, 8, and 9 show examples of the Q_begin, Q_end, and A_begin prompting formats when the
“QA” pattern is present. The “QA” pattern is eliminated when prompting instruction-tuned scorer
models like text-bison with the Q_begin and Q_end formats (Figure 10 and 11).

Q: {instruction}
Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for
her friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh
duck egg. How much in dollars does she make every day at the farmers’ market?

A:

Figure 7: The Q_begin prompting format on a GSM8K test exemplar with the "QA" pattern.

Q: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins
for her friends every day with four. She sells the remainder at the farmers’ market daily for $2 per
fresh duck egg. How much in dollars does she make every day at the farmers’ market?
{instruction}

A:

Figure 8: The Q_end prompting format on a GSM8K test exemplar with the "QA" pattern.

17

Published as a conference paper at ICLR 2024

Q: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins
for her friends every day with four. She sells the remainder at the farmers’ market daily for $2 per
fresh duck egg. How much in dollars does she make every day at the farmers’ market?

A: {instruction}

Figure 9: The A_begin prompting format on a GSM8K test exemplar.

{instruction}
Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for
her friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh
duck egg. How much in dollars does she make every day at the farmers’ market?

Figure 10: The Q_begin prompting format on a GSM8K test exemplar without the "QA" pattern.

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for
her friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh
duck egg. How much in dollars does she make every day at the farmers’ market?
{instruction}

Figure 11: The Q_end prompting format on a GSM8K test exemplar without the "QA" pattern.

E META-PROMPTS

E.1 META-PROMPT FOR MATH OPTIMIZATION

Now you will help me minimize a function with two input variables w, b. I have some (w, b) pairs
and the function values at those points. The pairs are arranged in descending order based on their
function values, where lower values are better.

input:
w=18, b=15
value:
10386334

input:
w=17, b=18
value:
9204724

Give me a new (w, b) pair that is different from all pairs above, and has a function value lower than
any of the above. Do not write code. The output must end with a pair [w, b], where w and b are
numerical values.

Figure 12: An example of the meta-prompt for linear regression. The blue text contains solution-score
pairs; the orange text are meta-instructions.

18

Published as a conference paper at ICLR 2024

You are given a list of points with coordinates below: (0): (-4, 5), (1): (17, 76), (2): (-9, 0), (3): (-31,
-86), (4): (53, -35), (5): (26, 91), (6): (65, -33), (7): (26, 86), (8): (-13, -70), (9): (13, 79), (10): (-73,
-86), (11): (-45, 93), (12): (74, 24), (13): (67, -42), (14): (87, 51), (15): (83, 94), (16): (-7, 52), (17):
(-89, 47), (18): (0, -38), (19): (61, 58).
Below are some previous traces and their lengths. The traces are arranged in descending order based
on their lengths, where lower values are better.

<trace> 0,13,3,16,19,2,17,5,4,7,18,8,1,9,6,14,11,15,10,12 </trace>
length:
2254

<trace> 0,18,4,11,9,7,14,17,12,15,10,5,19,3,13,16,1,6,8,2 </trace>
length:
2017

<trace> 0,11,4,13,6,10,8,17,12,15,3,5,19,2,1,18,14,7,16,9 </trace>
length:
1953

<trace> 0,10,4,18,6,8,7,16,14,11,2,15,9,1,5,19,13,12,17,3 </trace>
length:
1840

Give me a new trace that is different from all traces above, and has a length lower than any of the
above. The trace should traverse all points exactly once. The trace should start with <trace> and end
with </trace>.

Figure 13: An example of the meta-prompt for Traveling Salesman Problems with problem size
n = 20. The blue text contains solution-score pairs; the orange text are meta-instructions.

E.2 META-PROMPT FOR PROMPT OPTIMIZATION

Different optimizer models work the best on different styles of meta-prompts. Figure 3 in the main
paper shows the meta-prompt for PaLM 2-L-IT; Figure 14 shows that for pre-trained PaLM 2-L;
Figure 15 shows that for GPT models.

Create a piece of text at the beginning of the answer to enhance the precision in solving diverse grade
school math problems.

Precision: 4 <TEXT>A dime</TEXT>

Precision: 17 <TEXT>The answer is a function. It is</TEXT>

Precision: 19 <TEXT>So how can we find out what this equation means?</TEXT>

Precision: 20 <TEXT>Solutions:</TEXT>

Figure 14: An example of the meta-prompt for prompt optimization with pre-trained PaLM 2-L
on GSM8K, where the generated instruction will be prepended to the beginning of the scorer LLM
output (A_begin in Section 4).

19

Published as a conference paper at ICLR 2024

Your task is to generate the instruction <INS>. Below are some previous instructions with their scores.
The score ranges from 0 to 100.

text:
Let’s figure it out!
score:
61

text:
Let’s solve the problem.
score:
63

(. . . more instructions and scores . . .)

Below are some problems.

Problem:
Q: Alannah, Beatrix, and Queen are preparing for the new school year and have been given books
by their parents. Alannah has 20 more books than Beatrix. Queen has 1/5 times more books than
Alannah. If Beatrix has 30 books, how many books do the three have together?
A: <INS>

Ground truth answer:
140

(. . . more exemplars . . .)

Generate an instruction that is different from all the instructions <INS> above, and has a higher score
than all the instructions <INS> above. The instruction should begin with <INS> and end with </INS>.
The instruction should be concise, effective, and generally applicable to all problems above.

Figure 15: An example of the meta-prompt for prompt optimization with GPT models
(gpt-3.5-turbo or gpt-4) on GSM8K, where the generated instruction will be prepended
to the beginning of the scorer LLM output (A_begin in Section 4). The blue text contains solution-
score pairs; the purple text describes the optimization task and output format; the orange text are
meta-instructions.

F PROMPT OPTIMIZATION ON GSM8K: MORE RESULTS

We first present the results of generating Q_begin instructions with the text-bison scorer and
the PaLM 2-L-IT optimizer, starting from an empty instruction with a 57.1 training accuracy. The
optimization curve in Figure 16(a) shows a similar upward trend as in Figure 1(a) in the main paper.
Table 5 summarizes top instructions, and the characteristics of the instruction generated by each
model are similar to those in Table 1 in the main paper.

Then, Figure 16(b) shows that the pre-trained PaLM 2-L can also serve as the optimizer LLM and
improve its own prediction performance. Different from other optimizer LLMs that are instruction-
tuned, the pre-trained PaLM 2-L performs better when the prompt is formatted in a few-shot manner.
Therefore, we include two initial instructions to start the optimization: the empty instruction (with
a training accuracy 32.2) and “The answer is” (with a training accuracy 33.3). See Figure 14 in
Appendix E for the meta-prompt format. The generated instructions follow the same style as “The
answer is”: most instructions are also phrases suitable as the prefix of a sentence, like “Here you
go:” (generated at Step 11 with training accuracy 61.3) and “Let’s do it:” (generated at Step 13 with
training accuracy 75.1).

20

Published as a conference paper at ICLR 2024

Table 5: Test accuracies on GSM8K with the text-bison scorer.

Optimizer /
Source

Instruction
position

Top instruction Acc

Baselines
(Kojima et al.,

2022)
Q_begin Let’s think step by step. 64.4

(Zhou et al.,
2022b)

Q_begin Let’s work this out in a step by step way to be sure we have the right answer. 65.6

Q_begin Let’s solve the problem. 59.1

Q_begin (empty string) 56.8

Ours
PaLM

2-L-IT
Q_begin Let’s work together to solve math word problems! First, we will read and discuss

the problem together to make sure we understand it. Then, we will work together
to find the solution. I will give you hints and help you work through the problem if

you get stuck.

64.4

text-bison Q_end Let’s work through this problem step-by-step: 68.5
gpt-3.5-turbo Q_end Analyze the given information, break down the problem into manageable steps,

apply suitable mathematical operations, and provide a clear, accurate, and concise
solution, ensuring precise rounding if necessary. Consider all variables and

carefully consider the problem’s context for an efficient solution.

66.5

gpt-4 Q_begin Start by dissecting the problem to highlight important numbers and their relations.
Decide on the necessary mathematical operations like addition, subtraction,

multiplication, or division, required for resolution. Implement these operations,
keeping in mind any units or conditions. Round off by ensuring your solution fits

the context of the problem to ensure accuracy.

62.7

0 50 100 150 200
steps

50.0

60.0

70.0

tra
in

in
g

ac
cu

ra
cy

GSM8K
(scorer: text-bison)

(a) PaLM 2-L-IT optimizer

0 20 40 60 80
steps

20.0

40.0

60.0

80.0

tra
in

in
g

ac
cu

ra
cy

GSM8K
(scorer and optimizer:
PaLM 2-L)

(b) pre-trained PaLM 2-L optimizer

Figure 16: Prompt optimization on GSM8K with (a) the text-bison scorer and the PaLM
2-L-IT optimizer, and (b) pre-trained PaLM 2-L as both scorer and optimizer.

G PROMPT OPTIMIZATION: INSTRUCTIONS FOUND IN INTERMEDIATE STEPS

G.1 GSM8K, A_BEGIN INSTRUCTIONS, PRE-TRAINED PALM 2-L AS SCORER, PALM
2-L-IT AS OPTIMIZER, STARTING FROM ”LET’S SOLVE THE PROBLEM”

A few leaps in the training accuracy include:

• “Let’s think carefully about the problem and solve it together.” at Step 2 with the training
accuracy 63.2;

• “Let’s break it down!” at Step 4 with training accuracy 71.3;
• “Let’s calculate our way to the solution!” at Step 5 with training accuracy 73.9;
• “Let’s do the math!” at Step 6 with training accuracy 78.2.

G.2 GSM8K, Q_BEGIN INSTRUCTIONS, TEXT-BISON AS SCORER, PALM 2-L-IT AS
OPTIMIZER, STARTING FROM EMPTY STRING

A few leaps in the training accuracy include:

21

Published as a conference paper at ICLR 2024

• “Solve the following problems using the given information.” at Step 2 with training accuracy
59.8;

• “Solve the following problems by applying the given information and using the appropriate
mathematical operations.” at Step 3 with training accuracy 64.0;

• “Let’s read the problem carefully and identify the given information. Then, we can create an
equation and solve for the unknown variable.” at Step 4 with training accuracy 67.0;

• “I’m always down for solving a math word problem together. Just give me a moment to read
and understand the problem. Then, I’ll create an equation that models the problem, which I’ll
solve for the unknown variable. I also may or may not use some helpful diagrams or visuals
to understand the problem. Lastly, be sure to allow me some time to carefully check my work
before submitting any responses!” at Step 29 with training accuracy 70.1.

H SEMANTICALLY SIMILAR INSTRUCTIONS MAY ACHIEVE DRASTICALLY
DIFFERENT ACCURACIES

One challenge of prompt optimization is the sensitivity of model performance to subtle changes in
the instruction. For example, with the PaLM 2-L scorer on the GSM8K test set, “Let’s think step
by step.” achieves accuracy 71.8, “Let’s solve the problem together.” has accuracy 60.5, while the
accuracy of “Let’s work together to solve this problem step by step.” is only 49.4, although it is the
semantic combination of the two upper instructions. This behavior increases both the variance across
single-step instructions and the oscillation during optimization, and motivates us to generate multiple
instructions at each step to improve the optimization stability.

22

Published as a conference paper at ICLR 2024

I PROMPT OPTIMIZATION CURVES ON 23 BBH TASKS

0 50 100
steps

50.0

70.0

90.0

tra
in

in
g

ac
cu

ra
cy

BBH
boolean_expressions

(a) BBH boolean_expressions

0 50 100
steps

60.0

70.0

80.0

tra
in

in
g

ac
cu

ra
cy

BBH
causal_judgement

(b) BBH causal_judgement

0 50 100 150
steps

40.0

50.0

60.0

tra
in

in
g

ac
cu

ra
cy

BBH
date_understanding

(c) BBH date_understanding

0 50 100
steps

40.0

50.0

60.0

tra
in

in
g

ac
cu

ra
cy

BBH
disambiguation_qa

(d) BBH disambiguation_qa

0 50 100
steps

98.0

100.0

tra
in

in
g

ac
cu

ra
cy

BBH
dyck_languages

(e) BBH dyck_languages

0 20 40 60
steps

50.0

60.0

70.0

tra
in

in
g

ac
cu

ra
cy

BBH
formal_fallacies

(f) BBH formal_fallacies

0 50 100 150 200
steps

20.0

30.0

tra
in

in
g

ac
cu

ra
cy

BBH
geometric_shapes

(g) BBH geometric_shapes

0 50 100 150 200
steps

60.0

70.0

80.0

tra
in

in
g

ac
cu

ra
cy

BBH
hyperbaton

(h) BBH hyperbaton

0 50 100 150 200
steps

55

60

65
tra

in
in

g
ac

cu
ra

cy
BBH logical_deduction_
seven_objects

(i) BBH logical_deduction_seven_objects

0 50 100 150 200
steps

60

70

80

90

100

tra
in

in
g

ac
cu

ra
cy

BBH movie_
recommendation

(j) BBH movie_recommendation

0 50 100 150 200
steps

0

10

20

30

tra
in

in
g

ac
cu

ra
cy

BBH multistep_
arithmetic_two

(k) BBH multistep_arithmetic_two

0 40 80 120
steps

55

60

65

70

tra
in

in
g

ac
cu

ra
cy

BBH navigate

(l) BBH navigate

0 50 100
steps

40

50

60

70

tra
in

in
g

ac
cu

ra
cy

BBH object_counting

(m) BBH object_counting

0 50 100
steps

60

70

tra
in

in
g

ac
cu

ra
cy

BBH penguins_in_a_table

(n) BBH penguins_in_a_table

0 20 40 60
steps

70

80

tra
in

in
g

ac
cu

ra
cy

BBH reasoning_about_
colored_objects

(o) BBH reasoning_about_colored_objects

Figure 17: (Part 1/2) Prompt optimization on 23 BBH tasks with the text-bison scorer and the
PaLM 2-L-IT optimizer. The optimizations start from the empty string. Most curves have upward
trends.

23

Published as a conference paper at ICLR 2024

0 50 100 150 200
steps

70.0

80.0

90.0

tra
in

in
g

ac
cu

ra
cy

BBH ruin_names

(a) BBH ruin_names

0 20 40
steps

30

40

tra
in

in
g

ac
cu

ra
cy

BBH salient_translation_
error_detection

(b) BBH salient_translation_error_detection

0 50 100 150 200
steps

70

80

tra
in

in
g

ac
cu

ra
cy

BBH snarks

(c) BBH snarks

0 20 40
steps

40

60

80

100

tra
in

in
g

ac
cu

ra
cy

BBH sports_
understanding

(d) BBH sports_understanding

0 50 100 150
steps

30.0

50.0

70.0

tra
in

in
g

ac
cu

ra
cy

BBH
temporal_sequences

(e) BBH temporal_sequences

0 50 100 150 200
steps

10

20

tra
in

in
g

ac
cu

ra
cy

BBH tracking_shuffled_
objects_seven_objects

(f) BBH tracking_shuffled_
objects_seven_objects

0 50 100 150 200
steps

50

60

tra
in

in
g

ac
cu

ra
cy

BBH web_of_lies

(g) BBH web_of_lies

0 50 100 150 200
steps

10

20

tra
in

in
g

ac
cu

ra
cy

BBH word_sorting

(h) BBH word_sorting

Figure 18: (Part 2/2) Prompt optimization on 23 BBH tasks with the text-bison scorer and the
PaLM 2-L-IT optimizer. The optimizations start from the empty string. Most curves have upward
trends.

J PROMPT OPTIMIZATION ON BBH TASKS – TABULATED ACCURACIES AND
FOUND INSTRUCTIONS

J.1 PALM 2-L-IT AS OPTIMIZER, OPTIMIZATION STARTING FROM THE EMPTY STRING

Table 7 and 8 show the instructions found by prompt optimization. A comparison of their accuracy
values with baselines “Let’s think step by step.” (Kojima et al., 2022), “Let’s work this out in a step
by step way to be sure we have the right answer.” (Zhou et al., 2022b), and the empty string is in
Table 6. A bar chart visualization of the performance difference with the PaLM 2-L scorer is at
Figure 19(a) and 19(b) (which are the same as Figure 4(a) and 4(b) in the main paper but have BBH
task names); a bar chart visualization with the text-bison scorer is at Figure 19(c) and 19(d).

24

Published as a conference paper at ICLR 2024

bo
ole

an
_e

xp
re

ss
ion

s

ca
us

al_
jud

ge
men

t

da
te

_u
nd

er
sta

nd
ing

dis
am

big
ua

tio
n_

qa

dy
ck

_la
ng

ua
ge

s

for
mal_

fal
lac

ies

ge
om

et
ric

_s
ha

pe
s

hy
pe

rb
at

on

log
ica

l_d
ed

uc
tio

n_
se

ve
n_

ob
jec

ts

mov
ie_

re
co

mmen
da

tio
n

mult
ist

ep
_a

rit
hm

et
ic_

tw
o

na
vig

at
e

ob
jec

t_c
ou

nt
ing

pe
ng

uin
s_

in_
a_

ta
ble

re
as

on
ing

_a
bo

ut
_c

olo
re

d_
ob

jec
ts

ru
in_

na
mes

sa
lie

nt
_tr

an
sla

tio
n_

er
ro

r_d
et

ec
tio

n
sn

ar
ks

sp
or

ts_
un

de
rst

an
din

g

te
mpo

ra
l_s

eq
ue

nc
es

tra
ck

ing
_s

hu
ffl

ed
_o

bje
cts

_s
ev

en
_o

bje
cts

we
b_

of_
lie

s
wo

rd
_s

or
tin

g

-20

0

20

40
ac

cu
ra

cy
 d

iff
er

en
ce

(a) PaLM 2-L scorer, ours minus “Let’s think step by step.”
bo

ole
an

_e
xp

re
ss

ion
s

ca
us

al_
jud

ge
men

t

da
te

_u
nd

er
sta

nd
ing

dis
am

big
ua

tio
n_

qa

dy
ck

_la
ng

ua
ge

s

for
mal_

fal
lac

ies

ge
om

et
ric

_s
ha

pe
s

hy
pe

rb
at

on

log
ica

l_d
ed

uc
tio

n_
se

ve
n_

ob
jec

ts

mov
ie_

re
co

mmen
da

tio
n

mult
ist

ep
_a

rit
hm

et
ic_

tw
o

na
vig

at
e

ob
jec

t_c
ou

nt
ing

pe
ng

uin
s_

in_
a_

ta
ble

re
as

on
ing

_a
bo

ut
_c

olo
re

d_
ob

jec
ts

ru
in_

na
mes

sa
lie

nt
_tr

an
sla

tio
n_

er
ro

r_d
et

ec
tio

n
sn

ar
ks

sp
or

ts_
un

de
rst

an
din

g

te
mpo

ra
l_s

eq
ue

nc
es

tra
ck

ing
_s

hu
ffl

ed
_o

bje
cts

_s
ev

en
_o

bje
cts

we
b_

of_
lie

s
wo

rd
_s

or
tin

g

0

20

40

60

ac
cu

ra
cy

 d
iff

er
en

ce
(b) PaLM 2-L scorer, ours minus empty starting point

bo
ole

an
_e

xp
re

ss
ion

s

ca
us

al_
jud

ge
men

t

da
te

_u
nd

er
sta

nd
ing

dis
am

big
ua

tio
n_

qa

dy
ck

_la
ng

ua
ge

s

for
mal_

fal
lac

ies

ge
om

et
ric

_s
ha

pe
s

hy
pe

rb
at

on

log
ica

l_d
ed

uc
tio

n_
se

ve
n_

ob
jec

ts

mov
ie_

re
co

mmen
da

tio
n

mult
ist

ep
_a

rit
hm

et
ic_

tw
o

na
vig

at
e

ob
jec

t_c
ou

nt
ing

pe
ng

uin
s_

in_
a_

ta
ble

re
as

on
ing

_a
bo

ut
_c

olo
re

d_
ob

jec
ts

ru
in_

na
mes

sa
lie

nt
_tr

an
sla

tio
n_

er
ro

r_d
et

ec
tio

n
sn

ar
ks

sp
or

ts_
un

de
rst

an
din

g

te
mpo

ra
l_s

eq
ue

nc
es

tra
ck

ing
_s

hu
ffl

ed
_o

bje
cts

_s
ev

en
_o

bje
cts

we
b_

of_
lie

s
wo

rd
_s

or
tin

g

0

20

40

60

ac
cu

ra
cy

 d
iff

er
en

ce

(c) text-bison scorer, ours minus “Let’s think step by step.”

bo
ole

an
_e

xp
re

ss
ion

s

ca
us

al_
jud

ge
men

t

da
te

_u
nd

er
sta

nd
ing

dis
am

big
ua

tio
n_

qa

dy
ck

_la
ng

ua
ge

s

for
mal_

fal
lac

ies

ge
om

et
ric

_s
ha

pe
s

hy
pe

rb
at

on

log
ica

l_d
ed

uc
tio

n_
se

ve
n_

ob
jec

ts

mov
ie_

re
co

mmen
da

tio
n

mult
ist

ep
_a

rit
hm

et
ic_

tw
o

na
vig

at
e

ob
jec

t_c
ou

nt
ing

pe
ng

uin
s_

in_
a_

ta
ble

re
as

on
ing

_a
bo

ut
_c

olo
re

d_
ob

jec
ts

ru
in_

na
mes

sa
lie

nt
_tr

an
sla

tio
n_

er
ro

r_d
et

ec
tio

n
sn

ar
ks

sp
or

ts_
un

de
rst

an
din

g

te
mpo

ra
l_s

eq
ue

nc
es

tra
ck

ing
_s

hu
ffl

ed
_o

bje
cts

_s
ev

en
_o

bje
cts

we
b_

of_
lie

s
wo

rd
_s

or
tin

g

0

20

40

ac
cu

ra
cy

 d
iff

er
en

ce

(d) text-bison scorer, ours minus empty starting point

Figure 19: On 23 BBH tasks, the accuracy differences among instructions found by prompt op-
timization (with the PaLM 2-L-IT optimizer), “Let’s think step by step.”, and the empty string
(optimization starting point).

25

Published as a conference paper at ICLR 2024

Table 6: Accuracies on BBH tasks: our found instructions with the PaLM 2-L-IT optimizer vs
baseline. The optimization starts from the empty string. Because of the 20-80 train-test split, we
show accuracies with the format “training / test / overall (training + test)”. The PaLM 2-L scores are
from A_begin instructions; the text-bison scores are from Q_begin instructions. Bold numbers
indicate the best for the corresponding task.

Task Scorer Our Acc “Let’s think step by
step.” Acc

“Let’s work this out
in a step by step way

to be sure we have the
right answer.” Acc

empty string “” Acc

training / test / overall training / test / overall training / test / overall training / test / overall

boolean_expressions PaLM 2-L 90.0 / 83.5 / 84.8 90.0 / 83.0 / 84.4 82.0 / 74.0 / 75.6 74.0 / 71.0 / 71.6
causal_judgement PaLM 2-L 84.8 / 58.0 / 63.1 73.0 / 55.3 / 58.8 59.5 / 57.3 / 57.8 29.7 / 49.3 / 45.5

date_understanding PaLM 2-L 86.0 / 84.5 / 84.8 76.0 / 80.0 / 79.2 74.0 / 77.0 / 76.4 70.0 / 74.0 / 73.2
disambiguation_qa PaLM 2-L 80.0 / 69.0 / 71.2 40.0 / 52.5 / 50.0 48.0 / 47.0 / 47.2 54.0 / 57.5 / 56.8

dyck_languages PaLM 2-L 100.0 / 100.0 / 100.0 96.0 / 94.5 / 94.8 100.0 / 93.5 / 94.8 94.0 / 95.0 / 94.8
formal_fallacies PaLM 2-L 84.0 / 64.0 / 68.4 78.0 / 59.5 / 63.2 68.0 / 63.0 / 64.0 66.0 / 59.0 / 60.4

geometric_shapes PaLM 2-L 76.0 / 57.0 / 60.8 42.0 / 33.0 / 34.8 42.0 / 32.0 / 34.0 34.0 / 33.0 / 33.2
hyperbaton PaLM 2-L 100.0 / 96.0 / 96.8 78.0 / 75.0 / 75.6 74.0 / 72.5 / 72.8 88.0 / 89.0 / 88.8

logical_deduction_seven_objects PaLM 2-L 74.0 / 57.0 / 60.4 46.0 / 37.0 / 38.8 34.0 / 30.5 / 31.2 46.0 / 45.5 / 45.6
movie_recommendation PaLM 2-L 92.0 / 90.5 / 90.8 62.0 / 52.5 / 54.4 52.0 / 48.0 / 48.8 80.0 / 83.0 / 82.4

multistep_arithmetic_two PaLM 2-L 72.0 / 55.5 / 58.8 42.0 / 46.0 / 45.2 60.0 / 50.5 / 52.4 4.0 / 3.5 / 3.6
navigate PaLM 2-L 92.0 / 75.0 / 78.4 68.0 / 62.0 / 63.2 70.0 / 64.0 / 65.2 38.0 / 37.5 / 37.6

object_counting PaLM 2-L 84.0 / 86.5 / 86.0 36.0 / 46.5 / 44.4 60.0 / 62.0 / 61.6 28.0 / 27.0 / 27.2
penguins_in_a_table PaLM 2-L 86.2 / 71.8 / 74.7 79.3 / 64.1 / 67.1 62.1 / 58.1 / 58.9 72.4 / 69.2 / 69.9

reasoning_about_colored_objects PaLM 2-L 98.0 / 85.5 / 88.0 82.0 / 79.5 / 80.0 82.0 / 75.0 / 76.4 42.0 / 35.0 / 36.4
ruin_names PaLM 2-L 88.0 / 88.0 / 88.0 70.0 / 55.0 / 58.0 80.0 / 75.5 / 76.4 88.0 / 76.5 / 78.8

salient_translation_error_detection PaLM 2-L 62.0 / 67.0 / 66.0 42.0 / 50.0 / 48.4 58.0 / 46.0 / 48.4 56.0 / 56.5 / 56.4
snarks PaLM 2-L 85.7 / 83.2 / 83.7 60.0 / 62.2 / 61.8 54.3 / 53.1 / 53.4 51.4 / 60.1 / 58.4

sports_understanding PaLM 2-L 98.0 / 88.0 / 90.0 50.0 / 46.5 / 47.2 60.0 / 52.5 / 54.0 52.0 / 41.5 / 43.6
temporal_sequences PaLM 2-L 100.0 / 100.0 / 100.0 100.0 / 96.0 / 96.8 90.0 / 87.0 / 87.6 100.0 / 99.5 / 99.6

tracking_shuffled_objects_seven_objects PaLM 2-L 32.0 / 16.5 / 19.6 58.0 / 61.5 / 60.8 54.0 / 55.5 / 55.2 14.0 / 23.5 / 21.6
web_of_lies PaLM 2-L 62.0 / 52.0 / 54.0 46.0 / 41.5 / 42.4 24.0 / 31.0 / 29.6 54.0 / 54.0 / 54.0
word_sorting PaLM 2-L 54.0 / 54.5 / 54.4 2.0 / 4.5 / 4.0 12.0 / 9.5 / 10.0 20.0 / 22.5 / 22.0

boolean_expressions text-bison 98.0 / 87.0 / 89.2 72.0 / 61.5 / 63.6 88.0 / 78.0 / 80.0 80.0 / 68.5 / 70.8
causal_judgement text-bison 78.4 / 58.0 / 62.0 70.3 / 50.7 / 54.5 73.0 / 55.3 / 58.8 78.4 / 58.0 / 62.0

date_understanding text-bison 60.0 / 50.0 / 52.0 44.0 / 45.5 / 45.2 48.0 / 45.0 / 45.6 44.0 / 45.0 / 44.8
disambiguation_qa text-bison 68.0 / 73.0 / 72.0 4.0 / 6.0 / 5.6 4.0 / 15.5 / 13.2 52.0 / 68.5 / 65.2

dyck_languages text-bison 100.0 / 100.0 / 100.0 100.0 / 95.5 / 96.4 100.0 / 94.5 / 95.6 100.0 / 98.5 / 98.8
formal_fallacies text-bison 70.0 / 53.0 / 56.4 64.0 / 54.5 / 56.4 84.0 / 82.5 / 82.8 70.0 / 54.5 / 57.6

geometric_shapes text-bison 40.0 / 19.5 / 23.6 22.0 / 13.0 / 14.8 18.0 / 12.0 / 13.2 20.0 / 14.5 / 15.6
hyperbaton text-bison 80.0 / 79.5 / 79.6 64.0 / 67.5 / 66.8 64.0 / 69.0 / 68.0 64.0 / 64.0 / 64.0

logical_deduction_seven_objects text-bison 66.0 / 53.5 / 56.0 56.0 / 58.0 / 57.6 56.0 / 56.0 / 56.0 58.0 / 56.5 / 56.8
movie_recommendation text-bison 98.0 / 90.0 / 91.6 68.0 / 63.0 / 64.0 66.0 / 62.0 / 62.8 68.0 / 64.0 / 64.8

multistep_arithmetic_two text-bison 32.0 / 16.5 / 19.6 12.0 / 18.0 / 16.8 18.0 / 17.5 / 17.6 16.0 / 18.5 / 18.0
navigate text-bison 72.0 / 61.0 / 63.2 56.0 / 55.0 / 55.2 60.0 / 56.5 / 57.2 56.0 / 57.0 / 56.8

object_counting text-bison 72.0 / 62.0 / 64.0 58.0 / 57.0 / 57.2 62.0 / 55.5 / 56.8 50.0 / 57.0 / 55.6
penguins_in_a_table text-bison 72.4 / 56.4 / 59.6 58.6 / 53.0 / 54.1 55.2 / 55.6 / 55.5 58.6 / 53.0 / 54.1

reasoning_about_colored_objects text-bison 82.0 / 77.0 / 78.0 76.0 / 72.5 / 73.2 78.0 / 73.0 / 74.0 74.0 / 69.5 / 70.4
ruin_names text-bison 88.0 / 82.5 / 83.6 66.0 / 65.5 / 65.6 66.0 / 62.5 / 63.2 64.0 / 66.0 / 65.6

salient_translation _error_detection text-bison 46.0 / 50.5 / 49.6 42.0 / 47.5 / 46.4 42.0 / 49.5 / 48.0 44.0 / 50.0 / 48.8
snarks text-bison 80.0 / 81.8 / 81.5 68.6 / 77.6 / 75.8 71.4 / 76.2 / 75.3 77.1 / 84.6 / 73.1

sports_understanding text-bison 94.0 / 82.5 / 84.8 86.0 / 79.0 / 80.4 90.0 / 81.0 / 82.8 38.0 / 44.5 / 43.2
temporal_sequences text-bison 78.0 / 81.0 / 80.4 36.0 / 43.5 / 42.0 32.0 / 45.0 / 42.4 36.0 / 43.0 / 41.6

tracking_shuffled_objects_seven_objects text-bison 32.0 / 15.5 / 18.8 10.0 / 17.0 / 15.6 10.0 / 18.0 / 16.4 12.0 / 15.5 / 14.8
web_of_lies text-bison 62.0 / 50.0 / 52.4 48.0 / 45.5 / 46.0 48.0 / 44.0 / 44.8 52.0 / 51.5 / 51.2
word_sorting text-bison 24.0 / 17.5 / 18.8 10.0 / 12.0 / 11.6 4.0 / 8.0 / 7.2 4.0 / 7.5 / 6.8

26

Published as a conference paper at ICLR 2024

Table 7: BBH task-wise instructions found by prompt optimization with the PaLM 2-L scorer and
the PaLM 2-L-IT optimizer. The optimization starts from the empty string.

Task Our Instruction

boolean_expressions A Boolean expression is a well-formed expression consisting of variables, values, and logical operators. The
expression must evaluate to a single True or False value. The order of precedence of the logical operators is as follows:
NOT, AND, OR, XOR, IMP. Parentheses can be used to group subexpressions and to control the order of evaluation.

causal_judgement When considering questions about causation, a typical person would consider the following factors: whether the
action or event was a necessary condition for the outcome to occur, a sufficient condition, a proximate cause, or a

foreseeable cause.

date_understanding To find the date X time ago from today, first find today’s date. Then subtract X time from today’s date. If the current
date is the last day of a month, then the date a month ago is the last day of the previous month. If the current date is

not the last day of a month, then the date a month ago is the same day of the previous month. For example, if today is
March 31, 2023, then the date a month ago is February 28, 2023. If today is April 1, 2023, then the date a month ago

is March 1, 2023.

disambiguation_qa Identifying Antecedents of Pronouns: A Comprehensive Guide

dyck_languages First, look for the opening parentheses. Then, count the number of opening parentheses. Finally, close the parentheses
in the reverse order that they were opened.

formal_fallacies A deductive argument is one where the conclusion follows necessarily from the premises. If the premises are true,
then the conclusion must also be true. An invalid argument is one where it is possible for the premises to be true and

the conclusion to be false.

geometric_shapes A closed polygonal chain is a series of connected line segments. The line segments can be straight or curved. The first
and last line segments are connected. The line segments do not intersect each other except at their endpoints. A closed

polygon can be described by an SVG path element, which starts at a given point, goes to one or more additional
points, and then ends at the starting point. The path element can consist of straight line segments, curved segments, or

a mixture of both.

hyperbaton The correct adjective order in English is opinion, size, shape, age, color, origin, material, and purpose. If you have
more than one adjective of the same type, they are usually placed in order of importance. For example, you would say
"a large, old, Pakistani ship" rather than "an old, large, Pakistani ship." There are a few exceptions to these rules, but

they are generally followed in most cases.

logical_deduction
_seven_objects

The following questions will test your ability to use deductive reasoning. You will be given a set of statements about a
group of objects. You will then be asked to answer questions about the objects based on the statements. The

statements in the questions are logically consistent, so you can use them to deduce the order of the objects. For each
question, you must choose the option that is logically consistent with the information in the questions.

movie_recommendation Based on your input, I have analyzed the given movies in terms of genre, plot, tone, audience rating, year of release,
director, cast, and reviews. I have also taken into account the given options. The movie that is most similar to the

given movies in terms of all these factors is:

multistep_arithmetic
_two

The order of operations in mathematics is PEMDAS, which stands for Parentheses, Exponents, Multiplication,
Division, Addition, and Subtraction. When there are multiple operations of the same precedence, they must be

performed from left to right. Note that multiplication and division have the same precedence, as do addition and
subtraction.

navigate You will return to the starting point if and only if (1) the total number of steps you take forward is equal to the total
number of steps you take back, and (2) the total number of turns you make is a multiple of 180 degrees.

object_counting Here is a list of the objects you mentioned and their corresponding counts:

penguins_in_a_table Here is my new text:

reasoning_about
_colored_objects

Starting from the leftmost object in the row, I observe the following objects arranged in this order:

ruin_names Which is the funniest pun on the artist or movie name?

salient_translation
_error_detection

Instructions: Read the German sentence and its English translation carefully, then identify the type of error in the
translation and select the correct option. There are six possible types of errors: Named Entities, Numerical Values,

Modifiers or Adjectives, Negation or Antonyms, Facts, and Dropped Content.

snarks Identify the sarcastic statement by considering the following factors: incongruity, exaggeration, understatement,
context, speaker’s intent, and audience’s reaction. I will also consider the speaker’s tone of voice, facial expressions,

and body language.

sports_understanding I will determine if a sentence about an athlete is plausible by first checking if it is grammatically correct. If it is, I will
then check if it is consistent with the athlete’s sport, position, and real-world statistics. I will also check if it is

consistent with the rules of the athlete’s sport. If the sentence is consistent with all of these things, I will answer "yes",
otherwise I will answer "no".

temporal_sequences The answer is the time that is not mentioned in the given statements.

tracking_shuffled_objects
_seven_objects

Claire has the blue ball, Gertrude has the black ball, and Dave has the green ball. They are all happy with their new
balls.

web_of_lies The answer to a question is yes if there are an odd number of liars before the current speaker, and no if there are an
even number of liars before the current speaker. If the current speaker is a truth-teller, they will say the opposite of

what the previous person said, while a liar will say the same thing as the previous person said.

word_sorting Alphabetical order of given words:

27

Published as a conference paper at ICLR 2024

Table 8: BBH task-wise instructions found by prompt optimization with the text-bison scorer
and the PaLM 2-L-IT optimizer. The optimization starts from the empty string.

Task Our Instruction

boolean_expressions Not (not False) and not not False is False

causal_judgement A typical person would likely answer the questions about causation as follows:

date_understanding Today is February 28, 2023. It is a Tuesday. Yesterday was Monday, February 27, 2023. Tomorrow will be
Wednesday, March 1, 2023. A week ago, it was February 21, 2023, and a month ago, it was January 28, 2023. A year
from now, it will be February 28, 2024. The day of the week is important to note because it will help us to correctly

answer the questions below. Not all years are leap years that contain February 29.

disambiguation_qa A pronoun is a word that stands in for a noun. The noun that a pronoun refers to is called its antecedent. To identify
the antecedent of a pronoun, look for the noun that the pronoun could be referring to. If there is only one possible

noun, then that is the antecedent. If there are two or more possible nouns, then the antecedent is ambiguous. Use the
context of the sentence to help you determine the correct antecedent.

dyck_languages { }

formal_fallacies How to Evaluate Deductive Validity of an Argument

geometric_shapes What shape is this SVG code drawing, and how many sides does it have?

hyperbaton In English, adjectives are typically placed before nouns in a specific order. The order is: opinion, size, shape, age,
color, origin, material, purpose, noun. For example, the sentence "the big, old, red barn" would be considered

grammatically correct, while the sentence "the old, big, red barn" would not. Adjectives that come before nouns are
called attributive adjectives, while adjectives that come after nouns are called predicative adjectives.

logical_deduction
_seven_objects

In this logical reasoning task, you will be given a series of paragraphs, each of which describes a set of objects
arranged in a fixed order. The statements in each paragraph are logically consistent. You must read each paragraph
carefully and use the information given to determine the logical relationships between the objects. You will then be
asked a question about the order of the objects. Read each question carefully and choose the option that answers the

question correctly.

movie_recommendation What is the highest-rated movie similar to the given movies, with a similar IMDb rating and released in the same
year?

multistep_arithmetic_two Let’s solve these equations using PEMDAS order of operations. Remember that PEMDAS stands for parentheses,
exponents, multiplication and division, and addition and subtraction.

navigate Starting at the origin, facing north, follow the instructions. If your displacement from the origin is zero and your
direction is unchanged, then your answer is Yes. Otherwise, your answer is No.

object_counting Let me help you count the items you have. Just list them one by one, separated by commas. I will then count each
item and tell you how many items there are in total.

penguins_in_a_table This table shows information about penguins. The columns show the penguin’s name, age, height (in cm), and weight
(in kg). The penguins are listed in order of their age, from youngest to oldest.

reasoning_about
_colored_objects

First, read the input carefully. Then, identify all the objects mentioned, their colors, and their positions. Next,
visualize the objects and their positions in your mind. Finally, answer the questions accurately based on the

information given. Make sure to pay attention to the order of the objects.

ruin_names A humorous edit of an artist or movie name can be created by replacing one or more letters to form a new word or
phrase that sounds similar but has a different meaning. The new word or phrase should be relevant to the original

word, but it should also be a surprise, which makes the edit funny. For example, the artist or movie name "Rocky" can
be changed to "Ricky," and "Schindler’s List" can be changed to "Schindler’s Lift." Be creative and have fun!

salient_translation
_error_detection

The following translations from German to English contain a particular error. The error may be one of the following
types: Named Entities, Numerical Values, Modifiers or Adjectives, Negation or Antonyms, Facts, or Dropped

Content. Please identify the error.

snarks The statement

sports_understanding To determine the plausibility of a sports sentence, I will first identify the sport, athletes, teams, and events mentioned
in the sentence. Then, I will use my knowledge of the rules of the sport, the context of the sentence, common sense,
and my knowledge of the world to determine whether the sentence is plausible. I will also consider the time period

and location, as well as any other relevant information. Finally, I will return a score of 1 for plausible sentences and 0
for implausible ones.

temporal_sequences To determine the time period when a person went to a place, first identify all the time periods when the person’s
whereabouts are unknown. Then, rule out any time periods during which the person was seen doing something else or
the place was closed. The remaining time periods are the possible times when the person could have gone to the place.

tracking_shuffled_objects
_seven_objects

At the start of the game, Claire has a blue ball. Throughout the game, pairs of people swap balls. Claire ends up with
the yellow ball.

web_of_lies People in a group either tell the truth or lie. The truthfulness of a person’s statement is determined by the statement of
the previous person. If the previous person told the truth, then the current person who says the opposite is lying. If the

previous person lied, then the current person who says the opposite is telling the truth. This rule applies to all
subsequent statements.

word_sorting Sort the following words alphabetically, ignoring case and punctuation. Print the sorted list.

28

Published as a conference paper at ICLR 2024

bo
ole

an
_e

xp
re

ss
ion

s

ca
us

al_
jud

ge
men

t

da
te

_u
nd

er
sta

nd
ing

dis
am

big
ua

tio
n_

qa

dy
ck

_la
ng

ua
ge

s

for
mal_

fal
lac

ies

ge
om

et
ric

_s
ha

pe
s

hy
pe

rb
at

on

log
ica

l_d
ed

uc
tio

n_
se

ve
n_

ob
jec

ts

mov
ie_

re
co

mmen
da

tio
n

mult
ist

ep
_a

rit
hm

et
ic_

tw
o

na
vig

at
e

ob
jec

t_c
ou

nt
ing

pe
ng

uin
s_

in_
a_

ta
ble

re
as

on
ing

_a
bo

ut
_c

olo
re

d_
ob

jec
ts

ru
in_

na
mes

sa
lie

nt
_tr

an
sla

tio
n_

er
ro

r_d
et

ec
tio

n
sn

ar
ks

sp
or

ts_
un

de
rst

an
din

g

te
mpo

ra
l_s

eq
ue

nc
es

tra
ck

ing
_s

hu
ffl

ed
_o

bje
cts

_s
ev

en
_o

bje
cts

we
b_

of_
lie

s
wo

rd
_s

or
tin

g

-20

0

20

40

ac
cu

ra
cy

 d
iff

er
en

ce

(a) PaLM 2-L, ours minus “Let’s think step by step.”

bo
ole

an
_e

xp
re

ss
ion

s

ca
us

al_
jud

ge
men

t

da
te

_u
nd

er
sta

nd
ing

dis
am

big
ua

tio
n_

qa

dy
ck

_la
ng

ua
ge

s

for
mal_

fal
lac

ies

ge
om

et
ric

_s
ha

pe
s

hy
pe

rb
at

on

log
ica

l_d
ed

uc
tio

n_
se

ve
n_

ob
jec

ts

mov
ie_

re
co

mmen
da

tio
n

mult
ist

ep
_a

rit
hm

et
ic_

tw
o

na
vig

at
e

ob
jec

t_c
ou

nt
ing

pe
ng

uin
s_

in_
a_

ta
ble

re
as

on
ing

_a
bo

ut
_c

olo
re

d_
ob

jec
ts

ru
in_

na
mes

sa
lie

nt
_tr

an
sla

tio
n_

er
ro

r_d
et

ec
tio

n
sn

ar
ks

sp
or

ts_
un

de
rst

an
din

g

te
mpo

ra
l_s

eq
ue

nc
es

tra
ck

ing
_s

hu
ffl

ed
_o

bje
cts

_s
ev

en
_o

bje
cts

we
b_

of_
lie

s
wo

rd
_s

or
tin

g

0

20

40

ac
cu

ra
cy

 d
iff

er
en

ce

(b) PaLM 2-L, ours minus empty starting point

bo
ole

an
_e

xp
re

ss
ion

s

ca
us

al_
jud

ge
men

t

da
te

_u
nd

er
sta

nd
ing

dis
am

big
ua

tio
n_

qa

dy
ck

_la
ng

ua
ge

s

for
mal_

fal
lac

ies

ge
om

et
ric

_s
ha

pe
s

hy
pe

rb
at

on

log
ica

l_d
ed

uc
tio

n_
se

ve
n_

ob
jec

ts

mov
ie_

re
co

mmen
da

tio
n

mult
ist

ep
_a

rit
hm

et
ic_

tw
o

na
vig

at
e

ob
jec

t_c
ou

nt
ing

pe
ng

uin
s_

in_
a_

ta
ble

re
as

on
ing

_a
bo

ut
_c

olo
re

d_
ob

jec
ts

ru
in_

na
mes

sa
lie

nt
_tr

an
sla

tio
n_

er
ro

r_d
et

ec
tio

n
sn

ar
ks

sp
or

ts_
un

de
rst

an
din

g

te
mpo

ra
l_s

eq
ue

nc
es

tra
ck

ing
_s

hu
ffl

ed
_o

bje
cts

_s
ev

en
_o

bje
cts

we
b_

of_
lie

s
wo

rd
_s

or
tin

g

0

20

40

60

ac
cu

ra
cy

 d
iff

er
en

ce

(c) text-bison, ours minus “Let’s think step by step.”

bo
ole

an
_e

xp
re

ss
ion

s

ca
us

al_
jud

ge
men

t

da
te

_u
nd

er
sta

nd
ing

dis
am

big
ua

tio
n_

qa

dy
ck

_la
ng

ua
ge

s

for
mal_

fal
lac

ies

ge
om

et
ric

_s
ha

pe
s

hy
pe

rb
at

on

log
ica

l_d
ed

uc
tio

n_
se

ve
n_

ob
jec

ts

mov
ie_

re
co

mmen
da

tio
n

mult
ist

ep
_a

rit
hm

et
ic_

tw
o

na
vig

at
e

ob
jec

t_c
ou

nt
ing

pe
ng

uin
s_

in_
a_

ta
ble

re
as

on
ing

_a
bo

ut
_c

olo
re

d_
ob

jec
ts

ru
in_

na
mes

sa
lie

nt
_tr

an
sla

tio
n_

er
ro

r_d
et

ec
tio

n
sn

ar
ks

sp
or

ts_
un

de
rst

an
din

g

te
mpo

ra
l_s

eq
ue

nc
es

tra
ck

ing
_s

hu
ffl

ed
_o

bje
cts

_s
ev

en
_o

bje
cts

we
b_

of_
lie

s
wo

rd
_s

or
tin

g

0

20

40
ac

cu
ra

cy
 d

iff
er

en
ce

(d) text-bison, ours minus empty starting point

Figure 20: On 23 BBH tasks, the accuracy differences among instructions found by prompt opti-
mization (with the gpt-3.5-turbo optimizer), “Let’s think step by step.”, and the empty string
(optimization starting point).

J.2 GPT-3.5-TURBO AS OPTIMIZER, OPTIMIZATION STARTING FROM THE EMPTY STRING

Table 10, 11 and 12 show the instructions found by prompt optimization. Their accuracies are listed
in Table 9. Figure 20 visualizes the difference between their accuracies and those of the baselines
“Let’s think step by step.” and the empty string. The optimizations find instructions better than the
empty starting point, and most of the found instructions are better than “Let’s think step by step”.

One caveat in the A_begin instructions (Table 10) is that some instructions found here are imperative
or interrogative sentences that are more suitable to be put into “Q:” rather than “A:”, like “Solve
the sequence by properly closing the parentheses.” for dyck_languages and “Which movie option
from the given choices ...?” for movie_recommendation. Such styles appear more often here than the
with PaLM 2-L-IT optimizer (Table 7), indicating PaLM 2-L-IT understands the desirable style

29

Published as a conference paper at ICLR 2024

Table 9: Accuracies on BBH tasks with the gpt-3.5-turbo optimizer that starts from the empty
string. The PaLM 2-L scores are from A_begin (left) instructions; the text-bison scores include
Q_begin (left) and Q_end (right) instructions.

Task Scorer Our Acc (begin) Our Acc (end)

training / test / overall training / test / overall

boolean_expressions PaLM 2-L 92.0 / 86.5 / 87.6 N/A
causal_judgement PaLM 2-L 81.1 / 58.7 / 63.1 N/A

date_understanding PaLM 2-L 86.0 / 82.0 / 82.8 N/A
disambiguation_qa PaLM 2-L 80.0 / 74.0 / 75.2 N/A

dyck_languages PaLM 2-L 100.0 / 100.0 / 100.0 N/A
formal_fallacies PaLM 2-L 88.0 / 63.5 / 68.4 N/A

geometric_shapes PaLM 2-L 60.0 / 41.0 / 44.8 N/A
hyperbaton PaLM 2-L 88.0 / 93.0 / 92.0 N/A

logical_deduction_seven_objects PaLM 2-L 76.0 / 56.5 / 60.4 N/A
movie_recommendation PaLM 2-L 84.0 / 86.0 / 85.6 N/A

multistep_arithmetic_two PaLM 2-L 52.0 / 49.0 / 49.6 N/A
navigate PaLM 2-L 76.0 / 67.0 / 68.8 N/A

object_counting PaLM 2-L 78.0 / 79.0 / 78.8 N/A
penguins_in_a_table PaLM 2-L 82.8 / 72.6 / 74.7 N/A

reasoning_about _colored_objects PaLM 2-L 86.0 / 67.5 / 71.2 N/A
ruin_names PaLM 2-L 90.0 / 83.0 / 84.4 N/A

salient_translation_error_detection PaLM 2-L 62.0 / 65.0 / 64.4 N/A
snarks PaLM 2-L 85.7 / 70.6 / 73.6 N/A

sports_understanding PaLM 2-L 68.0 / 57.5 / 59.6 N/A
temporal_sequences PaLM 2-L 100.0 / 99.5 / 99.6 N/A

tracking_shuffled_objects_seven_objects PaLM 2-L 44.0 / 34.5 / 36.4 N/A
web_of_lies PaLM 2-L 92.0 / 91.0 / 91.2 N/A
word_sorting PaLM 2-L 62.0 / 52.0 / 54.0 N/A

boolean_expressions text-bison 84.0 / 78.5 / 79.6 80.0 / 78.0 / 78.4
causal_judgement text-bison 78.4 / 57.3 / 61.5 83.8 / 53.3 / 59.4

date_understanding text-bison 52.0 / 45.0 / 46.4 64.0 / 52.4 / 54.8
disambiguation_qa text-bison 68.0 / 75.5 / 74.0 64.0 / 71.5 / 70.0

dyck_languages text-bison 100.0 / 99.5 / 99.6 100.0 / 100.0 / 100.0
formal_fallacies text-bison 70.0 / 54.5 / 57.6 74.0 / 53.5 / 57.6

geometric_shapes text-bison 28.0 / 15.0 / 17.6 48.0 / 28.0 / 32.0
hyperbaton text-bison 86.0 / 85.0 / 85.2 80.0 / 76.5 / 77.2

logical_deduction_seven_objects text-bison 66.0 / 57.5 / 59.2 62.0 / 55.0 / 56.4
movie_recommendation text-bison 76.0 / 69.5 / 70.8 82.0 / 70.5 / 72.8

multistep_arithmetic_two text-bison 28.0 / 20.5 / 22.0 28.0 / 22.5 / 23.6
navigate text-bison 72.0 / 61.0 / 63.2 68.0 / 59.5 / 61.2

object_counting text-bison 68.0 / 71.0 / 70.4 72.0 / 69.0 / 69.6
penguins_in_a_table text-bison 65.5 / 59.8 / 61.0 79.3 / 53.0 / 58.2

reasoning_about_colored_objects text-bison 84.0 / 76.5 / 78.0 86.0 / 74.0 / 76.4
ruin_names text-bison 80.0 / 74.0 / 75.2 74.0 / 75.0 / 74.8

salient_translation_error_detection text-bison 44.0 / 50.5 / 49.2 48.0 / 51.0 / 50.4
snarks text-bison 82.9 / 79.7 / 80.3 88.6 / 84.6 / 85.4

sports_understanding text-bison 84.0 / 76.5 / 78.0 90.0 / 80.0 / 82.0
temporal_sequences text-bison 50.0 / 54.5 / 53.6 64.0 / 61.5 / 62.0

tracking_shuffled_objects_seven_objects text-bison 22.0 / 18.5 / 19.2 30.0 / 21.5 / 23.2
web_of_lies text-bison 64.0 / 57.5 / 58.8 68.0 / 55.0 / 57.6
word_sorting text-bison 26.0 / 19.0 / 20.4 32.0 / 25.5 / 26.8

better. In Section J.3, we show the A_begin optimization results with the non-empty starting point
“Let’s solve the problem.”. Most results there are declarative sentences – more suitable for A_begin.

30

Published as a conference paper at ICLR 2024

Table 10: BBH task-wise instructions found by prompt optimization with the PaLM 2-L scorer and
the gpt-3.5-turbo optimizer. The optimizations start from the empty string.

Task Our Instruction

boolean_expressions An accurate evaluation of logical expressions involves correctly applying Boolean operators, considering the order of
operations, and analyzing the truth values of the operands in accordance with Boolean logic principles.

causal_judgement Understanding causality is critical for accurately assessing cause and effect relationships in various scenarios, leading
to well-informed judgments, precise conclusions, and definitive answers to questions about the outcomes involved.

date_understanding What is the specific date mentioned or required in each given problem or question, taking into account all relevant
information, available options, and the provided context? Please provide the accurate answer in the format

MM/DD/YYYY.

disambiguation_qa Accurately analyze and clarify the pronoun-antecedent relationship in the given sentences, identifying the appropriate
referent to eliminate any potential confusion or ambiguity and ensure a precise understanding of the intended

meaning.

dyck_languages Solve the sequence by properly closing the parentheses.

formal_fallacies In determining the deductive validity of arguments based on explicit premises, a meticulous analysis of the logical
relationships and implications is essential for definitively establishing their soundness, confirming their validity or

invalidity, and ensuring a reliable and robust assessment of the arguments at hand.

geometric_shapes The SVG path element with the "d" attribute plays a crucial role in web development, allowing for the precise
definition and rendering of various shapes on a webpage.

hyperbaton Understanding the correct order of adjectives is crucial for constructing grammatically accurate and coherent
sentences that effectively convey the intended meaning in diverse contexts while ensuring clarity, cohesion, and

consistency throughout consistently and effortlessly.

logical_deduction
_seven_objects

By conducting a meticulous analysis of the given information and ensuring logical consistency within each paragraph,
we can accurately determine the precise order or ranking of the mentioned objects, allowing us to confidently and

consistently identify the correct answer in every presented scenario with utmost precision and confidence.

movie_recommendation Which movie option from the given choices closely matches the mentioned films in terms of themes, storylines, and
characteristics, guaranteeing the highest possible similarity score among them all?

multistep_arithmetic_two Evaluate the given mathematical expressions step by step to determine the correct solutions accurately.

navigate Is it possible to determine, with absolute certainty, whether strictly adhering to the given instructions will unfailingly
bring you back to the original starting point without any exceptions, errors, or deviations?

object_counting Determine the total number of objects or entities mentioned in the given list, covering various categories and types, to
accurately calculate the overall count.

penguins_in_a_table From the given table, what information can we gather about the mentioned animals and their respective attributes,
including names, ages, heights, and weights?

reasoning_about
_colored_objects

By thoroughly examining the given information, accurately determine the answers for each question by considering
the specific characteristics, colors, and positions of the mentioned objects.

ruin_names Select the most amusing and clever alteration from the options provided for the given artist, movie, or title name, and
accurately choose the correct answer to test your wit and creativity.

salient_translation
_error_detection

Thoroughly examine the given translations from German to English and accurately identify any errors by carefully
analyzing the text and selecting the appropriate option with meticulous attention to detail, precision, utmost accuracy,

and comprehensive understanding of the language for precise evaluation and categorization.

snarks Which option delivers the most devastatingly sarcastic response, brilliantly exposing the sheer absurdity and leaving
absolutely no doubt whatsoever in all the given situations?

sports_understanding Maintaining the accuracy, reliability, and integrity of sports event representation is essential for upholding the highest
standards of credibility, trustworthiness, and overall quality in conveying information, without any compromise,

misrepresentation, or distortion, thereby ensuring the factual accuracy of sports journalism.

temporal_sequences Based on the provided timeline and observed activities, we can accurately determine the possible time range when
each individual could have visited their intended destinations and answer questions about their visitation time.

tracking_shuffled_objects
_seven_objects

An important point to note is that each person in the group starts with one specific book at the beginning of the
semester.

web_of_lies Analyzing the consistency and accuracy of statements provided by each person is crucial for determining the
truthfulness of individuals in every scenario.

word_sorting Please sort the given words in alphabetical order: The list of words to be sorted contains -

31

Published as a conference paper at ICLR 2024

Table 11: BBH task-wise Q_begin instructions found by prompt optimization with the text-bison
scorer and the gpt-3.5-turbo optimizer. The optimizations start from the empty string.

Task Our Instruction

boolean_expressions Group sub-expressions with parentheses to accurately evaluate logical operations: not, and, and finally or. Determine
the resulting value as either True or False.

causal_judgement Consider the intentions and actions of the individuals involved.

date_understanding Determine the one-day difference in the given date and express it in the format MM/DD/YYYY.

disambiguation_qa Determine the precise antecedent of the pronoun in the given sentence and select the correct option or state if it is
ambiguous.

dyck_languages Ensure that all opening brackets have a corresponding closing bracket, and that the closing brackets are in the correct
order.

formal_fallacies Thoroughly analyze the explicitly provided premises and determine the deductive validity of the argument based on
all necessary conditions, implications, exclusions, and dependencies given.

geometric_shapes Analyze the given SVG path element carefully and confidently select the correct option from the provided choices to
accurately determine the corresponding shape. Pay close attention to the specific path details and confidently make

the most suitable choice.

hyperbaton Select the sentence that strictly adheres to the standard order of adjectives: opinion, size, age, shape, color, origin,
material, and purpose. Ensure there are no deviations or alterations in the adjective order. Choose the option without

any changes.

logical_deduction
_seven_objects

Analyze the given information to accurately determine the precise order and ranking of the mentioned objects/people,
considering their relationships, positions, and any provided comparisons, for a definitive and logical progression with

maximum accuracy and efficiency.

movie_recommendation Based on the movie list provided, carefully consider your preferences and make a well-informed decision.

multistep_arithmetic_two First, simplify any expressions within parentheses following the correct order of operations to accurately evaluate the
final answer with efficiency and precision.

navigate Always face forward. Take 10 steps forward. Turn left. Take 5 steps forward. Take 3 steps backward. Finally, take 7
steps forward. Turn around and take 1 step forward. Repeat the previous sequence three times. Follow the given path

precisely without any deviations. At the end, turn right and take 11 steps forward. If you follow these instructions,
will you return to the starting point? Options: - Yes - No

object_counting Determine the total count of mentioned vegetables accurately and state the final count as the answer.

penguins_in_a_table Analyze the given table to accurately determine the required information based on the provided criteria and attributes
of the penguins and giraffes. Utilize efficient problem-solving strategies to arrive at the correct answer.

reasoning_about
_colored_objects

State the color of the object mentioned in the given arrangement with utmost accuracy.

ruin_names Choose the option that offers the most clever and humorous alteration of the given artist or movie name. Let your
creativity shine and select the answer that will undoubtedly bring a smile to your face! Make sure to think outside the

box!

salient_translation
_error_detection

Analyze the translation and accurately identify the specific error type based on the source text, providing the most
appropriate corresponding option.

snarks Choose the option that wickedly embodies sarcasm.

sports_understanding Determine the plausibility of the given statement by evaluating factual accuracy, logical consistency, and contextual
relevance, then provide a succinct and well-justified response.

temporal_sequences Identify the optimal time slot for the individual to engage in the mentioned location/activity considering the given
sightings and waking up time, taking into account the opening and closing times of the location and the duration of

each event.

tracking_shuffled_objects
_seven_objects

Pay attention to the given information and track the swaps/exchanges carefully to accurately determine the final
possession/position/outcome for the specified individual.

web_of_lies To determine the truthfulness of the last person mentioned, analyze the consistency of each statement and count the
number of individuals accusing the previous person of lying. If the count of accusers is even, that person tells the

truth; if it is odd, that person lies.

word_sorting Alphabetically sort the given list of words, ensuring all words are included and in ascending order.

32

Published as a conference paper at ICLR 2024

Table 12: BBH task-wise Q_end instructions found by prompt optimization with the text-bison
scorer and the gpt-3.5-turbo optimizer. The optimizations start from the empty string.

Task Our Instruction

boolean_expressions Accurately use order of operations and parentheses to evaluate logical expressions and determine truth values
efficiently.

causal_judgement Consider all relevant factors, prioritize overall well-being and ethical considerations, make well-informed decisions
while foreseeing potential consequences efficiently, and consistently strive for optimal outcomes with empathy and

adaptability in a thoughtful and comprehensive manner.

date_understanding Subtract the specified number of days from the given date and format the outcome as MM/DD/YYYY to accurately
determine the desired result in an efficient manner.

disambiguation_qa Clearly identify and select the unambiguous antecedent for the pronoun or designate it as "Ambiguous" if it is unclear.

dyck_languages Add the missing closing parentheses.

formal_fallacies Determine the deductive validity of the argument presented based on the explicitly stated premises and reach a
definitive conclusion.

geometric_shapes Analyzing the given SVG path element, accurately determine its shape by closely examining its curves and
coordinates, then select the correct option.

hyperbaton Choose the option with the correct adjective order in each sentence, prioritizing specific attributes like size, color, and
origin. Place the most specific adjective before the more general ones for precise and standardized ordering across all

examples. Ensure accurate alignment of the adjectives based on their respective attributes for consistent and
standardized ordering.

logical_deduction
_seven_objects

Determine the precise order of the given objects/participants based on the provided information and establish the final
ranking accurately, considering all relevant factors, while maintaining logical consistency with maximum efficiency.

movie_recommendation Choose the most similar option from the choices provided that closely aligns with the given movies’ themes, genres,
and impact for the most accurate recommendation possible. Make your selection wisely.

multistep_arithmetic_two Carefully follow the order of operations to precisely simplify the expressions within parentheses and efficiently find
the accurate final answer.

navigate Always face forward. Take 10 steps forward. Turn right and walk for 5 steps. Then, make a left turn and continue for
9 steps. Proceed by walking 6 steps backward. Finally, turn around and take 200 steps. Accurately track your

movements, diligently adhere to the given path, and ensure to return to the starting point without any deviations or
obstacles.

object_counting Determine the total count of items mentioned, including all listed items, using an efficient and concise method. State
the final count as your answer.

penguins_in_a_table Identify the animal with the maximum measurement (weight, age, or height) in the table and state its name and
species.

reasoning_about
_colored_objects

Determine the color of each item in the given scenario and select the correct color option from the provided choices
for accurate responses, ensuring utmost precision and completeness.

ruin_names Choose the option that creatively and hilariously transforms the given artist or movie name.

salient_translation
_error_detection

Carefully analyze the translations and select the most suitable option from the given choices to rectify the specific
error category, ensuring complete precision, accuracy, and faithful representation of the intended meaning, while

considering all relevant information in the source text.

snarks Choose the option that cleverly employs sarcasm to defy all expectations and leave everyone utterly dumbfounded,
questioning the very essence of their own perception.

sports_understanding Evaluate the plausibility of each given statement and provide a well-supported justification based on logical reasoning,
contextual understanding, and relevant evidence to arrive at a definitive and conclusive answer.

temporal_sequences Identify the possible time slot for the desired activity based on the given information and sightings, then select the
correct option.

tracking_shuffled_objects
_seven_objects

Thoroughly analyze the given scenarios, systematically consider all available information, and confidently determine
the final outcome with exceptional precision and optimal efficiency, while maintaining a strategic and logical

approach throughout the process.

web_of_lies Examine each person’s statements meticulously to accurately determine the truth and confidently identify who is
telling the truth, enabling you to effectively solve the given problem.

word_sorting Sort the given words alphabetically using spaces as separators while maintaining their original order and including all
words.

33

Published as a conference paper at ICLR 2024

J.3 PALM 2-L AS SCORER, GPT-3.5-TURBO AS OPTIMIZER, OPTIMIZATION STARTING
FROM “LET’S SOLVE THE PROBLEM.”

Figure 21 and Table 13 compare the accuracies of found instructions vs “Let’s solve the problem.”,
“Let’s think step by step.”, and the instructions in Table 10. Table 14 details the found instructions.

The “Let’s” pattern appears more often in the found instructions because of the starting points, and
the instructions are more often declarative that are more suitable for A_begin, even if some are
semantically far from “Let’s solve the problem”. In fact, “Let’s” was adopted by Zhou et al. (2022b)
as a fixed pattern in generated prompts, possibly because of the same reason.

bo
ole

an
_e

xp
re

ss
ion

s

ca
us

al_
jud

ge
men

t

da
te

_u
nd

er
sta

nd
ing

dis
am

big
ua

tio
n_

qa

dy
ck

_la
ng

ua
ge

s

for
mal_

fal
lac

ies

ge
om

et
ric

_s
ha

pe
s

hy
pe

rb
at

on

log
ica

l_d
ed

uc
tio

n_
se

ve
n_

ob
jec

ts

mov
ie_

re
co

mmen
da

tio
n

mult
ist

ep
_a

rit
hm

et
ic_

tw
o

na
vig

at
e

ob
jec

t_c
ou

nt
ing

pe
ng

uin
s_

in_
a_

ta
ble

re
as

on
ing

_a
bo

ut
_c

olo
re

d_
ob

jec
ts

ru
in_

na
mes

sa
lie

nt
_tr

an
sla

tio
n_

er
ro

r_d
et

ec
tio

n
sn

ar
ks

sp
or

ts_
un

de
rst

an
din

g

te
mpo

ra
l_s

eq
ue

nc
es

tra
ck

ing
_s

hu
ffl

ed
_o

bje
cts

_s
ev

en
_o

bje
cts

we
b_

of_
lie

s
wo

rd
_s

or
tin

g
0

20

40

ac
cu

ra
cy

 d
iff

er
en

ce

(a) ours minus “Let’s think step by step.”

bo
ole

an
_e

xp
re

ss
ion

s

ca
us

al_
jud

ge
men

t

da
te

_u
nd

er
sta

nd
ing

dis
am

big
ua

tio
n_

qa

dy
ck

_la
ng

ua
ge

s

for
mal_

fal
lac

ies

ge
om

et
ric

_s
ha

pe
s

hy
pe

rb
at

on

log
ica

l_d
ed

uc
tio

n_
se

ve
n_

ob
jec

ts

mov
ie_

re
co

mmen
da

tio
n

mult
ist

ep
_a

rit
hm

et
ic_

tw
o

na
vig

at
e

ob
jec

t_c
ou

nt
ing

pe
ng

uin
s_

in_
a_

ta
ble

re
as

on
ing

_a
bo

ut
_c

olo
re

d_
ob

jec
ts

ru
in_

na
mes

sa
lie

nt
_tr

an
sla

tio
n_

er
ro

r_d
et

ec
tio

n
sn

ar
ks

sp
or

ts_
un

de
rst

an
din

g

te
mpo

ra
l_s

eq
ue

nc
es

tra
ck

ing
_s

hu
ffl

ed
_o

bje
cts

_s
ev

en
_o

bje
cts

we
b_

of_
lie

s
wo

rd
_s

or
tin

g

0

20

40

ac
cu

ra
cy

 d
iff

er
en

ce

(b) ours minus “Let’s solve the problem.” starting
point

bo
ole

an
_e

xp
re

ss
ion

s

ca
us

al_
jud

ge
men

t

da
te

_u
nd

er
sta

nd
ing

dis
am

big
ua

tio
n_

qa

dy
ck

_la
ng

ua
ge

s

for
mal_

fal
lac

ies

ge
om

et
ric

_s
ha

pe
s

hy
pe

rb
at

on

log
ica

l_d
ed

uc
tio

n_
se

ve
n_

ob
jec

ts

mov
ie_

re
co

mmen
da

tio
n

mult
ist

ep
_a

rit
hm

et
ic_

tw
o

na
vig

at
e

ob
jec

t_c
ou

nt
ing

pe
ng

uin
s_

in_
a_

ta
ble

re
as

on
ing

_a
bo

ut
_c

olo
re

d_
ob

jec
ts

ru
in_

na
mes

sa
lie

nt
_tr

an
sla

tio
n_

er
ro

r_d
et

ec
tio

n
sn

ar
ks

sp
or

ts_
un

de
rst

an
din

g

te
mpo

ra
l_s

eq
ue

nc
es

tra
ck

ing
_s

hu
ffl

ed
_o

bje
cts

_s
ev

en
_o

bje
cts

we
b_

of_
lie

s
wo

rd
_s

or
tin

g

-20

0

20

ac
cu

ra
cy

 d
iff

er
en

ce

(c) ours minus the instructions found with the empty
starting point

Figure 21: On 23 BBH tasks, the accuracy differences among instructions found by prompt opti-
mization (with the text-bison scorer and the gpt-3.5-turbo optimizer), “Let’s think step by
step.”, and “Let’s solve the problem.” (optimization starting point). The found instructions mostly
outperform the “Let’s think step by step.” baseline, the “Let’s solve the problem.” starting point, and
the instructions in Table 10 found by prompt optimization from the empty string.

34

Published as a conference paper at ICLR 2024

Table 13: Accuracies on BBH tasks with the PaLM 2-L scorer and the gpt-3.5-turbo optimizer
that starts from “Let’s solve the problem”. The scores are from A_begin instructions.

Task Scorer Our Acc “Let’s solve the
problem.” Acc

training / test / overall training / test / overall

boolean_expressions PaLM 2-L 98.0 / 89.5 / 91.2 78.0 / 69.0 / 70.8
causal_judgement PaLM 2-L 83.8 / 58.7 / 63.6 62.0 / 61.3 / 61.5

date_understanding PaLM 2-L 90.0 / 82.0 / 83.6 74.0 / 71.0 / 71.6
disambiguation_qa PaLM 2-L 78.0 / 68.0 / 70.0 52.0 / 54.5 / 54.0

dyck_languages PaLM 2-L 100.0 / 100.0 / 100.0 94.0 / 97.0 / 96.4
formal_fallacies PaLM 2-L 84.0 / 62.0 / 66.4 68.0 / 54.0 / 56.8

geometric_shapes PaLM 2-L 62.0 / 42.5 / 46.4 30.0 / 22.0 / 23.6
hyperbaton PaLM 2-L 94.0 / 91.5 / 92.0 72.0 / 77.0 / 76.0

logical_deduction_seven_objects PaLM 2-L 66.0 / 53.0 / 55.6 38.0 / 36.5 / 36.8
movie_recommendation PaLM 2-L 88.0 / 88.0 / 88.0 66.0 / 76.0 / 74.0

multistep_arithmetic_two PaLM 2-L 66.0 / 55.0 / 57.2 30.0 / 22.0 / 23.6
navigate PaLM 2-L 76.0 / 67.0 / 68.8 54.0 / 63.5 / 61.6

object_counting PaLM 2-L 96.0 / 92.5 / 93.2 58.0 / 58.0 / 58.0
penguins_in_a_table PaLM 2-L 86.2 / 70.9 / 74.0 69.0 / 72.6 / 71.9

reasoning_about _colored_objects PaLM 2-L 88.0 / 69.0 / 72.8 78.0 / 69.5 / 71.2
ruin_names PaLM 2-L 92.0 / 85.5 / 86.8 76.0 / 79.5 / 80.8

salient_translation_error_detection PaLM 2-L 66.0 / 67.5 / 67.2 30.0 / 35.5 / 34.4
snarks PaLM 2-L 88.6 / 76.9 / 79.2 80.0 / 70.6 / 72.5

sports_understanding PaLM 2-L 72.0 / 63.5 / 65.2 60.0 / 50.5 / 52.4
temporal_sequences PaLM 2-L 100.0 / 99.5 / 99.6 96.0 / 92.5 / 93.2

tracking_shuffled_objects_seven_objects PaLM 2-L 56.0 / 63.5 / 62.0 42.0 / 51.5 / 49.6
web_of_lies PaLM 2-L 56.0 / 58.5 / 58.0 0.0 / 4.0 / 3.2
word_sorting PaLM 2-L 52.0 / 44.5 / 46.0 18.0 / 20.5 / 20.0

35

Published as a conference paper at ICLR 2024

Table 14: BBH task-wise Q_begin instructions found by prompt optimization with the PaLM 2-L
scorer and the gpt-3.5-turbo optimizer. The optimizations start from “Let’s solve the problem”.

Task Our Instruction

boolean_expressions Let’s accurately assess the given conditions and determine their corresponding Boolean values.

causal_judgement Let’s conduct a meticulous evaluation of the given scenarios, accurately determine the causal relationships, and
provide definitive answers through comprehensive analysis, ensuring a precise understanding of causation and a

thorough determination of events in each situation.

date_understanding Let’s accurately determine the correct date based on the given information and select the corresponding option in the
standard MM/DD/YYYY format with utmost precision and reliability, ensuring the most definitive and reliable

solution possible for accurate representation in all scenarios without any room for ambiguity, error, or confusion, and
providing the highest level of accuracy and reliability.

disambiguation_qa Let’s thoroughly analyze the given sentences to accurately determine the unambiguous antecedents of the pronouns
used, ensuring clear understanding, effective communication, and leaving no room for any confusion or ambiguity.

dyck_languages Let’s find the correct closing parentheses and brackets for the given sequences.

formal_fallacies Let’s thoroughly analyze the explicitly stated premises and draw definitive conclusions to accurately determine the
deductive validity of the arguments provided in each question, employing precise and logical reasoning in our

assessments for unwavering confidence in our determinations.

geometric_shapes Let’s accurately determine the shape represented by the given SVG path element by carefully analyzing its path data
and considering all available options for a precise identification.

hyperbaton Let’s quickly identify the correct adjective order.

logical_deduction
_seven_objects

Let’s methodically analyze the given information, employ logical reasoning, thoroughly evaluate all relevant details,
and accurately determine the solutions for each problem by considering all provided options comprehensively and

strategically, ensuring an efficient and effective approach towards arriving at the correct answers.

movie_recommendation Let’s uncover the perfect movie recommendation from the options provided, ensuring an exceptional cinematic
experience together as we select the most captivating and satisfying choice that will keep us thoroughly engaged and

immersed until the very end.

multistep_arithmetic_two Let’s tackle the following calculations.

navigate Let’s accurately and efficiently determine the correct solution for each given scenario, ensuring the highest level of
precision, reliability, and consistency throughout.

object_counting Let’s determine the total count of various items/objects/ingredients/animals mentioned in order to accurately and
efficiently find the answer.

penguins_in_a_table Let’s analyze the given information and determine the correct answer.

reasoning_about
_colored_objects

Let’s systematically analyze the given information and carefully evaluate each answer choice to confidently determine
the accurate and optimal solutions, considering all available options and specific details provided in each question for

precise and concise responses, ensuring complete accuracy and clarity in our answers.

ruin_names Prepare to have a side-splittingly funny time as we uncover the most clever and hilarious alternatives for these artist or
movie names, challenging your wit to guess the correct one with a burst of creativity, humor, and imaginative twists!

salient_translation
_error_detection

Let’s meticulously analyze the provided translations, accurately identifying any errors or discrepancies, and conduct a
comprehensive evaluation to ensure the highest level of translation quality and fidelity. By considering contextual
nuances, cultural references, linguistic conventions, potential factual errors, and any dropped content, our ultimate

aim is to achieve precise and thorough assessments for optimal translation accuracy and adherence to the source text.

snarks Let’s expertly determine the sarcastic statement among the given options and confidently provide the definitive
answer without any room for doubt or confusion, ensuring absolute precision, clarity, and unwavering expertise in our

response, while carefully analyzing the context, tone, and intention behind each statement to achieve unrivaled
accuracy and unwavering confidence.

sports_understanding Let’s find the accurate information.

temporal_sequences The flawless approach

tracking_shuffled_objects
_seven_objects

By meticulously analyzing the given scenarios and accurately determining the final outcomes through a series of
trades, swaps, and exchanges among the individuals involved, let’s ascertain the conclusive results.

web_of_lies Let’s scrutinize each statement provided to accurately determine the truth-teller and uncover the veracity behind their
words with unwavering analysis.

word_sorting Employing efficient and precise measures, sort the given list of words in alphabetical order to provide an optimal
solution for any sorting problem, ensuring maximum performance and effectiveness.

36

Published as a conference paper at ICLR 2024

0 50 100 150 200
steps

50.0

60.0

70.0

ac
cu

ra
cy

100 buckets (default)
20 buckets
no scores

(a) instruction scores (GSM8K)

0 50 100 150 200
steps

0.0

50.0

100.0

ac
cu

ra
cy

100 buckets (default)
20 buckets
no scores

(b) instruction scores (BBH sports_understanding)

0 50 100 150 200
steps

50.0

60.0

70.0

ac
cu

ra
cy

3 exemplars (default)
10 exemplars
no exemplars

(c) # exemplars (GSM8K)

0 50 100 150 200
steps

0.0

50.0

100.0

ac
cu

ra
cy

3 exemplars (default)
10 exemplars
no exemplars

(d) # exemplars (BBH sports_understanding)

Figure 22: Ablation studies: how each part of the meta-prompt matters (continued). The dots
are the average values across 3 optimization repetitions, and the shaded regions represent standard
deviations.

K MORE ABLATION STUDIES

Meta-prompt design: the effect of instruction scores. In terms of how to present the accuracy
scores, we compare three options: (1) rounding the accuracies to integers, which is equivalent to
bucketizing the accuracy scores to 100 buckets (our default setting); (2) bucketizing the accuracies
to 20 buckets; (3) not showing the accuracies, only showing the instructions in the ascending
order. Figures 22(a) and 22(b) show that the accuracy scores assists the optimizer LLM in better
understanding the quality difference among previous instructions, and thus the optimizer LLM
proposes better new instructions that are similar to the best ones in the input optimization trajectory.

Meta-prompt design: the number of exemplars. We compare three options: (1) showing 3
exemplars from the task (default); (2) showing 10 exemplars from the task; (3) no exemplars.
Figures 22(c) and 22(d) show that presenting exemplars in the meta-prompt is critical, as it provides
information on what the task looks like and helps the optimizer model phrase new instructions better.
However, more exemplars do not necessarily improve the performance, as a few exemplars are
usually sufficient to describe the task. In addition, including more exemplars results in a longer
meta-prompt with a dominating exemplar part, which may distract the optimizer LLM from other
important components like the optimization trajectory.

37

Published as a conference paper at ICLR 2024

0 50 100 150 200
steps

50.0

60.0

70.0

ac
cu

ra
cy

from "" (default)
from "Solve the following problem."
from "", "Solve the following problem.",
and "Let's solve the problem."

(a) GSM8K, text-bison scorer, Q_begin

0 50 100 150 200
steps

40.0

60.0

80.0

ac
cu

ra
cy

from "Let's solve the problem" (default)
from ""
from "Let's think step by step."

(b) GSM8K, PaLM 2-L scorer, A_begin

Figure 23: Ablation studies: the initial instructions for prompt optimization. The dots are the
average values across 3 optimization repetitions, and the shaded regions represent standard deviations.

Starting point. We study the effect of different initial instructions for prompt optimization.
Our default setting is to start from an empty string when the scorer LLM is (instruction-tuned)
text-bison, and to start from either the empty string (on BBH tasks) or “Let’s solve the problem.”
(on GSM8K) with instruction position A_begin when the scorer LLM is the (pre-trained) PaLM 2-L.
Figure 23(a) shows the performance of text-bison as the scorer LLM with 3 options of initial
instructions: (1) the empty string; (2) “Solve the following problem.”; or (3) “Solve the following
problem.” and “Let’s solve the problem.”. We observe that the accuracies do not differ much with
different starting points. Interestingly, the styles of the generated instructions are also similar. For
example, most of the generated instructions starting from (1) and (2) contain the phrase “solve this
problem”, like “Let’s work together to solve this problem.” in Step 4 with training accuracy 64.8 from
(1), and “Let’s solve the following problems using the given information.” in Step 3 with training
accuracy 62.8 from (2).

Figure 23(b) presents the results of of PaLM 2-L as the scorer LLM with the following options
of initial instructions: (1) “Let’s solve the problem.”; (2) the empty string; or (3) “Let’s think step
by step.”. We notice that the performance differs much more with different initial instructions,
especially at the beginning of the optimization. Specifically, starting from (1) leads to better generated
instructions than (2) in the first 30 steps, while the instructions optimized from both (1) and (2)
are worse than (3) throughout. A similar observation holds when using PaLM 2-L as scorer and
gpt-3.5-turbo as optimizer for BBH tasks, by comparing the results starting from the empty
string (Appendix J.2) and from “Let’s solve the problem.” (Appendix J.3). Taking a closer look into
the optimization process of (2), we find that although both “solve the problem” and “step by step”
show up in generated instructions at Step 5, it takes the optimizer LLM more steps to get rid of worse
instructions presented in the meta-prompt when starting from instructions with lower accuracies.
Therefore, one direction for future work is to accelerate convergence from weaker starting points.

Diversity per step – optimizer temperature. We evaluate the following temperatures of the
optimizer LLM: {0.0, 0.5, 1.0 (default), 1.5, 2.0}. Figure 24 shows the default temperature 1.0
achieves the best performance. Specifically, optimizations with smaller temperatures (0.0 and 0.5)
lack exploration and thus creativity, and the optimizer LLM often gets stuck at the same instruction
for tens of steps, resulting in flat optimization curves. On the other hand, with larger temperatures
(1.5 and 2.0), the optimizer LLM more often ignores the trajectory of previous instructions presented
in the meta-prompt and thus lacks exploitation, therefore the optimization curve does not have a
steady upward trend.

Comparison with one-step instruction generation. Our current iterative procedure runs for multi-
ple steps and generates a new batch of solutions in each step. To validate the importance of leveraging
the optimization trajectory for generating new prompts, we compare to a baseline that generates all
instructions in a single step without entering into the optimization procedure. We compare these

38

Published as a conference paper at ICLR 2024

0 50 100 150 200
steps

50.0

60.0

70.0

ac
cu

ra
cy

0.0
0.5
1.0 (default)

1.5
2.0

(a) GSM8K

0 50 100 150 200
steps

0.0

50.0

100.0

ac
cu

ra
cy

0.0
0.5
1.0 (default)

1.5
2.0

(b) BBH sports_understanding

Figure 24: Ablation studies: temperature of the optimizer model. The dots are the average values
across 3 optimization repetitions, and the shaded regions represent standard deviations.

two approaches on GSM8K and BBH sports_understanding with the PaLM 2-L-IT optimizer.
For GSM8K the scorer LLM is pre-trained PaLM 2-L and the initial instruction is “Let’s solve
the problem”, and for BBH sports_understanding the scorer LLM is text-bison and the initial
instruction is the empty string. The baseline generates 50 instructions in a single step, thus its
meta-prompt only includes task exemplars, the initial instruction with its accuracy, and the same
meta-instructions as our full meta-prompt for performing optimization. All the other hyperparameters
remain the same.

Our results show that this one-step instruction generation performs much worse than our optimization
approach. Specifically: (1) On GSM8K, the best instruction among all 50 is still “Let’s solve the
problem”, with a 64.4 training accuracy and a 60.8 test accuracy. On the other hand, our approach
(corresponding to Figure 1(a) in the main paper) found “Let’s do the math!” with a 78.2 training
accuracy and a 76.3 test accuracy at the 5th step by generating 8 instructions at each step. (2)
Similarly, on BBH sports_understanding, the best instruction among all 50 achieved a 84.0 training
accuracy and 80.0 test accuracy. This is again worse than the instruction found by our approach at
Step 4, which achieved a 88.0 training accuracy and a 84.5 test accuracy.

Meta-prompt design: the number of past solutions. Our default setting is to show a maximum of
20 previous best solutions (i.e., previous best instructions in prompt optimization) in meta-prompt.
Based on results like in Figure 25, we found a medium number achieves the best performance in
optimization stability and achieved accuracy:

• Showing too few past solutions makes the optimization curve more bumpy because the newly
generated solutions will only resemble the top solution in history. And hypothetically, the
performance landscape around this solution might be more bumpy than an ensemble of the
landscapes around multiple best solutions.

• Showing too many past solutions degrades the performance of the found instructions, both
because the meta-prompt sees too many mediocre solutions and sometimes resemble some of
them, and because sometimes the meta-prompt exceeds the context length limit.

L OVERFITTING ANALYSIS IN PROMPT OPTIMIZATION

For simplicity, we do not set aside a validation set in our default setting of prompt optimization. We
made this decision based on the experiments when a validation set is present.

Overfitting may result in training accuracy being much higher than the validation/test accuracy. It
is difficult to avoid overfitting, but overfitting is less harmful when each candidate solution (natural
language instruction in the prompt optimization context) overfits to a similar extent. In this case, a
higher training accuracy solution still achieves a higher validation/test accuracy, and one can adopt

39

Published as a conference paper at ICLR 2024

0 100 200
steps

60

90

ac
cu

ra
cy

20 (default)
1
100

Figure 25: Ablation studies on BBH sports_understanding: the number of past solutions to
show in meta-prompt. The dots are the average values across 3 optimization repetitions, and the
shaded regions represent standard deviations.

0 50 100 150 200
steps

50

70

90

ac
cu

ra
cy

training
validation

(a) BBH snarks, PaLM 2-L as scorer, PaLM
2-L-IT as optimizer, starting from “Let’s solve
the problem.”

0 50 100
steps

40

60

80

ac
cu

ra
cy

training
validation

(b) BBH sports_understanding, text-bison
as scorer, gpt-3.5-turbo as optimizer, start-
ing from the empty string

Figure 26: Overfitting analysis. The exemplars are splitted to 1/3 training, 1/3 validation and 1/3
test. We compute the validation accuracy every 3 steps. The training/validation dots are the average
training/validation accuracies across 3 optimization repetitions, respectively, and the shaded regions
represent standard deviations.

solutions with the highest training accuracies as the final result. Figure 26 shows this is the case for
OPRO in prompt optimization: when setting aside a validation set with the same size as the training
set, the validation accuracy curves trend up and down alongside the training curves in both prompt
optimization settings.

Of course, overfitting still occurs in the instructions found by our prompt optimization: in Table 6
and 9, our training accuracies are often 5%-20% higher than our test accuracies, despite that our test
and overall accuracies are still mostly higher than human-written counterparts. Setting aside a larger
training set and optimizing for fewer steps (early stopping) may help reduce overfitting.

M COMPARISON WITH EVOPROMPT

Some concurrent works on prompt optimization propose meta-prompts that explicitly ask the LLM to
perform mutation and crossovers of existing prompts (Fernando et al., 2023; Guo et al., 2023). In our
evaluation, we compare our approach to the Genetic Algorithm (GA) and Differential Evolution (DE)
versions of EvoPrompt (Guo et al., 2023). Specifically, in the GA meta-prompt, given two prompts,
the meta-prompt instructs the LLM to cross over the two prompts and generates a new one, then
mutates the newly generated prompt to produce the final prompt. DE extends the GA meta-prompt
to include more detailed instructions, e.g., asking the LLM to identify different parts between the

40

Published as a conference paper at ICLR 2024

0 50 100 150
steps

20

50

80

ac
cu

ra
cy

OPRO
EvoPrompt (GA)
EvoPrompt (DE)

(a) GSM8K, PaLM 2-L scorer, A_begin

0 50 100 150 200
steps

50

90

ac
cu

ra
cy

OPRO
EvoPrompt (GA)
EvoPrompt (DE)

(b) BBH sports_understanding, text-bison
scorer, Q_begin

Figure 27: Comparison with EvoPrompt in prompt optimization. We use the gpt-3.5-turbo
optimizer for both experiments. “EvoPrompt (GA)” uses the meta-prompt from Guo et al. (2023),
Figure 1; “EvoPrompt (DE)” uses the meta-prompt from Guo et al. (2023), Figure 2. All optimizations
in (a) use the pre-trained PaLM 2-L scorer and start from two simple instructions “Let’s solve the
problem.” and “Here is the answer.”; all optimizations in (b) use the text-bison scorer and start
from two richer (task-specific) instructions “Solve the sports understanding problem.” and “Give
me the answer to sports understanding.”. The dots are the average values across 3 optimization
repetitions, and the shaded regions represent standard deviations. We use temperature 1.0 for OPRO
and temperature 0.5 for EvoPrompt, same as the default settings in respective works.

two given prompts before performing the mutation. This is in contrast with OPRO, which leverages
the optimization trajectory including multiple past prompts, instead of only 2 previous prompts.
Meanwhile, OPRO also provides the LLM with richer information to facilitate the understanding of
the optimization problem, including exemplars and task accuracies of different prompts.

Figure 27 presents the results on GSM8K and BBH sports_understanding benchmarks, where we use
gpt-3.5-turbo as the optimizer. On GSM8K, the initial instructions of all approaches are “Let’s
solve the problem.” and “Here is the answer.”, which are simple and generic. Again, we observe that
OPRO performance steadily improves with more optimization steps. On the other hand, both versions
of EvoPrompt even degrade the performance on GSM8K. The main reason is because EvoPrompt
does not utilize exemplars for prompt optimization, thus it lacks the understanding of the task to
optimize for. In this way, EvoPrompt relies on good-quality and task-specific initial prompts to
optimize from.

Given this observation, we provide more task-specific initial instructions for experiments on BBH
sports_understanding, which are “Solve the sports understanding problem.” and “Give me the answer
to sports understanding.” In this case, EvoPrompt (DE) is able to find better prompts than the
initial ones, but the optimization curve is less stable than OPRO. This indicates that leveraging the
optimization trajectory helps the LLM to identify promising directions to improve existing prompts.

41

	Introduction
	OPRO: LLM as the Optimizer
	Desirables of Optimization by LLMs
	Meta-prompt Design
	Solution Generation

	Motivating Example: Mathematical Optimization
	Application: Prompt Optimization
	Prompt Optimization Experiments
	Evaluation Setup
	Main Results
	GSM8K
	BBH
	Transferability of found instructions

	Ablation Studies

	Related Work
	Conclusion
	Related Work on Prompting with Natural Language Feedback
	Experiment Setups of Motivating Examples on Mathematical Optimization
	Linear Regression
	Traveling Salesman Problem (TSP)

	Some Failure Cases
	Prompting Formats for Scorer LLM
	Meta-Prompts
	Meta-Prompt for Math Optimization
	Meta-Prompt for Prompt Optimization

	Prompt Optimization on GSM8K: More Results
	Prompt Optimization: Instructions found in Intermediate Steps
	GSM8K, A_begin Instructions, Pre-trained PaLM 2-L as Scorer, PaLM 2-L-IT as Optimizer, Starting from ''Let’s solve the problem''
	GSM8K, Q_begin Instructions, text-bison as Scorer, PaLM 2-L-IT as Optimizer, Starting from Empty String

	Semantically similar instructions may achieve drastically different accuracies
	Prompt Optimization Curves on 23 BBH Tasks
	Prompt Optimization on BBH Tasks – Tabulated Accuracies and Found Instructions
	PaLM 2-L-IT as optimizer, optimization starting from the empty string
	gpt-3.5-turbo as optimizer, optimization starting from the empty string
	PaLM 2-L as scorer, gpt-3.5-turbo as optimizer, optimization starting from ``Let's solve the problem.''

	More Ablation Studies
	Overfitting Analysis in Prompt Optimization
	Comparison with EvoPrompt

