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Abstract

The Incremental Named Entity Recognition
(INER) task aims to update a model to ex-
tract entities from an expanding set of entity
type candidates due to concerns related to data
privacy and scarcity. However, conventional
sequence labeling approaches to INER often
suffer from the catastrophic forgetting prob-
lem, which leads to the degradation of the
model’s performance on previously encoun-
tered entity types. In this paper, we formalize
INER as a unified seq2seq generation task and
propose a parameter-efficient dynamic prefix
method. By employing the Dynamic Prefix
as a task Instructor (DPI) to guide the gener-
ative model, our approach can preserve task-
invariant knowledge while adapting to new en-
tities with minimal parameter updates, making
it particularly effective in low-resource scenar-
ios. Additionally, we introduce a generative
label augmentation strategy with dual optimiza-
tion objectives including a self-entropy loss
and a task-aware similarity loss to enable op-
timal balance between stability and plasticity.
Through extensive empirical evaluation on stan-
dard NER benchmarks, we demonstrate that
our approach significantly outperforms existing
methods, achieving up to 13.6% improvement
in low-resource scenarios while maintaining
strong performance on previously learned en-

tity types.
1 Introduction

Named Entity Recognition (NER) is a fundamen-
tal problem in information extraction. Traditional
NER systems typically require extensive annotated
training data encompassing all predefined entity
types. However, as new entity types emerge, re-
training the entire model becomes impractical. Fur-
thermore, obtaining sufficient supervised training
data is challenging due to concerns related to data
privacy and scarcity (Ma et al., 2020). Conse-
quently, continual learning (or incremental learn-
ing) for NER has been proposed (Monaikul et al.,
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Figure 1: Challenges in INER. At the current incremen-
tal step ¢, the data is only annotated with the current
entity type [MISC], while previous entity types [LOC]
and [PER] are annotated with [O]. [TIME] is a future
entity type. “Current Pred” indicates that the model
forgets previous entity type [LOC] after step ¢.

2021) as a solution to train the model incremen-
tally on new datasets labeled exclusively with new
entity types, addressing the issues associated with
retraining and data availability.

While incremental learning aims to mirror hu-
man capability in continuously acquiring knowl-
edge (Ke and Liu, 2022), it faces the challenge
of catastrophic forgetting (McCloskey and Co-
hen, 1989), where models lose previously acquired
knowledge while learning new tasks. This is par-
ticularly problematic in NER, where information
about previous and future entity types is absent dur-
ing current learning steps. Ma et al. (2023) identify
that most INER errors arise from confusion be-
tween pre-defined entities and non-entities (“O”).
As shown in Figure 1, the model that successfully
learned to recognize “PER” (person) and “LOC”
(location) in one step would be trained to anno-
tate “PER” or “LOC” as “O” in the current and
subsequent steps. At step ¢, only the entity type
“MISC” (miscellaneous) is labeled, which leads to
the wrong prediction of the entity “Croatia”. This
indicates that the model has forgotten the entity
information of “LOC” learned in previous tasks.

Training directly on new data will exacerbate
the background shift (Zhang et al., 2023) problem,
where old and future entity types are mislabeled as



the non-entity type. This results in a significant per-
formance drop on historical entities. We validate
the problem through experiments comparing three
training paradigms (Figure 2). Multi-task learning
(upperbound, green line) preserves all annotations,
naive fine-tuning (blue line) shows catastrophic
forgetting with F1 score plunging, while contin-
ual learning methods (orange line) maintain stable
performance close to the upperbound.

Existing methods (Monaikul et al., 2021; Zheng
et al., 2022; Zhang et al., 2023) treat INER as a se-
quence labeling classification task, which may en-
counter limitations, particularly in the era of Large
Language Models (LLMs). Following traditional
NER approaches, these methods use a text encoder
to extract context representations, followed by a
classification layer to assign entity types to individ-
ual tokens. This paradigm presents three critical
challenges: 1. Structural Inflexibility: Adding new
entity types requires expanding the classification
layer and retraining the entire model, even when
attempting to preserve existing weights. This ar-
chitectural modification inevitably interferes with
previously learned knowledge. 2. Parameter In-
efficiency: The need to update both the encoder
and classification layer parameters leads to sig-
nificant computational overhead and increases the
risk of catastrophic forgetting. 3. Limited Entity
Modeling: The token-level classification paradigm
struggles with complex scenarios such as nested
or overlapping entities, often requiring specialized
architectural modifications (Yan et al., 2021).

Motivated by these challenges, in this paper,
we formalize INER as a seq2seq generation task,
which aligns well with the generative nature of
NER and facilitates prompt tuning more intu-
itively. Our proposed method employs a parameter-
efficient dynamic prefix strategy tailored for incre-
mental learning in INER. By dynamically assign-
ing separate and task-specific prefixes as instruc-
tors during the incremental process, our model in-
spires the model to acquire new knowledge while
retaining old prefixes to maintain stability. This
structure inherently enables knowledge separation,
where each prefix functions as a modular “expert”
encoding specific entity-type patterns. During in-
cremental learning, new prefixes are dynamically
appended as lightweight instructors, while old pre-
fixes remain intact, enabling parallel knowledge
acquisition and retention. This approach is partic-
ularly effective for INER for two reasons: 1. Nat-
ural Entity Handling: The generative framework

naturally supports complex scenarios such as over-
lapping entities by decoding entity spans autore-
gressively, overcoming the structural limitations of
sequence labeling. 2. Efficient Knowledge Sepa-
ration: The decoupled prefix architecture avoids
overwriting shared parameters or expanding classi-
fication layers, ensuring smooth adaptation to new
entity types.

Specifically, we integrate manually constructed
task instructions and entity type options in the in-
put sentence (as shown in Figure 3). Then, we
introduce dynamic prefix as an instructor to guide
the frozen Pre-trained Language Model (PLM) in
learning new entity types. At each incremental
step, we expand the prefix set while keeping new
prefixes as the only trainable parameters (approxi-
mately 0.1% of the base model). All prefixes are
pluggable and require no modifications to the base
model. This results in significantly fewer parame-
ters to fine-tune compared to prior INER methods.
During inference, all prefixes collaborate to gener-
ate a sequence of entity types from current options
and their corresponding entities. We further en-
hance the framework with a generation-based label
augmentation strategy with a self-entropy loss and
a task-aware similarity loss to achieve a more re-
fined equilibrium between stability and plasticity.

Our main contributions are:

* We propose a dynamic prefix method to re-
tain task-invariant capabilities and preserve
task-specific knowledge in INER, requiring
updates to only 0.1% of model parameters.

* We propose a generation-based label augmen-
tation strategy with a self-entropy loss and a
task-aware similarity loss, achieving an equi-
librium between stability and plasticity.

* Comprehensive empirical validation shows
significant improvements over existing meth-
ods, particularly in low-resource scenarios,
while using orders of magnitude fewer param-
eters than traditional sequence labeling INER
approaches.

2 Related Work

2.1 Class-Incremental Learning

Prior approaches to class-incremental learning can
be divided into three categories: (1) Architecture-
based methods dynamically adjust the model archi-
tecture to learn new knowledge while mitigating
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Figure 2: An illustration of catastrophic forgetting. We
conduct the comparison with three different settings on
the CoNLLO3 (Sang and De Meulder, 2003) dataset.

the forgetting of previously learned tasks (Chen
et al., 2016; Rusu et al., 2016; Mallya et al., 2018).
(2) Regularization-based methods constrain the
updates of parameters that are important to the
learned tasks to retain previous knowledge (Li and
Hoiem, 2017; Kirkpatrick et al., 2016; Aljundi
et al., 2018). (3) Rehearsal-based methods keep
exemplars from previous tasks in memory. (Lopez-
Paz and Ranzato, 2017; Chaudhry et al., 2019;
de Masson d’ Autume et al., 2019).

2.2 Prompt Tuning in Continual Learning

As a lightweight alternative to fine-tuning, prompt-
based methods often learn a prompt pool or a se-
ries of soft prompts to instruct the model while
keeping the base model frozen (Wang et al.,
2022b;Razdaibiedina et al., 2023;Wang et al.,
2022a). These prompts serve as both task-invariant
and task-specific instructions. When learning new
tasks, the prompt pool is updated, or new prompts
are introduced, ensuring the preservation of knowl-
edge from previous tasks. Some works have al-
ready demonstrated that prompts can alleviate the
problem of catastrophic forgetting to a certain ex-
tent (Smith et al., 2023). For instance, Razdaibied-
ina et al. (2023) propose Progressive Prompts and
demonstrate their efficacy across 15 text classifica-
tion tasks.

2.3 Incremental Named Entity Recognition

Monaikul et al. (2021) introduce the incremental
learning paradigm into NER (i.e., INER) and pro-
pose AddNER and ExtendNER to alleviate catas-
trophic forgetting. L&R (Xia et al., 2022) adopts a
replay-based approach to synthesize samples of old

entity types. CFNER (Zheng et al., 2022) and RDP
(Zhang et al., 2023) focus on extracting information
from non-entity type and task relationships. Ma
et al. (2023) proposes an entity-aware contrastive
learning method that adaptively detects entity clus-
ters in the “O” class. In line with CFNER and RDP,
our method is rehearsal-free and does not keep any
exemplars from previous tasks.

2.4 Generation based Named Entity
Recognition

A seq2seq architecture is introduced with a pointer
mechanism in Yan et al. (2021) to generate en-
tity index sequences. Lu et al. (2022) introduce a
universal information extraction model based on
a unified generation structure. Chen et al. (2023)
propose a collaborative prefix method based on
the generative paradigm for knowledge transfer.
However, in INER, it is essential to consider the
performance not only in the target domain but also
across all tasks. As a consequence, these methods
show limited performance when directly applied to
INER since they are not designed for incremental
scenarios.

3 Methodology

In this section, we introduce our dynamic prefix
method designed to facilitate INER by seq2seq
generation framework. We start with providing a
formalized definition of INER in Section 3.1, fol-
lowed by the working mechanism of prefix tuning
for NER in Section 3.2. In Section 3.3 we propose
a dynamic prefix method as a task-invariant and
task-specific instructor based on seq2seq genera-
tion framework. Finally, Section 3.4 outlines the
strategy employed to achieve a balance between
stability and plasticity of INER.

3.1 Problem Definition

Following previous works (Monaikul et al.,
2021;Xia et al., 2022;Zheng et al., 2022;Zhang
et al., 2023;Ma et al., 2023), we focus on class-
incremental learning on NER (INER). Formally,
INER contains N incremental steps, each associ-
ated with its corresponding task {71, 72,...,Tn }.
Every task has its own dataset {D;, Ds,...,Dn}.
Specifically, the task at the ¢-th step can be de-
scribed as T; = (D", Dfev Diest cpew cold),
where C;*“" is the label set (i.e., new entity types)
of the current task (e.g., {“PER”, “ORG”}) and

t—1
C'd = |J Crev represents the label set contain-
=1

1=



Instruction: Please extract entities and
their types from the input sentence
according to the entity type options.

Entity type options: [Ent] location [Ent]
misc [Ent] organisation [Ent] person

Input sentence: Attacking midfielder
Adrian Ilie, who recently moved from
Steaua to Turkish club Galatasaray, is
ruled out after two yellow-card offences.

Prefixes

I

6 person: Adrian Ilie
Seq2Seq organisation: Steaua
Model misc: Turkish
L organisation: Galatasaray

Figure 3: An illustration of the unified seq2seq approach for NER.

ing all seen entity types in old tasks. Each task
has its unique training set Df" = {X},Y/}"_,,

where X} = {z}'. > ,w{’l} (with [ as the se-
quence length) and Y7 = {y/*, ... 47"}, 47"
Ci“(k = 1,...,1) are annotated with only the

new entity types or “O”. At step ¢, with the model
M, trained at step ¢ — 1, we update M;_;
at 7; in order to train a model M; which is ex-
pected to perform well on all seen entity types
szll — Ctnew U Cfld.

3.2 Prefix Tuning for Seq2Seq Generation in
Named Entity Recognition

Prompt-based learning has been widely applied
in NLP tasks, especially with the rise of LLMs.
By providing manually designed hard prompts or
attaching a set of soft prompts, they can serve
as instructions for Pre-Trained Language Models
(PLMs) in downstream tasks.

Specifically, given the input (X7,Y7) € D,
a sequence of soft prompts can be prepended to
each layer of the transformer to obtain the input
as: ZJ = [PREFIX; X/; PREFIX'; Y7] (Li and
Liang, 2021). The activations of the prefix are
always in the left context and will therefore affect
subsequent activations to the right.

Based on prompt-based learning, we tackle the
NER problem in a seq2seq paradigm, which of-
fers an intuitive framework for integrating prompt-
based techniques. Figure 3 shows the unified
seq2seq procedure. The trainable prefixes serve as
a guide for the seq2seq model, prompting it to ex-
tract all entities and the corresponding entity types
in the input sentence. Formally, given the manually
constructed task instruction (s) specific to NER, at
each step t the model takes the input sentence X;
with the entity type options (0;), and generates a
sequence ¥; which is expected to contain all entity
types and their corresponding entities:

Vi = LMy g(s; 045 Xy), (D

where the language model parameters ¢ are frozen
and the prefix parameters 6 are the only trainable
parameters in our continual steps. Note that we can
obtain the label sequence {j; by post-processing the
original output y;.

3.3 Dynamic Prefix

When it comes to the incremental setting, the ob-
jective of the seq2seq INER is:

N
maxy Y logp(ylr,6.0) ()

t=1 (z,y)€T:

To adapt our method to the incremental set-
ting, we propose a Dynamic Prefix method as il-
lustrated in Figure 4. We dynamically increase
the number of prefixes which are expected to learn
task-specific knowledge. Simultaneously, by con-
catenating newly added prefixes with the existing
ones, we prevent forgetting knowledge pertaining
to previous entity types, while adapting to new enti-
ties with minimal parameter updates and maximal
knowledge acquisition. Specifically, when train-
ing the incremental task 7;, a set of new prefixes
P; c RIL1X4 with length of |L;| parameterized
by 6, are inserted into each layer while keeping
the LM parameters (¢) and all old prefix param-
eters (01,...,60;_1) frozen. The objective of our
dynamic prefix approach at step ¢ becomes:

max > logp(ylz,¢,601,...,0) (3

(zy)€Te

As shown in Figure 4, we concatenate the new
prefixes with the old prefixes along the prefix length
dimension. Then the entire set of prefixes P is split
into P; and P,,, which are concatenated with the
original keys K and values V to compute each head
vector. The computation of the i-th head vector
head; can be written as:
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Figure 4: The overall architecture of our proposed DPI for INER. Here “+” denotes the concatenation operation.

head; = Attn(zW, ", [PV cw), [PY; cw ) (4)

The activation vector h; € R? at time step i is
computed as:

ifte L
otherwise

Pli, ],

hi = {LlE/Lzﬁ](Zi,h@)v )
where P € RIZ1%4 is a partially trainable matrix
with L = [Ly;...;Lg;...; Ly]. Ly denotes the
sequence of prefix indices of new prefixes at incre-
mental step k.

Then we optimize the new prefix parameters 6;
by minimizing the negative log-likelihood over the
training set D}" of task 7;.

[/nll(at)
= - Z logp(yHPt,...,P1,x],¢,91,...

t
(qu>€Dtr

) et) (6)

where the only trainable parameters are 6, related
to new prefixes.

3.4 Equilibrium Between Stability and
Plasticity

In this section, we introduce the strategy employed
to achieve a balance between stability and plasticity
of INER.

Label Augmentation Strategy. The entities
annotated with “O” at the current step may belong

to the previous entity types C¢'¢

N

U €. Obviously, the future entity types
i=t+1
cannot beJ:r seen in the current task. For entities that
belong to C{'?, we employ a generation-based label
augmentation strategy. This strategy leverages the
capabilities of the old model. By leveraging the
old entity type information contained in tokens
annotated with “O”, the stability is enhanced when
learning new entity types. Before training each task,
we utilize the old model M*~! to predict a “pseudo”
entity type for entities annotated with “O”. The
augmented labels are then fused with the current
labels for training the current task. As mentioned
above, the original true label of the current task is
denoted as Y7 = {y'!,... y/'}. To obtain the
augmented label 37" for the k™ token of the j"
input, we employ the strategy as follows:

or the future entity

Yt gk @)
yt 9

Ajvk 1 'ak I
~j,k B yt_17 lf yt — ccow
otherwise

where

Qi_l = argmax My_1(s;04-1; X¢) 8)
0€0¢_—1

After applying the label augmentation strat-

egy, we obtain the final training set D'V =

{Xg ) fftj ;=1 for the current step ¢. The label aug-

mentation strategy is expected to enhance the sta-

bility of our model. Then the Equation (6) can be

formulated as follows:
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Self-entropy Loss. To further extend the
model’s plasticity, we introduce a self-entropy loss
to encourage the model to make more confident
predictions. We minimize the self-entropy loss to
promote the model’s confidence in learning the new
entity types:

ﬁse:_

~|

l
> iFlog* (10)
k=1

Here * denotes the output probability distribution.

Task-aware Similarity Loss. To maintain
distinction across tasks while enabling effective
knowledge transfer, we introduce a dynamic reg-
ularization mechanism for prefix parameter opti-
mization. The key insight is that tasks with sim-
ilar entity types require more careful parameter
separation to prevent interference. We quantify
this through task-level semantic similarity, com-
puted from entity type representations for simplic-
ity. Specifically, we first obtain the representation
c; of the entity type definition ¢; (as shown in Ap-
pendix A.2).

¢; = Encoder(c;) € R? (11)

For a task ¢ containing K entity types, we com-
pute its task-level semantic representation T by
aggregating individual entity type embeddings:

1 K
Tt:K;Ci
1=

Then we minimize the task-aware similarity loss
to adaptively regulate the optimization of new pre-
fix parameters based on semantic overlap with pre-
vious tasks.

12)

t—1
Lsim = ZmaX(O, cos(T, T;))Sim(P;, P;)?
i=1
(13)
In summary, the objective function of our pro-
posed method is:

»Coverall = »Cnll + Al»cse + )\2['sim (14)

4 Experiment

4.1 Experimental Settings

Datasets. We conduct experiments on three
widely used NER dataset: CoNLLO3 (Sang and
De Meulder, 2003), 12B2 (Murphy et al., 2010)
and OntoNotes5 (Hovy et al., 2006) for evaluat-
ing the effectiveness of our method. The dataset
statistics are shown in Table 7 in Appendix A.1.
Following CFNER (Zheng et al., 2022), for each
dataset, a greedy sampling strategy is adopted to
partition the training set into disjoint slices to better
simulate realistic scenarios. Each slice corresponds
to an incremental step. Specifically, F'G entity
types are used to train the initial model, and PG
entity types are used for training in each subsequent
incremental step. For example, under the “FG-8-
PG-2” setting, 8 entity types are annotated in the
first step and 2 entity types are annotated in each
subsequent step. After dividing the original dataset
into slices, we utilize UIE! for data pre-processing.
Finally, the data annotated with “BIO” schema is
converted into the UIE format (Lu et al., 2022) (i.e.,
the “Data Format” module in Figure 4) for seq2seq
generation.

Training. Different from previous works (Zheng
et al., 2022;Zhang et al., 2023) using BERT-
base (Devlin et al., 2018) for INER, we use T5-
base (Raffel et al., 2019) as the backbone model
for INER via seq2seq generation. Instead of fine-
tuning almost all parameters, including the back-
bone model, at each incremental step as in previ-
ous methods, our dynamic prefix tuning method
keeps the parameters of the backbone model frozen.
The pluggable new prefixes are the only trainable
parameters (approximately 0.1% of the backbone
model). The implementation details can be found
in Appendix B.

Baselines. We compare our method (DPI) with
representative INER methods, including Extend-
NER (Monaikul et al., 2021), CFNER (Zheng et al.,
2022), and RDP (Zhang et al., 2023). Additionally,
PODNet (Douillard et al., 2020) and LUCIR (Hou
etal., 2019) are adapted to INER scenario by Zheng
et al. (2022). We re-implement RDP which is the
previous state-of-the-art INER method, while the
results of the other baselines are directly cited from
CEFNER (Zheng et al., 2022).

"https://github.com/universal-ie/UIE
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t=1 =2 =3 t=4

Method Trainable Param. | [LOC] | +[MISC] | +[ORG] | +[PER] Avg.

Directly Fine-tune 86.14 35.83 41.85 41.97 51.45

Fu)l’l Data ~0.1% of 220M 86.14 87.99 87.98 89.97 88.02

PODNet (Douillard et al., 2020) 85.96 11.13 24.16 25.49 36.74
LUCIR (Hou et al., 2019) 85.96 73.85 62.81 73.78 74.15
ExtendNER (Monaikul et al., 2021)  ~100% of 110M 85.96 74.42 69.27 75.78 76.36
CFNER (Zheng et al., 2022) 85.96 80.63 76.10 80.95 80.91
RDP* (Zhang et al., 2023) 84.53 77.31 76.67 79.22 79.43
DPI (Ours) ~0.1% of 220M 86.14 82.10 76.81 81.46 81.63

Table 1: Main results of the proposed method and baselines under the FG-1-PG-1 setting of the CoNLLO03
dataset (Sang and De Meulder, 2003). Micro-F1 score is reported. * represents results from the provided code.
Other baseline results are directly cited from CFNER (Zheng et al., 2022).

Method Trainable Param. t=1 t=2 t=3 t=4 t=5 Avg.

PODNet (Douillard et al., 2020) 89.53 | 28.50 | 22.89 | 21.86 | 18.32 | 36.22
LUCIR (Hou et al., 2019) 90.23 | 72.00 | 63.18 | 60.96 | 56.32 | 68.54
ExtendNER (Monaikul et al., 2021)  ~100% of 110M | 89.39 | 53.84 | 42.25 | 39.31 | 36.47 | 52.25
CFNER (Zheng et al., 2022) 89.39 | 70.29 | 64.10 | 62.01 | 59.58 | 69.07
RDP* (Zhang et al., 2023) 90.94 | 77.86 | 69.16 | 63.95 | 53.36 | 71.05
DPI (Ours) ~0.1% of 220M | 91.43 | 84.98 | 75.92 | 72.51 | 72.08 | 79.38

Table 2: Comparison with baselines under the FG-8-PG-2 setting of the I2B2 dataset (Murphy et al., 2010). Micro-
F1 score is reported. * represents results from the provided code. Other baseline results are directly cited from

CFNER (Zheng et al., 2022).

5 Results and Discussion

5.1 Main Results

We conduct experiments under INER settings and
present the quantitative task-wise performance
compared to the baselines.

As shown in Table 1, the Full Data results,
where all the seen entity types are annotated, are
relatively stable, serving as an upperbound of our
method. Directly Fine-tune represents the naive
method where no incremental techniques are uti-
lized, resulting in a sharp decline in performance.
However, all the incremental learning methods
show varying degrees of forgetting during the in-
cremental process. Compared to the previous
SOTA baselines CFNER (Zheng et al., 2022) and
RDP (Zhang et al., 2023), our method demonstrates
improvements in both average and task-wise results
of CoNLLO03 (Sang and De Meulder, 2003) under
the FG-1-PG-1 INER setting.

To simulate a realistic scenario allowing the
model to acquire sufficient “base knowledge” be-
fore incremental learning, we conduct experiments
where we initially learn half of all entity types.
The results of 12B2 (Murphy et al., 2010) and
Ontonotes (Hovy et al., 2006) under FG-8-PG-2
are summarized in Table 2 and Table 3, demonstrat-
ing an improvement of approximately 7.5% and
0.5% respectively compared to RDP.

To delve deeper into the performance of DPI, we

conduct experiments with a broader range of incre-
mental steps. As depicted in Figure 5, under the FG-
2-PG-2 setting of 12B2, a total of 8 steps are con-
sidered. The performance of CFNER (Zheng et al.,
2022) declines significantly with deeper incremen-
tal steps. However, our method consistently out-
performs the previous SOTA method RDP (Zhang
et al., 2023) throughout the incremental steps. Fig-
ure 5 indicates that our method outperforms signifi-
cantly over the previous methods when encoun-
tering more entity types and incremental steps.
These quantitative results indicate that our pro-
posed method can achieve better performance and
alleviate catastrophic forgetting by fine-tuning sig-
nificantly fewer parameters.
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Figure 5: Task-wise results on the 12B2 (Murphy et al.,
2010) dataset.
5.2 Low-resource Settings

Due to concerns related to data privacy and scarcity
in realistic applications, INER often encounters



Method Trainable Param. t=1 t=2 t=3 t=4 t=5 t=6 Avg.

PODNet (Douillard et al., 2020) 82.52 | 29.44 | 23.42 | 32.19 | 29.36 | 27.33 | 37.38
LUCIR (Hou et al., 2019) 82.67 | 78.80 | 75.43 | 76.14 | 75.03 | 68.94 | 76.17
ExtendNER* (Monaikul et al., 2021)  ~100% of 110M | 82.37 | 79.56 | 75.24 | 76.93 | 76.40 | 73.36 | 77.31
CFNER* (Zheng et al., 2022) 82.37 | 82.10 | 79.16 | 80.51 | 79.30 | 76.63 | 80.01
RDP* (Zhang et al., 2023) 85.01 | 83.68 | 82.08 | 83.26 | 82.43 | 79.1 | 82.59

DPI (Ours) ~0.1% of 220M | 86.13 | 84.21 | 83.45 | 83.07 | 81.49 | 80.28 | 83.11

Table 3: Comparison with baselines under the FG-8-PG-2 setting of the Ontonotes5 dataset (Hovy et al., 2006).
Micro-F1 score is reported. * represents results from the provided code. Other baseline results are directly cited

from CENER (Zheng et al., 2022).

low-resource scenarios. To further investigate the
effectiveness of our method regarding the data
scale, we conduct experiments on various datasets
with low-resource settings. We report the results
on the OntoNotes5 (Hovy et al., 2006) and the
CoNLLO03 (Sang and De Meulder, 2003) dataset in
Table 4 and Table 5, respectively. For each incre-
mental step, we respectively sample 5% and 10%
of the training set while adopting a greedy sam-
pling strategy to partition the training set. We com-
pare our DPI method with the previous SOTA ap-
proach RDP (Zhang et al., 2023). In a low-resource
scenario with only 10% of the data available, our
DPI method improves over RDP by approximately
1.8% and 13.6% on OntoNotes5 and ConLLO03,
respectively. In a more stringent low-resource sce-
nario, our method also outperforms RDP by ap-
proximately 3.7% and 12.2%. In comparison, our
approach maintains the ability to identify entities
effectively, by fine-tuning significantly fewer pa-
rameters at each step, and effectively capturing the
patterns of different entity types in low-resource
scenarios.

Rate ~ Method t=1 t=2 =3 t=4 t=5 t=6  Avg.
DPI (Ours) 79.53 7554 72.02 76.44 7261 70.59 74.46
10% RDP 78.50 7479 7092 7343 70.10 68.25 72.67
DPI (Ours) 7279 7033 6581 66.58 66.09 6549 67.85
5% RDP 68.70 62.01 6228 6532 65.17 61.50 64.16

Table 4: Performance in low-resource conditions on
the OntoNotes5 (Hovy et al., 2006) dataset under the
FG-8-PG-2 INER setting.

Method t=1
DPI (Ours)  60.63
0% RDP 52.81

DPI (Ours)  55.67
% RDP 54.00

t=2
50.85
45.27
51.17
36.27

t=3
55.07
35.03
55.05
39.73

t=4
66.90
45.85
61.92
45.03

Rate Avg.
58.36
44.74
55.95

43.76

Table 5: Performance in low-resource conditions on the
CoNLLO3 (Sang and De Meulder, 2003) dataset under
the FG-8-PG-2 INER setting.

5.3 Ablation Studies

We conduct ablation studies to analyze the factors
influencing the performance of our method. As

shown in Table 6, all ablation factors degrade the
INER performance of DPI. DPI w/o DP represents
our method without the dynamic prefix strategy,
where prefixes with fixed size are trained through-
out the incremental process. The results indicate
that prefixes with fixed size lack the continual abil-
ity, which is exacerbated with more incremental
steps. DPI w/o LAS means no label augmentation
strategy is employed. By employing LAS and intro-
ducing self-entropy loss and task-aware similarity
loss, we further achieve an equilibrium between
stability and plasticity.

CoNLL03 12B2

Method  EG1.pG.1 FG-2-PG-1 FG-2-PG-2 FG-8-PG-2
DPI 81.63 83.10 80.16 79.38
wio DP 76.48 79.33 71.28 72.64
Wio Lo 80.96 81.23 76.02 74.80
wio Lom 8119 82.70 78.82 78.58
wioLAS  59.45 61.40 54.26 57.03

Table 6: Ablation study of our DPI method. The average
Micro-F1 score is reported.

6 Conclusion

In this work, we introduce a dynamic prefix method
and formalize INER as a seq2seq generation task.
By employing the dynamic prefix based on a
seq2seq generation framework, our method re-
tains task-invariant capabilities and preserves task-
specific knowledge in INER. Additionally, we pro-
pose a generation-based label augmentation strat-
egy with a self-entropy loss and a task-aware simi-
larity loss to achieve a refined equilibrium between
stability and plasticity. Empirical experiments on
the INER benchmark demonstrate the effectiveness
of our proposed method. We further evaluate our
method on various datasets with low-resource set-
tings, and the results indicate the robustness and
practicality of our method in more realistic sce-
narios with limited training data. This work also
provides a potential direction that addresses the
INER task more naturally in a generative manner.



7 Limitations

The limitations of this work include: (1) More com-
plex NER problems are not considered in this work,
such as coarse-to-fine INER. Our approach is not
designed to address the problem that a new entity
type might be entailed in an old entity type, for
example, “Doctor” emerging after “Person”. Addi-
tionally, while our seq2seq generation framework
is capable of addressing nested or discontinuous
NER problems, we do not evaluate its performance
on nested or discontinuous NER datasets due to
the absence of suitable split algorithms for the in-
cremental setting. (2) Our proposed label augmen-
tation strategy relies on the old model to predict
“pseudo” entity types, which may lead to error prop-
agation. More refined label augmentation strategies
will be explored in our future work.
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A Dataset

A.1 Dataset Statistics

The dataset statistics are shown in Table 7.
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Dataset  # Entity Type # Sample Entity Type
CoNLLO03 4 21k LOCATION, MISC, ORGANISATION, PERSON
AGE, CITY, COUNTRY, DATE, DOCTOR, HOSPITAL,
12B2 16 141k IDNUM, MEDICALRECORD, ORGANIZATION,PATIENT,
PHONE, PROFESSION, STATE, STREET,USERNAME, ZIP
CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE,
OntoNotes5 18 77k LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT,

PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART

Table 7: Statistics of the NER datasets CoNLLO3 (Sang and De Meulder, 2003), I2B2 (Murphy et al., 2010) and

OntoNotesS (Hovy et al., 2006).

A.2 Entity Type Definition

Entity types and their definitions are illustrated in
Table 8.

B Implementation Details

The model is implemented in the PyTorch frame-
work on top of the T5 Huggingface implementa-
tion. Consistent with RDP, we train the model for
20 epochs if PG=2, and 10 epochs otherwise. The
learning rate, batch size, prompt length, prompt
hidden dim, A\ and \s is set to 7e-5, 32, 10, 1024,
0.1 and 0.2 respectively. All experiments are con-
ducted on a single NVIDIA GeForce RTX 3090
GPU with 24GB of memory.

C Additional Experimental Results

C.1 Visualization of Entity Type Similarity

Figure 6, Figure 7 and Figure 8 show the entity
type similarity on the Ontonotes5 (Hovy et al.,
2006), the 12B2 (Murphy et al., 2010) and the
CoNLLO3 (Sang and De Meulder, 2003) dataset.
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Figure 6: Entity type similarity of the Ontonotes5 (Hovy
et al., 2006) dataset.
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Figure 7: Entity type similarity of the 12B2 (Murphy
et al., 2010) dataset.

C.2 Category-wise Results

To illustrate the performance variation of a sin-
gle category throughout the incremental pro-
cess, we present the results of four categories
(“DATE”, “EVENT”, “GPE”, “LAW?”) at step 1
in Figure 9, under the FG-8-PG-2 setting of the
OntonotesS (Hovy et al., 2006) dataset.

C.3 Low-resource Results

The low-resource result of the I2B2 (Murphy et al.,
2010) dataset is shown in Table 9. On the 12B2
dataset, RDP consistently fails to recognize almost
all entities at every step. A possible reason is that
it fine-tunes nearly all parameters during the incre-
mental process, which hampers its ability to extract
useful information when training data is limited.



Entity type Definition

CARDINAL Numerals that do not fall under another type.

DATE Absolute or relative dates or periods.

EVENT Named hurricanes, battles, wars, sports events, etc.

FAC Facility (Buildings, airports, highways, bridges, etc.).

GPE Geopolitical entities: countries, cities, states.

LANGUAGE Any named language.

LAW Named documents made into laws.

LOC Locations excluding geopolitical entities, mountain ranges, bodies of water.
MONEY Monetary values, including currency units.

NORP Nationalities or religious or political groups.

ORDINAL Ordinal numbers like “first”, “second”.

ORG Organizations (Companies, agencies, institutions, etc.)

PERCENT Percentage values (including “%”).

PERSON Person, including fictional characters.

PRODUCT Commercial products (Vehicles, weapons, foods; excludes services).
QUANTITY Measurements, as of weight or distance.

TIME Sub-day time expressions.

WORK_OF_ART Creative works.

Table 8: Entity type and definition of the Ontonotes5 dataset.
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Figure 8: Entity type similarity of the CoNLLO03 (Sang
and De Meulder, 2003) dataset.

Rate Method

t=1

=2

t=3 t=4 t=5 Avg.

DPI(Ours)

10%  Rrpp

82.85 7140 56.95 4886 4276 60.56

1.21

0.04

032 028 023 042

DPI(Ours) 77.43 6528 49.12 40.65 38.16 54.13

5% RDP

1.21

0.42

031 0.06 0.15 043

Table 9: Performance in low-resource conditions on the
12B2 (Murphy et al., 2010) dataset under the FG-8-PG-2

INER setting.
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Figure 9: Category (Entity type) F1 of the Ontonotes5(Hovy et al., 2006) dataset under the FG-8-PG-2 setting.
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