
A Proofs

Lemma 3.1. LetX⊥Z be aX-measurable random variable such that, for all measurable functions f ,
we have that f is counterfactually invariant if and only if f(X) is X⊥Z -measurable. If Z is discrete3

then such a X⊥Z exists.

Proof. Write {X(z)}z for the potential outcomes. First notice that if f(X) is {X(z)}z-measurable
then f(X) is counterfactually invariant. This is essentially by definition—intervention on Z
doesn’t change the potential outcomes, so it doesn’t change the value of f(X). Conversely,
if f is counterfactually invariant, then f(X) is {X(z)}z-measurable. To see this, notice that
X =

∑
z 1[Z = z]X(z) is determined by Z and {X(z)}z , so f(X) = f̃(Z, {X(z)}z) for

f̃(z, {x(z)}z) = f(
∑′

z 1[z
′ = z]x(z)). Now, if f̃ depends only on {X(z)}z we’re done. So

suppose that there is z, z′ such that f̃(z, {X(z)}z) 6= f̃(z′, {X(z)}z) (almost everywhere). But
then f(X(z)) 6= f(X(z′)), contradicting counterfactual invariance.

Now, define FX⊥
Z

= σ(X) ∧ σ({X(z)}z) as the intersection of sigma algebra of X and the sigma
algebra of the potential outcomes {X(z)}z . Because FX⊥

Z
is the intersection of sigma algebras, it

is itself a sigma algebra. Because every FX⊥
Z

-measurable random variable is {X(z)}z-measurable,
we have that Z is not a cause of any FX⊥

Z
-measurable random variable (i.e., there is no arrow from

Z to X⊥Z ). Because, for f counterfactually invariant, f(X) is both X-measurable and {X(z)}z-
measurable, it is also FX⊥

Z
-measurable. FX⊥

Z
is countably generated, as {X(z)}z and X are both

Borel measurable. Therefore, we can take X⊥Z to be any random variable such that σ(X⊥Z ) =
FX⊥

Z
.

Theorem 3.2. If f is a counterfactually invariant predictor:

1. Under the anti-causal graph, f(X) ⊥⊥ Z | Y .
2. Under the causal-direction graph, if Y and Z are not subject to selection (but possibly

confounded), f(X) ⊥⊥ Z.
3. Under the causal-direction graph, if the association is purely spurious, Y ⊥⊥ X | X⊥Z , Z,

and Y and Z are not confounded (but possibly selected), f(X) ⊥⊥ Z | Y .

Proof. Reading d-separation from the causal graphs, we haveX⊥Z ⊥⊥ Z in the causal-direction graph
when Y and Z are not selected on, and X⊥Z ⊥⊥ Z | Y for the other cases. By assumption, f is a
counterfactually-invariant predictor, which means that f is X⊥Z -measurable.

Theorem 4.2. Let F invar be the set of all counterfactually invariant predictors. Let L be either
square error or cross entropy loss. And, let f∗ := argminf∈F invar EP [L(Y, f(X))] be the counter-
factually invariant risk minimizer. Suppose that the target distributionQ is causally compatible with
the training distribution P . Suppose that any of the following conditions hold:

1. the data obeys the anti-causal graph
2. the data obeys the causal-direction graph, there is no confounding (but possibly selection),

and the association is purely spurious, Y ⊥⊥ X | X⊥Z , Z, or
3. the data obeys the causal-direction graph, there is no selection (but possibly confounding),

the association is purely spurious and the causal effect of X⊥Z on Y is additive, i.e., the
true data generating process is

Y ← g(X⊥Z ) + g̃(U) + ξ where E[ξ | X⊥Z ] = 0, (4.1)

for some functions g, g̃.

Then, the training domain counterfactually invariant risk minimizer is also the target domain coun-
terfactually invariant risk minimizer, f∗ = argminf∈F invar EQ[L(Y, f(X))].

3In fact, it suffices that all potential outcomes {Y (z)}z are jointly measurable with respect to a single
well-behaved sigma algebra; discrete Z is sufficient but not necessary.
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Proof. First, since counterfactual invariance implies X⊥Z -measurable,

argmin
f∈F invar

EP [L(Y, f(X)] = argmin
f

EP [L(Y, f(X
⊥
Z )]. (A.1)

It is well-known that under squared error or cross entropy loss the minimizer is f∗(x⊥Z ) =
EP [Y | x⊥Z ]. By the same argument, the counterfactually invariant risk minimizer in the target
domain is EQ[Y | x⊥Z ]. Thus, our task is to show EP [Y | x⊥Z ] = EQ[Y | x⊥Z ].

We begin with the anti-causal case. We have that P (Y | X⊥Z ) =
P (X⊥Z | Y )P (Y )/

∫
P (X⊥Z | Y )dP (Y ). By assumption, P (Y ) = Q(Y ). So, it suffices to

show that P (X⊥Z | Y ) = Q(X⊥Z | Y ). To that end, from the anti-causal direction graph we have
that X⊥Z ⊥⊥ S,U | Y . Then,

P (X⊥Z | Y ) =

∫
P(X⊥Z | Y,U, S = 1)dP̃ (U) (A.2)

=

∫
P(X⊥Z | Y,U, S̃ = 1)dQ̃(U) (A.3)

= Q(X⊥Z | Y ), (A.4)

where the first and third lines are causal compatibility, and the second line is from X⊥Z ⊥⊥
S, S̃, U | Y .

The causal-direction case with no confounding follows essentially the same argument.

For the causal-direction case without selection,

EP [Y | X⊥Z ] = g(X⊥Z ) + EP [g̃(U) | X⊥Z ] + EP [ξ | X⊥Z ] (A.5)

= g(X⊥Z ) + EP [g̃(U)] + 0. (A.6)

The first line is the assumed additivity. The second line follows because EP [ξ | X⊥Z ] = 0 for all
causally compatible distributions (P(ξ,X⊥Z ) doesn’t change), and U ⊥⊥ X⊥Z . Taking an expectation
over X⊥Z , we have EP [Y ] = EP [g(X

⊥
Z )] + EP [g̃(U)]. By the same token, EQ[Y ] = EQ[g(X

⊥
Z )] +

EQ[g̃(U)]. But, EP [g(X
⊥
Z )] = EQ[g(X

⊥
Z )], since changes to the confounder don’t change the

distribution of X⊥Z (that is, X⊥Z ⊥⊥ U ). And, by assumption, EQ[Y ] = EP [Y ]. Together, these
imply that EP [g̃(U)] = EQ[g̃(U)]. Whence, from (A.6), we have EP [Y | X⊥Z ] = EQ[Y | X⊥Z ], as
required.

Theorem 4.4. The counterfactually invariant risk minimizer is notQ-minimax in general. However,
under the conditions of Theorem 4.2, if the association is purely spurious, XY ∧Z ⊥⊥ Y |X⊥Z , Z, and
P(Z, Y ) satisfies overlap, then the two predictors are the same. By overlap we mean that P(Z, Y )
is a discrete distribution such that for all (z, y), if P(z, y) > 0 then there is some y′ 6= y such that
also P(z, y′) > 0.

Proof. The reason that the predictors are not the same in general is that the counterfactually invariant
predictor will always exclude information in XY ∧Z , even when this information is helpful for pre-
dicting Y in all target settings. For example, consider the case where Y, Z are binary, X = XY ∧Z
and, in the anti-causal direction, XY ∧Z = AND(Y,Z). With cross-entropy loss, the counterfactu-
ally invariant predictor is just the constant E[Y ], but the decision rule that uses f(X) = 1 if X = 1
is always better. In the causal case, consider XY ∧Z = Z and Y = XY ∧Z .

Informally, the second claim follows because—in the absence of XY ∧Z information—any predictor
f that’s better than the counterfactually invariant predictor when Y and Z are positively correlated
will be worse when Y and Z are negatively correlated.

To formalize this, we begin by considering the case where Y is binary and X = X⊥Y . So, in
particular, the counterfactually invariant predictor is just some constant c. Let f be any predictor
that uses the information in X⊥Y . Our goal is to show that EQ[L(f(X

⊥
Y ), Y )] > EQ[L(c, Y )] for

at least one test distribution (so that f is not minimax). To that end, let P be any distribution
where f(X⊥Y ) has lower risk than c (this must exist, or we’re done). Then, define A = {(z, y) :
EP [L(f(X

⊥
Y ), y) | z] < L(c, y)}. In words: A is the collection of z, y points where f did better than
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the constant predictor. Since f is better than the constant predictor overall, we must have P(A) > 0.
Now, define Ac = {(z, 1 − y) : (z, y) ∈ A}. That is, the set constructed by flipping the label for
every instance where f did better. By the overlap assumption, P(Ac) > 0. By construction, f is
worse than c on Ac. Further, S = 1A is a random variable that has the causal structure required
by a selection variable (it’s a child of Y and Z and nothing else). So, the distribution Q defined by
selection on S is causally compatible with P and satisfies EQ[L(f(X

⊥
Y ), Y )] > EQ[L(c, Y )], as

required.

To relax the requirement that X = X⊥Y , just repeat the same argument conditional on each value of
X⊥Z . To relax the condition that Y is binary, swap the flipped label 1− y for any label y′ with worse
risk.

B Experimental Details

B.1 Model

All experiments use BERT as the base predictor. We use bert_en_uncased_L-12_H-768_A-12
from TensorFlow Hub and do not modify any parameters. Following standard practice, predictions
are made using a linear map from the representation layer. We use CrossEntropy loss as the training
objective. We train with vanilla stochastic gradient descent, batch size 1024, and learning rate
1e− 5× 1024. We use patience 10 early stopping on validation risk. Each model was trained using
2 Tensor Processing Units.

For the MMD regularizer, we use the estimator of Gretton et al. [Gre+12] with the Gaussian RBF
kernel. We set kernel bandwidth to 10.0. We compute the MMD on (log f0(x), . . . , log fk(x)),
where fj(x) is the model estimate of P(Y = k | x). (Note: this is log, not logit—the later has an
extra, irrelevant, degree of freedom). We use log-spaced regularization coefficients between 0 and
128.

B.2 Data

We don’t do any pre-processing on the MNLI data.

The Amazon review data is from [NLM19].

B.2.1 Inducing Dependence Between Y and Z in Amazon Product Reviews

To produce the causal data with P(Y = 1 | Z = 1) = P(Y = 0 | Z = 0) = γ

1. Randomly drop reviews with 0 helpful votes V , until both P(V > 0 | Z = 1) > γ and
P(V > 0 | Z = 0) > 1− γ.

2. Find the smallest Tz such that P(V > T1 | Z = 1) < γ and P(V > T0 | Z = 0) < 1− γ.
3. Set Y = 1[V > T0] for each Z = 0 example and Y = 1[V > T1] for each Z = 1 example.
4. Randomly flip Y = 0 to Y = 1 in examples where (Z = 0, V = T0 + 1) or (Z = 1, V =
T1 + 1), until P(Y = 1 | Z = 1) > γ and P(Y = 1 | Z = 0) > 1− γ.

After data splitting, we have 58393 training examples, 16221 test examples, and 6489 validation
examples.

To produce the anti-causal data with P(Y = 1 | Z = 1) = P(Y = 0 | Z = 0) = γ, choose a
random subset with the target association. After data splitting, we have 157616 training examples,
43783 test examples, and 17513 validation examples.

B.2.2 Synthetic Counterfactuals in Product Review Data

We select 105 product reviews from the Amazon “clothing, shoes, and jewelery” dataset, and assign
Y = 1 if the review is 4 or 5 stars, and Y = 0 otherwise. For each review, we use only the first
twenty tokens of text. We then assign Z as a Bernoulli random variable with P(Z = 1) = 1

2 . When
Z = 1, we replace the tokens “and” and “the” with “andxxxxx” and “thexxxxx” respectively; for
Z = 0 we use the suffix “yyyyy” instead. Counterfactuals can then be produced by swapping the
suffixes. To induce a dependency between Y and Z, we randomly resample so as to achieve γ = 0.3
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and P(Y = 1) = 1
2 , using the same procedure that was used on the anti-causal model of “natural”

product reviews. After selection there are 13, 315 training instances and 3, 699 test instances.
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