A Proofs

Lemma 3.1. Let X_Z^{\perp} be a X-measurable random variable such that, for all measurable functions f, we have that f is counterfactually invariant if and only if f(X) is X_Z^{\perp} -measurable. If Z is discrete³ then such a X_Z^{\perp} exists.

Proof. Write $\{X(z)\}_z$ for the potential outcomes. First notice that if f(X) is $\{X(z)\}_z$ -measurable then f(X) is counterfactually invariant. This is essentially by definition—intervention on Z doesn't change the potential outcomes, so it doesn't change the value of f(X). Conversely, if f is counterfactually invariant, then f(X) is $\{X(z)\}_z$ -measurable. To see this, notice that $X = \sum_z \mathbb{1}[Z = z]X(z)$ is determined by Z and $\{X(z)\}_z$, so $f(X) = \tilde{f}(Z, \{X(z)\}_z)$ for $\tilde{f}(z, \{x(z)\}_z) = f(\sum_z' \mathbb{1}[z' = z]x(z))$. Now, if \tilde{f} depends only on $\{X(z)\}_z$ we're done. So suppose that there is z, z' such that $\tilde{f}(z, \{X(z)\}_z) \neq \tilde{f}(z', \{X(z)\}_z)$ (almost everywhere). But then $f(X(z)) \neq f(X(z'))$, contradicting counterfactual invariance.

Now, define $\mathcal{F}_{X_{\overline{Z}}^{\perp}} = \sigma(X) \wedge \sigma(\{X(z)\}_z)$ as the intersection of sigma algebra of X and the sigma algebra of the potential outcomes $\{X(z)\}_z$. Because $\mathcal{F}_{X_{\overline{Z}}^{\perp}}$ is the intersection of sigma algebras, it is itself a sigma algebra. Because every $\mathcal{F}_{X_{\overline{Z}}^{\perp}}$ -measurable random variable is $\{X(z)\}_z$ -measurable, we have that Z is not a cause of any $\mathcal{F}_{X_{\overline{Z}}^{\perp}}$ -measurable random variable (i.e., there is no arrow from Z to $X_{\overline{Z}}^{\perp}$). Because, for f counterfactually invariant, f(X) is both X-measurable and $\{X(z)\}_z$ -measurable, it is also $\mathcal{F}_{X_{\overline{Z}}^{\perp}}$ -measurable. $\mathcal{F}_{X_{\overline{Z}}^{\perp}}$ is countably generated, as $\{X(z)\}_z$ and X are both Borel measurable. Therefore, we can take $X_{\overline{Z}}^{\perp}$ to be any random variable such that $\sigma(X_{\overline{Z}}^{\perp}) = \mathcal{F}_{X_{\overline{Z}}^{\perp}}$.

Theorem 3.2. If f is a counterfactually invariant predictor:

- 1. Under the anti-causal graph, $f(X) \perp Z \mid Y$.
- 2. Under the causal-direction graph, if Y and Z are not subject to selection (but possibly confounded), $f(X) \perp Z$.
- *3.* Under the causal-direction graph, if the association is purely spurious, *Y* ⊥ *X* | *X*[⊥]_{*Z*}, *Z*, and *Y* and *Z* are not confounded (but possibly selected), f(X) ⊥ Z | Y.

Proof. Reading *d*-separation from the causal graphs, we have $X_Z^{\perp} \perp Z$ in the causal-direction graph when *Y* and *Z* are not selected on, and $X_Z^{\perp} \perp Z \mid Y$ for the other cases. By assumption, *f* is a counterfactually-invariant predictor, which means that *f* is X_Z^{\perp} -measurable.

Theorem 4.2. Let \mathcal{F}^{invar} be the set of all counterfactually invariant predictors. Let L be either square error or cross entropy loss. And, let $f^* := \operatorname{argmin}_{f \in \mathcal{F}^{invar}} \mathbb{E}_P[L(Y, f(X))]$ be the counterfactually invariant risk minimizer. Suppose that the target distribution Q is causally compatible with the training distribution P. Suppose that any of the following conditions hold:

- *1. the data obeys the anti-causal graph*
- 2. the data obeys the causal-direction graph, there is no confounding (but possibly selection), and the association is purely spurious, $Y \perp X \mid X_Z^{\perp}, Z$, or
- 3. the data obeys the causal-direction graph, there is no selection (but possibly confounding), the association is purely spurious and the causal effect of X_Z^{\perp} on Y is additive, i.e., the true data generating process is

$$Y \leftarrow g(X_Z^{\perp}) + \tilde{g}(U) + \xi \text{ where } \mathbb{E}[\xi \mid X_Z^{\perp}] = 0, \tag{4.1}$$

for some functions g, \tilde{g} .

Then, the training domain counterfactually invariant risk minimizer is also the target domain counterfactually invariant risk minimizer, $f^* = \operatorname{argmin}_{f \in \mathcal{F}^{\operatorname{invar}}} \mathbb{E}_Q[L(Y, f(X))].$

³In fact, it suffices that all potential outcomes $\{Y(z)\}_z$ are jointly measurable with respect to a single well-behaved sigma algebra; discrete Z is sufficient but not necessary.

Proof. First, since counterfactual invariance implies X_Z^{\perp} -measurable,

$$\underset{f \in \mathcal{F}^{\text{invar}}}{\operatorname{argmin}} \mathbb{E}_{P}[L(Y, f(X)] = \underset{f}{\operatorname{argmin}} \mathbb{E}_{P}[L(Y, f(X_{Z}^{\perp})].$$
(A.1)

It is well-known that under squared error or cross entropy loss the minimizer is $f^*(x_{\overline{Z}}) = \mathbb{E}_P[Y \mid x_{\overline{Z}}^{\perp}]$. By the same argument, the counterfactually invariant risk minimizer in the target domain is $\mathbb{E}_Q[Y \mid x_{\overline{Z}}^{\perp}]$. Thus, our task is to show $\mathbb{E}_P[Y \mid x_{\overline{Z}}^{\perp}] = \mathbb{E}_Q[Y \mid x_{\overline{Z}}^{\perp}]$.

We begin with the anti-causal case. We have that $P(Y \mid X_Z^{\perp}) = P(X_Z^{\perp} \mid Y)P(Y) / \int P(X_Z^{\perp} \mid Y) dP(Y)$. By assumption, P(Y) = Q(Y). So, it suffices to show that $P(X_Z^{\perp} \mid Y) = Q(X_Z^{\perp} \mid Y)$. To that end, from the anti-causal direction graph we have that $X_Z^{\perp} \perp S, U \mid Y$. Then,

$$P(X_Z^{\perp} \mid Y) = \int P(X_Z^{\perp} \mid Y, U, S = 1) d\tilde{P}(U)$$
(A.2)

$$= \int \mathbf{P}(X_Z^{\perp} \mid Y, U, \tilde{S} = 1) \mathrm{d}\tilde{Q}(U)$$
(A.3)

$$=Q(X_Z^{\perp} \mid Y), \tag{A.4}$$

where the first and third lines are causal compatibility, and the second line is from $X_Z^{\perp} \perp S, \tilde{S}, U \mid Y$.

The causal-direction case with no confounding follows essentially the same argument.

For the causal-direction case without selection,

$$\mathbb{E}_P[Y \mid X_Z^{\perp}] = g(X_Z^{\perp}) + \mathbb{E}_P[\tilde{g}(U) \mid X_Z^{\perp}] + \mathbb{E}_P[\xi \mid X_Z^{\perp}]$$
(A.5)

$$= g(X_Z^{\perp}) + \mathbb{E}_P[\tilde{g}(U)] + 0. \tag{A.6}$$

The first line is the assumed additivity. The second line follows because $\mathbb{E}_P[\xi \mid X_{\overline{Z}}^{\perp}] = 0$ for all causally compatible distributions $(P(\xi, X_{\overline{Z}}^{\perp}) \text{ doesn't change})$, and $U \perp X_{\overline{Z}}^{\perp}$. Taking an expectation over $X_{\overline{Z}}^{\perp}$, we have $\mathbb{E}_P[Y] = \mathbb{E}_P[g(X_{\overline{Z}}^{\perp})] + \mathbb{E}_P[\tilde{g}(U)]$. By the same token, $\mathbb{E}_Q[Y] = \mathbb{E}_Q[g(X_{\overline{Z}}^{\perp})] + \mathbb{E}_Q[\tilde{g}(U)]$. But, $\mathbb{E}_P[g(X_{\overline{Z}}^{\perp})] = \mathbb{E}_Q[g(X_{\overline{Z}}^{\perp})]$, since changes to the confounder don't change the distribution of $X_{\overline{Z}}^{\perp}$ (that is, $X_{\overline{Z}}^{\perp} \perp U$). And, by assumption, $\mathbb{E}_Q[Y] = \mathbb{E}_P[Y]$. Together, these imply that $\mathbb{E}_P[\tilde{g}(U)] = \mathbb{E}_Q[\tilde{g}(U)]$. Whence, from (A.6), we have $\mathbb{E}_P[Y \mid X_{\overline{Z}}^{\perp}] = \mathbb{E}_Q[Y \mid X_{\overline{Z}}^{\perp}]$, as required.

Theorem 4.4. The counterfactually invariant risk minimizer is not Q-minimax in general. However, under the conditions of Theorem 4.2, if the association is purely spurious, $X_{Y \wedge Z} \perp Y \mid X_Z^{\perp}, Z$, and P(Z, Y) satisfies overlap, then the two predictors are the same. By overlap we mean that P(Z, Y)is a discrete distribution such that for all (z, y), if P(z, y) > 0 then there is some $y' \neq y$ such that also P(z, y') > 0.

Proof. The reason that the predictors are not the same in general is that the counterfactually invariant predictor will always exclude information in $X_{Y \wedge Z}$, even when this information is helpful for predicting Y in all target settings. For example, consider the case where Y, Z are binary, $X = X_{Y \wedge Z}$ and, in the anti-causal direction, $X_{Y \wedge Z} = \text{AND}(Y, Z)$. With cross-entropy loss, the counterfactually invariant predictor is just the constant $\mathbb{E}[Y]$, but the decision rule that uses f(X) = 1 if X = 1 is always better. In the causal case, consider $X_{Y \wedge Z} = Z$ and $Y = X_{Y \wedge Z}$.

Informally, the second claim follows because—in the absence of $X_{Y \wedge Z}$ information—any predictor f that's better than the counterfactually invariant predictor when Y and Z are positively correlated will be worse when Y and Z are negatively correlated.

To formalize this, we begin by considering the case where Y is binary and $X = X_Y^{\perp}$. So, in particular, the counterfactually invariant predictor is just some constant c. Let f be any predictor that uses the information in X_Y^{\perp} . Our goal is to show that $\mathbb{E}_Q[L(f(X_Y^{\perp}), Y)] > \mathbb{E}_Q[L(c, Y)]$ for at least one test distribution (so that f is not minimax). To that end, let P be any distribution where $f(X_Y^{\perp})$ has lower risk than c (this must exist, or we're done). Then, define $A = \{(z, y) : \mathbb{E}_P[L(f(X_Y^{\perp}), y) \mid z] < L(c, y)\}$. In words: A is the collection of z, y points where f did better than

the constant predictor. Since f is better than the constant predictor overall, we must have P(A) > 0. Now, define $A^c = \{(z, 1 - y) : (z, y) \in A\}$. That is, the set constructed by flipping the label for every instance where f did better. By the overlap assumption, $P(A^c) > 0$. By construction, f is worse than c on A^c . Further, $S = 1_A$ is a random variable that has the causal structure required by a selection variable (it's a child of Y and Z and nothing else). So, the distribution Q defined by selection on S is causally compatible with P and satisfies $\mathbb{E}_Q[L(f(X_Y^{\perp}), Y)] > \mathbb{E}_Q[L(c, Y)]$, as required.

To relax the requirement that $X = X_Y^{\perp}$, just repeat the same argument conditional on each value of X_Z^{\perp} . To relax the condition that Y is binary, swap the flipped label 1 - y for any label y' with worse risk.

B Experimental Details

B.1 Model

All experiments use BERT as the base predictor. We use bert_en_uncased_L-12_H-768_A-12 from TensorFlow Hub and do not modify any parameters. Following standard practice, predictions are made using a linear map from the representation layer. We use CrossEntropy loss as the training objective. We train with vanilla stochastic gradient descent, batch size 1024, and learning rate $1e - 5 \times 1024$. We use patience 10 early stopping on validation risk. Each model was trained using 2 Tensor Processing Units.

For the MMD regularizer, we use the estimator of Gretton et al. [Gre+12] with the Gaussian RBF kernel. We set kernel bandwidth to 10.0. We compute the MMD on $(\log f_0(x), \ldots, \log f_k(x))$, where $f_j(x)$ is the model estimate of $P(Y = k \mid x)$. (Note: this is log, not logit—the later has an extra, irrelevant, degree of freedom). We use log-spaced regularization coefficients between 0 and 128.

B.2 Data

We don't do any pre-processing on the MNLI data.

The Amazon review data is from [NLM19].

B.2.1 Inducing Dependence Between *Y* and *Z* in Amazon Product Reviews

To produce the causal data with $P(Y = 1 | Z = 1) = P(Y = 0 | Z = 0) = \gamma$

- 1. Randomly drop reviews with 0 helpful votes V, until both $P(V > 0 | Z = 1) > \gamma$ and $P(V > 0 | Z = 0) > 1 \gamma$.
- 2. Find the smallest T_z such that $P(V > T_1 | Z = 1) < \gamma$ and $P(V > T_0 | Z = 0) < 1 \gamma$.
- 3. Set $Y = 1[V > T_0]$ for each Z = 0 example and $Y = 1[V > T_1]$ for each Z = 1 example.
- 4. Randomly flip Y = 0 to Y = 1 in examples where $(Z = 0, V = T_0 + 1)$ or $(Z = 1, V = T_1 + 1)$, until $P(Y = 1 | Z = 1) > \gamma$ and $P(Y = 1 | Z = 0) > 1 \gamma$.

After data splitting, we have 58393 training examples, 16221 test examples, and 6489 validation examples.

To produce the anti-causal data with $P(Y = 1 | Z = 1) = P(Y = 0 | Z = 0) = \gamma$, choose a random subset with the target association. After data splitting, we have 157616 training examples, 43783 test examples, and 17513 validation examples.

B.2.2 Synthetic Counterfactuals in Product Review Data

We select 10^5 product reviews from the Amazon "clothing, shoes, and jewelery" dataset, and assign Y = 1 if the review is 4 or 5 stars, and Y = 0 otherwise. For each review, we use only the first twenty tokens of text. We then assign Z as a Bernoulli random variable with $P(Z = 1) = \frac{1}{2}$. When Z = 1, we replace the tokens "and" and "the" with "andxxxxx" and "thexxxx" respectively; for Z = 0 we use the suffix "yyyyy" instead. Counterfactuals can then be produced by swapping the suffixes. To induce a dependency between Y and Z, we randomly resample so as to achieve $\gamma = 0.3$

and $P(Y = 1) = \frac{1}{2}$, using the same procedure that was used on the anti-causal model of "natural" product reviews. After selection there are 13, 315 training instances and 3, 699 test instances.