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B HYPERPARAMTERS

All neural networks were build using the Jax library (Bradbury et al., 2018)). In all experiments,
training was carried out using a distributed A3C setup (Espeholt et al., [2018) with discrete actions.
For 3D Unity Env experiments, we added an additional Pixel Control loss (Jaderberg et al.,[2016) for
all agents. We used a single learner and 256 actors. Important training hyper-parameters are shown in
Table 2] along with the components of the agent’s architecture that are shared between the different
models. The parameter values used for each model presented in the main paper are shown below in
Table[3]

B.1 HYPERPARAMTER SEARCH

We tuned all models using the BabyAl ‘“Place X next to Y” task (Chevalier-Boisvert et al., 2019)
(§C.2). For each architectures, we tuned using a random search. Additionally, we increased the size
of the LSTM so that all architectures had approximately the same number of parameters.

Feature Attending Recurrent Modules. We found that we did not need to tune the model much
beyond a random search over attention projection dims W; € [16, 32] and Conv LSTM kernel size
[3,5].

Attention Augmented agent. We used hyper-parameters from their paper put tuned the following:
LSTM hidden size [256, 512], Attention query MLP size [{}, {256}, {256, 256 }], number of attention
heads [4, 8]. We consulted the authors about our implementation.

Recurrent Independent Mechanisms. We used hyper-parameters from their paper put tuned the
following: LSTM hidden size [100, 128, 256], Observation/communication head size [32, 64, 128],
number of observation/communication heads [4, 5, 6], number of RIMs [4, 6,9, 12]. We consulted the
authors about our implementation and used their source code for replication https://githubl
com/anirudh9119/RIMs. We note that we did not use their “top-k” feature where only & RIMs
are active because that doubled run-time. Since our experiments typically required > 1 billion
frames, using “top-k” led individual runs to take > 2 days.

Long Short-Term Memory. We searched an LSTM hidden size [128, 256, 512]. We consistently
found that a larger memory had better results.
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Table 2: Training hyper-parameters and shared network components used in experiments.

Loss Hyper-parameters 3D Unity Env Gridworlds
V-trace baseline cost 1.0 0.5

V-trace entropy cost 10~4 0.01
V-trace vy 0.95 1.0

V-trace loss scaling 0.1 1.0

Pixel Control loss scaling 0.1 -

Pixel Control loss cell size 4 -

Pixel Control discount factor 0.9 -

Pixel Control de-convolution sizes 6,9,32),(8,11,32) -

Pixel Control kernel shape 3,4 -

Pixel Control de-convolution output shape (18, 42) -
Optimizer clipped Adam clipped Adam
Learning rate 2x 1074 104

Max gradient Norm 40.0 40.0
Optimizer epsilon 5x 1078 10-8
Adam (3 0.0 0.9

Adam [ 0.95 0.999
Shared Network Components

Language encoder GRU GUR
Language encoder hidden sizes 128 128
Language word embedding size 128 128

Image encoder Res-Net Res-Net
Res-Net channels (16, 32, 32) (16, 32, 32)
Res-Net residual blocks 2,2,2) 2,2,2)
Res-Net stride 2 2

Res-Net kernel size 3 3

Res-Net padding SAME SAME
Previous action encoding Identity Identity
Reward encoding Identity Identity
Image-language-reward-action combination ~Concatenation Concatenation
Input Convolutional dims 9, 12, 32) (7,7, 32)
Policy Head MLP shapes [512, 46] [200, 7]
Value Head MLP shapes [512, 1] [200, 1]
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Table 3: Model specific parameters.

. Gridworld Gridworld
Model parameter 3D Unity Env Ballet Keybox
Observation Dims 72 x 96 99 x 99 56 x 56
Composable Perceptual Schemas
Parameters (millions) 5.1 7.1 7.6
Input Convolutional dims 9, 12, 32) (12,12,32) (7,7, 32)
Policy-state size 512 512 1024
Number of modules 4 4 8
Schema dimension 128 128 128
Relation heads 2 2 4
Projection dims W7y, Wy 16 16 16
ConvLSTM kernel size 3 3 3
ConvLSTM hidden size 32 32 32
LSTM
Parameters (millions) 5.6 7.2 7.6
LSTM Hidden size 896 768 1024
Attention Augmented Agent
Parameters (millions) 5.1 6.9 7.5
ConvLSTM kernel size 3 3 3
ConvLSTM output size 128 128 128
LSTM hidden size 704 512 960
Number of attention heads 4 4 4
Attention query MLP size (256, 256) (256, 256) (256, 256)
Positional basis dim 4 4 4
RIMs
Parameters (millions) 5 6.6 7.6
Number of RIMs 12 9 9
Individual RIM size 128 128 128
Observation heads 6 6 6
Communication heads 6 6 6
Observation head size 32 32 32
Communication head size 32 32 32
Basis size (learned) 4 4 4
Dropout 0.2 0.2 0.2
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C ADDITIONAL EXPERIMENTS

C.1 GENERALIZING MEMORY-RETENTION TO NOVEL SPATIAL COMPOSITIONS
OF OBJECT-DYNAMICS

We use a variant of the the task in §4.1] The main difference is that in this setting, the dancers dance
in parallel as opposed to in sequence. This task is no longer a test of memory but only a test of
whether the agent can recognize separate object-motions.
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Figure 7: We present the success rate means and standard errors computed using 5 seeds. We find
that FARM more quickly learns and generalizes. The next best performance comes from using an
LSTM. These results indicate that using spatial attention is an impediment to learning to recognize

object-motions.

We present results in Figure[§] In the parallel dancing setting, we find that only FARM and the LSTM
can learn these tasks efficiently. Both baselines that use spatial attention learn more slowly and with

higher variance.

C.2 GENERALIZING TO AN UNSEEN NUMBER OF DISTRACTORS

We study this with the “Place X next to Y task in the BabyAlI gridworld (Chevalier-Boisvert et al.,
2019) (Figure[I4a). The agent is a red triangle. Other objects can be squares, boxes or circles and
they can take on 7 colors. The agent receives a partial, egocentric observation of the environment
(Figure [T4a] right) and is given a synthetic language instruction. The agent gets a reward of 1 if
chooses the correct dancer, and 0 otherwise. During training the agent sees either O or 2 distractors.
During testing, the agent sees 11 distractors. As the number of distractors increases, the likelihood
a distractor is either (a) confounding with the task objects or (b) blocks/confuses the agent also

increases.
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Figure 8: RIMs, which uses spatial attention, better generalizes to more distractors. We show
train and test success rate performance for “Place X next to Y” in the BabyAl environment (10 runs).
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We present results in Figure On the left two panels, we present training results for {0, 2} distractors.
All architectures can learn this task. On the right-most panel, we present test results for 11 distractors.
FARMand an LSTM get comparable performance (= 70%). RIMs has the best generalization success
rate (= 80%).

C.3 ANALYSIS OF REPRESENTATIONS LEARNED FOR KEYBOX-LIKE
ENVIRONMENT

We found no way to programmatically categorize the agent’s experience with object-configurations.
Thus, we found no way to study the representations learned for subsections in the KeyBox environ-
ment. In order to study this question, we created a toy “Abstract MDP” environment (Figure |14b)).
Importantly, each episode consists of performing a task in 3 X 3 environment. This is similar to
the KeyBox task since its a sequence of 3 x 3 subsections. In this task, there are a fixed number of
abstract MDPs which have their own unique object-placement, which mimics the fixed number of
object-configurations that can be sampled for the KeyBox task. For an example of these differences,
see Figure[I4b). The object-placements of an abstract MDP are identical but the actual objects in the
positions are completely random (i.e. both shape and color are random). We sample 1000 episodes
from 20 abstract MDPs. By training FARM on this environment, we can see how it uses different
modules to represent different categories. In this experiment, FARM had 4 RNNs of dimensionality
20, requiring that they all be used. In order to see how FARMrepresents these MDPS, we study the

time-series of sum of each module LSTM-state: >, hgi). We present results in Figure@ We
find that modules respond to object-configurations, not to object types (e.g. key, ball, or box), nor to

colors (green or blue).

Abstract MDP i -

Sum(state)

Abstract MDP i

Abstract MDPjl=i ¢ @ + ¢ &

Subschema

Starting State Time-Series

Figure 9: Modules respond to object-configuration not to individual object colors or shapes.
On the left, we plot the starting state of the episode. On the right, we plot the sum of each module
LSTM-state.

18



Under review as a conference paper at ICLR 2022

D FULL CORRELATIONS FOR ANALYSIS

In this section, we show full plots for the analysis in §4.3.1} We show

1. Average L2 norm of all module-states (trained and random weights) (Figure [10).

2. Comparison of average pair-wise correlation of module-states for trained and random
weights (Figure [TT)).
3. Average pair-wise correlation between L2 norm of all module-states (Figure [T2).

4. More in-depth plots of activity and attention coefficients (Figure [I3).

—_ module = 0 module = 1 module = 2
N .
_ module = 0 module = 1 module = 2 2
g4 & 215
>
23 =
s . g0
g, . v
s
& E‘O.S
1 o
3
© g
g ' Z 00
z0 — module = 3 module = 4 module = 5
- module = 3 module = 4 module = 5 4
S . >1s .
23 . e
2 N 810
52 s
)
o 205
o 0.0
zo < _ _ s rrzo%
sz 3332 — module = 6 module = 7 85383553
_ module = 6 module = 7 2233353 ] g 2383
S T3z LYy g 8259288
2 2SS oog < . St558¢8%T
> §gts55¢9¢ Z1s =s8ggsgsg
2z ogfesgtt g S5 535
> . :ggsiss E=) H—egg.OOO
3 Z a g So
g2 29032 5§ ® 10 2g58222
© . §5¢v° %35 o g5 2¢2°¢
o g 83 ] 05 H =33
o, B a Id o aoo
g a2 ] E] 283
g, 28 Z00 < R}
Cezzrrra sc=33 33 4 $253533% $5833% S et
t539¢88¢ 559889 Event §22:883 g2:%883 Event
258 €2 S5 = 2 2552288 250288
a;:522%¢% ac-22%¢8% Sc568¢% 555888
8 8geeft 8 gsstE =88E88ds 88888
A s g9 55 5% S§:3553
38385228¢8 Z88z:2:2¢8¢8 28228838 28228838
o235 8cze 223822 oZfooo o2 f o290
2225z¢ £2%s28 §S°65556 §8°555
§ 6% $© § 5% $ © sg g¢¢ g5 2¢8¢
s 5% 3 £s5°% & H B H B
- aa o - a aaa
B 5853 5 $85
28 23 g ss2 g 858
a a a a a a a a
Event Event Event Event

Figure 10: Average L2 norm of module-states. We find that when weights are trained on the task,
some modules are selective for different events. For example, Module 4 is selective for “drop wrong
key” and module 6 is selective for “pickup correct key”. When we use random weights, we see
that all modules have the same activity for all events. This indicates that they have not learned any
task-specific activity.
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Figure 11: When looking at trained weights (left), we find that pairs of modules will have high
correlation on some events and high anti-correlation on other events. For example, modules 7
and 2 correlate for drop wrong object and drop wrong key but anti-correlate pickup wrong object
and pickup correct key. If we look at random weights (right), we see that pairs of modules will
either fully correlate (modules 6 and 2), fully anti-correlate (modules 6 and 1), or have weak/no
correlation (modules 6 and 4) for events. Importantly, we don’t see a significant mixture correlation
and anti-correlation like we see with trained weights. This suggests that the random weights have
less task-specific learning/uses by the agent.
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Figure 13: Panels (a) and (b) both show that different modules have selective activity on different
events. (a) Module 0 exhibits salient activity when the agent moves around an obstacle. (b) Module
6 shows selective activity for representing goal information. (c) Module 6 also shifts its attention
coefficients as the agent picks up the goal key. (d) We generally find that multiple modules activate
for an event. Here, modules 3 and 6 show correlated activity for picking up a ball or non-goal key.
Videos of the state-activity and attention coefficients over test episodes: https://bit.ly/3qCxatr.
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E ENVIRONMENTS

put the red box next to the purple ball

(a) Place X on Y task in BabyAl environment.

Abstract MDP i Abstract MDP i Abstract MDP j I= i

(b) Abstract MDP Environment based on BabyAl.

Level 1

Level 2

(c) KeyBox task.

(d) Ballet task.

Figure 14: Additional Environment Images.
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E.1 BALLET

Please refer toLampinen et al.|(2021) for details on this task. Our only difference was to use tasks
with {2, 4} dancers during training and tasks with 8 dancers for testing.

E.2 KEYBOX

Observation Space. The agent receives a 56 x 56 partially observable, egocentric image of the
environment as in Figure [T4a] right.

Action Space. The action space is composed of the 7 discrete actions turn left, turn right, go forward,
pickup object, drop object, toggle, and done/no-op.

Reward function. When the agent completes level n, it gets a reward of n/npay Where npay is
the maximum level the agent can complete. We set nyax = 10 during training. The agent has 50n
time-steps to complete a level.

Table 4: Object and colors available for objects in the KeyBox task.

Set Contains

Shapes ball, key, box

Colors  red, green, blue, purple, pink, yellow, white

E.3 3D UNITY ENVIRONMENT

For the “place X on Y” experiments in 3D, all pickupable objects were split into two sets O; = AU B
and all object to place something on into another two sets O, = C'U D, as shown in Table[5} Given
the challenging nature of the 3D environment (huge number of possible states, partial observability,
language commands, long credit assignment), we had to employ a set of curriculum tasks in order for
the agents to make any progress on the actual task of interest “Put X on Y. The agent co-trained on
the full set of tasks. This was possible since we used a distributed A3C setup for our training (Espeholt
et al.| 2018)), where each of the actors generating the experience was running on one of the possible
training levels. The different training tasks used during training and evaluation are shown in Table [6]

All episodes lasted for a maximum of 120 seconds and an action repeat of 4 was used. The images
observations were rendered at 96 X 72 x 3 and given to the agent along with a text language instruction,
where each word in the instruction was mapped into a continuous vector of size 128 using a fixed
vocabulary of maximum size 1000.

Reward function. An agent get’s a reward of 1 if it completed the task and O otherwise.

Action Space. The action space for the experiments in 3d Unity Environment was 46 discrete actions
that allow the agent to move its body and change its head direction, to grab objects while moving and
manipulate the held objects by rotating, pulling or pushing the held object. The object is while as
long as the agent is emitting a GRAB action, and dropped in the first instance that a GRAB action is
not emitted. The full list of possible actions in the 3d Unity Environment environment is presented in
Table[7]

Table 5: Object and color set splits for the 3d Unity Environment “Put X on Y’ experiments.

Set Contains

Set A (pickupable objects) toilet roll, toothbrush, toothpaste
Set B (pickupable objects)  bus, car, carriage, helicopter, keyboard

Set C (support object) stool, tv cabinet, wardrobe, wash basin
Set D (support object) bed, book case, chest, dining, table
Colors red, green, blue, aquamarine, magenta, orange,

purple, pink, yellow, white
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Table 6: Descriptions of all the tasks used during training and evaluation. D refers to number of

distractors and S to the room size.

Task name S D Description
Find X 4x4 5 The agentis spawned randomly.
(Set A or B) Room has 3 objects from Set A (or B) and 3 from
C U D and instructed to go to an object from Set A (or B).
The purpose of these training tasks is to associate objects
from Set A and B with their names and the “find”
instruction with finding them.
Find Y 4 x4 5 The agent is spawned randomly.
Set CU D) Room has 3 objects from Set A (or B) and 3 from
C U D and instructed to go to an object from Set C'U D.
The purpose of these training tasks is to associate objects
from Set C' U D with their names and the “find”
instruction with finding them.
Lift X 4 x4 5 The agent is spawned randomly.
(Set A or B) Room has 3 objects from Set A (or B) and 3 from
C U D and instructed to lift an object from Set A (or B).
The purpose of these training tasks is to associate the “lift”
instruction with lifting the said object.
Put X near Y 3x3 0 The agentis spawned randomly.
(X =Set Aor B, Room has 1 object from Set A (or B) and 1 from
Y =SetCUD) C U D and instructed to put the object from Set A (or B)
near the other. The purpose of these training tasks is to learn to
move one object near another before putting it on it.
PutXonY 3x3 0 The agent is spawned randomly.
(X =Set Aor B, Room has 1 object from Set A (or B) and 1 from
Y =Set CU D) C U D and instructed to put the object from Set A (or B)
on top of the other. The purpose of these training tasks is to learn to
move one object and place it on top of another.
PutXonY 4 x4 4 The agent is spawned randomly.
X=A4,Y=D Room has 3 objects from Set A (or B) and 3 from
or Set D (or C) and instructed to put the object from Set A (or B)
X=B,Y=0) on top of the other. This is the training task most similar to the
test task and requires mastering all the other ones.
PutXonY (test) 4 x4 4 The agent is spawned randomly.
X=A4,Y=C Room has 3 objects from Set A (or B) and 3 from
or Set C (or D) and instructed to put the object from Set A (or B)
X=B,Y=D) on top of the other. This is the test task.
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Table 7: 3d Unity Environment action space.

General body movement

Fine grain movement

NOOP

MOVE_FORWARD FULL
MOVE_BACKWARD_FULL
MOVE_RIGHT_FULL
MOVE_LEFT_FULL
LOOK_RIGHT_FULL
LOOK_LEFT_FULL
LOOK_DOWN_FULL
LOOK_UP_FULL

MOVE_RIGHT_SLIGHTLY
MOVE_LEFT _SLIGHTLY
LOOK_RIGHT_MID
LOOK_LEFT_MID
LOOK_DOWN_MID
LOOK_UP_MID
LOOK_RIGHT_SLIGHTLY
LOOK_LEFT_SLIGHTLY

Fine grained movement with grip

General body movement with grip

GRAB + MOVE_RIGHT_MID
GRAB + MOVE_LEFT_MID

GRAB + LOOK_RIGHT _MID
GRAB + LOOK_LEFT_MID

GRAB + LOOK_DOWN_MID
GRAB + LOOK_UP_MID

GRAB + LOOK_RIGHT_SLIGHTLY
GRAB + LOOK_LEFT_SLIGHTLY
GRAB + PULL_CLOSER_MID
GRAB + PUSH_AWAY _MID

GRAB

GRAB + MOVE_FORWARD_FULL
GRAB + MOVE_BACKWARD _FULL
GRAB + MOVE_RIGHT_FULL
GRAB + MOVE_LEFT_FULL

GRAB + LOOK_RIGHT_FULL
GRAB + LOOK_LEFT_FULL

GRAB + LOOK_DOWN_FULL
GRAB + LOOK_UP_FULL

Object manipulation

GRAB + SPIN_RIGHT

GRAB + SPIN_LEFT

GRAB + SPIN_UP

GRAB + SPIN.DOWN

GRAB + SPIN_.FORWARD
GRAB + SPIN_. BACKWARD
GRAB + PULL_CLOSER_FULL
GRAB + PUSH_AWAY _FULL
PULL_CLOSER_MID
PUSH_AWAY _MID
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