776

777

778
779
780
781
782
783
784

785
786
787

789
790
791

792

793
794
795
796
797

798
799
800
801

803

804
805
806
807
808

809
810
811
812

813

814
815
816
817
818
819

821
822

Appendices

A Limitations

As described in Sections 4 and [6] users would tailor attacks to image clusters. In the case of beige
box, we outright provided these clusters by disclosing which image indices corresponded to which
general watermark type. For the black-box track, several winning teams clustered images into groups
by artifact varieties and did so by hand. For the latter, this was made possible because (1) our data set
was relatively small, enabling this type of manual data labeling, and (2) they were made aware that
the dataset contained mixtures of several watermarks. A database owner who uses only one type of
watermark will unlikely produce such variation in artifacts.

Additionally, we use the watermark models and setting provided in the original papers and do not
calibrate the strength of watermarks. Therefore, the comparison of watermarks’ robustness could
be biased. For example, images watermarked by StegaStamp shown visible artifacts that hurt the
image quality and provide clues of the watermark used. Calibration watermarks is challenging since
different watermarks use different strategies. One promising solution that future work could consider
is adjusting the strength of watermarks (e.g., message length) so that the quality degradation of
watermarked images are the same.

B Broader Impact

Erasing the Invisible brings together a global community to rigorously evaluate the resilience of
invisible watermarks in Al-generated images, uncovering critical vulnerabilities in methods once
deemed robust. These findings will directly inform the design of next-generation watermarking
schemes, helping content creators, platforms, and policymakers deploy more reliable provenance
tools to combat misinformation, copyright infringement, and evidence tampering.

Moreover, the competition pipeline can be effortlessly extended to live or rolling benchmarks, enabling
continual evaluation of emerging watermarking techniques. By providing an open, standardized
benchmark, we enable reproducible progress in both attack and defense, ultimately strengthening
trust in digital media.

C Acknowledgment

Technical Support

We extend our sincere thanks to the authors of the watermarking methods used in this competition.
Their permission to employ their models and assistance in setting them up made this work possible.
Special thanks to Xuandong Zhao and Sam Gunn for providing PRC before publication, Minzhou Pan
and Yi Zeng for training a JigMark model specifically for this competition, and Trufo for providing
their APL

Although certain contributions were ultimately not adopted for various reasons, we are deeply grateful
to everyone who supported us along the way. Thanks to Ashley Chow and Ryan Holbrook from
Kaggle for their effort in setting up the infrastructure for us at the initial stage. Thanks to Vikash
Sehwag for providing a secret diffusion model.

Sponsors

A massive shoutout to the UMIACS computing facilities team, led by Derek Yarnell, who worked
tirelessly with us 24/7 to keep the servers running smoothly throughout the competition. Their
technical support was absolutely vital, ensuring we could handle the large volume of submissions
efficiently. We also want to express our sincere gratitude to Emily Hartz, Executive Director of
Administration & Operations, and Petra Zapf, Director of Finance, for helping us navigate the legal
complexities surrounding our prize distribution. Their commitment to the success of this competition
was unmatched. And, of course, none of this would have been possible without Tom Goldstein,
Director of the Center for Machine Learning. Tom provided invaluable financial and technical support.
He helped us tackle challenges head-on, all while keeping the spirit of innovation alive. His leadership

19

823
824

826

827
828
829
830
831
832
833
834
835
836
837
838

839

840
841
842
843

844
845
846
847
848
849

850
851
852
853
854
855

856

857

858
859
860
861
862

863
864
865
866

867
868

and the entire team’s effort turned this competition from a concept into reality. We’re incredibly
grateful for the collaborative energy and support from UMIACS and the Center for Machine Learning.

D Related Work

D.1 Benchmarking Attacks.

The authors of a new watermark will typically demonstrate their robustness by subjecting them to
a large number of attacks. A survey of few modern methods [Fernandez et al.,|2023| Tancik et al.,
2020l Wen et al., [2023| [Pan et al., 2024} [Yang et al.| [2024] reveals that they were benchmarked over
differing datasets, attack types (and intensities), and p-values for attack rejection (i.e., the threshold
for not accepting a watermark was removed). Attack authors similarly did not assess the same
watermark types [Nie et al.| [2022] |Saberi et al.,|2024] and/or knowledge scenarios [Lukas et al.|[2023]
Jiang et al.,|2023]]. This spurred the creation of this competition [Ding et al.l [2024]], to catalog a
greater collection of user-submitted attacks according to the principles of a standardized robustness
benchmark, WAVES [An et al.,|[2024]]. Although winners had to disclose their attack algorithms,
with several already publicly available as pre-prints or notes [Shamshad et al., |[2025| [Serzhenko
et al., 2025} Jafari, 2024]], the general user was not required to describe any submitted attack. A
pseudo-anonymous, publicly-available leaderboard of attacks is novelﬂ

D.2 Modern Watermarks

Watermark design is an active area of research. We refer the reader to [Zhao et al., 2024} [Fernandez
et al., 2023} |Gunn et al., [2023} |/An et al., [2024]] for surveys of modern generative watermarks. For
our competition, we selected watermarks of in-processing and post-processing types, (following the
taxonomy of [Ding et al.,[2024| |An et al.| 2024])).

For post-processing watermarks, we used (/) the StegaStamp [Tancik et al.l [2020], a watermark
designed for preventing photographic theft, with enhanced robustness via attack-discrete adversarial
training (2) the JigMark [Pan et al., [2024]] which resists image editing by using an encoder which
learns to embed a watermark in Fourier low-frequency bands. (3) an industry watermark developed
by Trufo. It is a Y-channel watermark which targets the noisier regions of images. The exact method
is proprietary.

For in-processing watermarks, we used (/) the Stable Signature [Fernandez et al.| |2023]], which
trains the decoder module of a Stable Diffusion pipeline to embed a message. (2) Gaussian shading
[Yang et al.| 2024] embeds a message into the latent representation of image which follows a
Gaussian distribution, thus preserving the latent space. (3) PRC [Gunn et al.,[2023]], which embeds
a cryptographically pseudorandom pattern into the latent space and can be decoded via an error-
correcting code.

E Detailed Recap of the Competition

E.1 Competition Structure and Design

The competition was structured into two distinct tracks designed to probe watermark robustness
under different attacker knowledge scenarios: the Beige-box Track and the Black-box Track. This
dual-track approach allowed for a nuanced evaluation, assessing resilience both when attackers have
partial information and when they operate with minimal knowledge, simulating diverse real-world
conditions.

A fundamental distinction in watermarking techniques lies between in-processing methods, which
embed the watermark during the generative process (typically within Al models), and post-processing
methods, which apply the watermark to an already generated image (whether Al-generated, natural,
or human-crafted). Our competition incorporated examples of both paradigms.

The images used across both tracks were generated using a hybrid approach, employing both the
Flux. 1 [dev] model and Stable Diffusion 2.1. Prompts were designed to elicit diverse content and

*OpenAl developed their own |Detection Classifier Program, which was a whitelist of testers to attack and
challenge the detectability of DALL-E-generated content. However, these results are currently not available.

20

https://openai.smapply.org/prog/dalle_detection_classifier_access_program/

869
870
871
872
873
874

875

877
878

879
880

882
883

885
886
887

888
889

890

892
893
894

895

897

898
899
900

901
902
903
904
905
906
907

908

909

911
912

styles, ensuring a broad testbed for the watermarking techniques. A critical aspect of the competition
design was the alignment of watermark strength. Prior to the competition, we meticulously tuned the
hyperparameters for each deployed watermark method to achieve a standardized baseline robustness,
targeting a False-Positive Rate (FPR) of 0.1%. This ensured that, without any attack, approximately
99.9% of watermarked images could be correctly detected, providing a consistent starting point for
evaluating removal efficacy.

E.1.1 Beige-box Track Details

In the Beige-box track, participants were provided with the names of the watermarking algorithms
applied, enabling more targeted attacks and testing the fundamental limits of these specific techniques.
We employed two representative methods, distributed across 300 images:

* Gaussian Shading |Yang et al.[[2024]: An in-processing watermark applied to 150 images
generated by Stable Diffusion 2.1. This method embeds a unique pattern within the initial
noise vector used by the diffusion model during image synthesis. Detection involves
reversing the diffusion process to recover the noise vector and check for the embedded
pattern.

» StegaStamp Tancik et al.| [2020]: A post-processing watermark applied to 150 images
generated by Flux. 1 [dev]. StegaStamp utilizes a deep neural network trained to create
robust, invisible watermarks via learned encoding and decoding mechanisms, designed to
withstand various distortions, including print-scan operations.

Providing the method identity allowed participants to potentially leverage public knowledge or
implementations to devise sophisticated removal strategies.

E.1.2 Black-box Track Details

The Black-box track aimed to simulate a more realistic adversarial scenario where the attacker
possesses limited or no prior knowledge about the specific watermarking technology employed. This
track featured a total of 300 images, comprising a more complex mix of watermarks kept entirely
confidential from the participants:

* Singly-Watermarked Images (200 total): 50 images each were watermarked using one
of four distinct methods: JIGMARK |Pan et al.| [2024], PRC |Gunn et al.| [2023]], Stable
Signature |[Fernandez et al.|[2023]], and the Trufo watermark.

* Doubly-Watermarked Images (100 total): To increase the challenge and reflect potential
real-world practices, we included images watermarked with combinations: 50 images with
Gaussian Shading + JIGMARK, and 50 images with Stable Signature + StegaStamp.

All images in this track were shuffled, preventing participants from inferring methods based on order
or batching. We intentionally maintained secrecy around the methods used in this track because
real-world watermarking deployments often rely on confidentiality, alongside other engineering
enhancements like proprietary implementations, randomized keys, multi-watermark layering, and
potential (though not explicitly tested here) anti-tampering defenses. Evaluating robustness under
these conditions provides a more practical assessment of watermark resilience against uninformed
attacks.

E.2 [Evaluation Metrics and Scoring

The competition aimed to rigorously assess the trade-off between watermark removal efficacy and the
preservation of image quality. To quantify this, we developed a sophisticated, automated evaluation
system based on the principles established in the WAVES benchmark |An et al.| [2024]. Each
submission was assigned a final score calculated as the Euclidean distance in a 2D performance-

quality space:

Score = \/Q? + A2
where () represents the normalized image quality degradation and A represents the watermark detec-
tion performance (specifically, 1 — TPR@0.1%FPR). The primary goal for participants (attackers)
was to minimize this score, signifying successful watermark removal (A = 1) with minimal impact
on image quality (Q ~ 0).

21

913

914
915
916
917

918
919
920
921
922
923
924

925
926
927

928
929
930

931

932
933
934
935
936
937
938
939
940

941

942

943
944

945
946

947
948

949

950

951

953

954
955

E.2.1 Performance Metric

Watermark detection performance was measured by the True Positive Rate (TPR) at a stringent False
Positive Rate (FPR) of 0.1% (TPR@0.1%FPR). This metric reflects the ability to correctly identify
watermarked images while maintaining an extremely low rate of misclassifying unwatermarked
images.

* Threshold Determination: For each watermarking algorithm used in the competition, we
first established a detection threshold. This involved running the specific watermark decoder
on a large set of 10,000 diverse, unwatermarked images (generated from the same prompt
distribution as the competition data). The distribution of detection scores (e.g., message
distance d(m,m’) from the expected message m) from these unwatermarked images was
analyzed, and the score corresponding to the 0.1 percentile (i.e., the value below which only
0.1

* TPR Calculation: During evaluation, participants’ attacked images were processed using
the relevant watermark decoders. An image was considered "detected" if its decoding score
fell below the pre-calculated 0.1

* Final Metric A: The value used in the scoring formula is A = 1 — TPRQ0.1%FPR,
representing the watermark removal rate. A value of A = 1 indicates complete removal
(TPR=0), while A = 0 indicates no removal (TPR=1).

E.2.2 Normalized Image Quality Degradation

To comprehensively assess the visual impact of the attacks, we computed a normalized image quality
degradation score, (). This score aggregates information from eight distinct image quality metrics
(IQMs), comparing the attacked image to its original, unattacked (but potentially watermarked)
version: (i) Peak Signal-to-Noise Ratio (PSNR) (ii) Structural Similarity Index (SSIM) Wang et al.
[2004] (iii) Normalized Mutual Information (NMI) (iv) Frechet Inception Distance (FID)|Heusel et al.
[2017] (v) CLIP Image Fidelity (CLIP-FID) Kynkadnniemi et al.|[2019] (vi) Learned Perceptual
Image Patch Similarity (LPIPS)|Zhang et al.|[2018]] (vii) Delta Aesthetics Score (AAesthetics)[Xu
et al.| [2023]] (viii) Delta Artifacts Score (AArtifacts)[Xu et al.| [2023]] The normalization procedure,
detailed in |An et al.|[2024], involved:

» Establishing baseline distributions for each IQM by applying a diverse set of 26+ known
attacks to a large image corpus.

* Determining the 10th and 90th percentile scores for each metric within this corpus, repre-
senting low and high degradation levels, respectively.

* Normalizing the IQM score for each submitted attacked image to the range [0.1, 0.9] based
on these percentiles (scores outside this range were clamped).

* Calculating the final) score as a weighted average of these normalized IQM scores, using
empirically derived coefficients:

Q = +1.53 x 1072 FID 4 5.07 x 10~ CLIP FID — 2.22 x 102 PSNR
—1.13 x 107! SSIM — 9.88 x 10~ 2NMI + 3.41 x 10~ ! LPIPS
+ 4.50 x 1072 AAesthetics — 1.44 x 10~ ' AArtifacts

A higher () value indicates greater image degradation (poorer quality relative to the original).

E.3 Competition Platform and Infrastructure

The competition was hosted on the Codabench platform Farragi et al.|[2020—], an open-source system
for computational challenges, utilizing dedicated instances for the Beige-box ETand Black-boxﬂ
tracks.

To handle the computationally intensive evaluation process involving deep learning models and
numerous metrics, we deployed custom compute workers. These workers were built upon the

Shttps://www.codabench.org/competitions/3821/
Shttps://www.codabench.org/competitions/3857/

22

https://www.codabench.org/competitions/3821/
https://www.codabench.org/competitions/3857/

956
957
958
959
960

961
962
963

964

965
966

967
968

969
970
971
972

973
974

975
976
977

979

980

981
982
983
984
985

986
987
988
989
990
991
992
993

994

995
996
997
998
999

1000

standard Codabench worker architecture but packaged within Docker containers equipped with GPU
support via the NVIDIA Container Toolkit. This ensured reproducible environments with necessary
libraries (PyTorch, ONNXRuntime-GPU, Transformers, Diffusers, etc.) and allowed for parallel
processing across multiple GPU devices, managed via Docker Compose and coordinated through a
Celery message queue connected to the Codabench backend.

The core evaluation logic was implemented in a dedicated open-source Python packageﬂ executed by
the compute workers. Upon receiving a submission (consisting of 300 attacked PNG images), the
evaluation pipeline performed the following steps automatically:

1. Input Verification: Checked submission format compliance.

2. Standardized Preprocessing: Applied minor, standardized image manipulations (3x3
median blur, JPEG compression at QF=98) to simulate common distribution conditions.

3. Watermark Decoding: Executed the relevant decoding algorithms for the track (Beige-box
known methods or Black-box secret methods).

4. Quality Assessment: Computed the eight IQMs described in the Evaluation Metrics section
by comparing the preprocessed submission to pristine reference images. Required models
for metrics like LPIPS and CLIP-FID were dynamically fetched from the Hugging Face
Hub.

5. Scoring & Output: Calculated the performance metric A and quality metric (), computed
the final score \/Q?2 + A2, and reported results back to Codabench.

This automated backend enabled a real-time rolling leaderboard, providing participants with
immediate feedback on their submission’s performance and ranking. To complement the automated
metrics and ensure fairness, especially in cases of close scores or potential metric exploitation, the
top-ranked submissions in each track underwent an additional layer of human evaluation by the
organizers, focusing on subjective visual quality assessment.

F Competition Submission Statistics and Activity

The “Erasing the Invisible” competition, hosted on the Codabench platfornﬂ ran from September 16
to November 5, 2024. It attracted significant global engagement, with a total of 2,722 submissions
received from 298 participating teams worldwide, underscoring the community’s strong interest in
evaluating and advancing image watermark robustness. The Beige-box track saw 1,072 submissions
from 65 distinct teams, while the Black-box track recorded 1,650 submissions from 77 distinct teams.

The competition’s progression and outcomes are further illustrated by the following figures. Figure 3]
provides a comparative look at the final score distributions for both tracks, highlighting the range and
concentration of participant performance. Figure[d]details the engagement dynamics, showcasing
the daily and cumulative submission counts throughout the competition period, reflecting bursts
of activity and sustained effort from the participants. Finally, Figure [5] visualizes the evolution
of the best-achieved scores over time, demonstrating the competitive landscape and the gradual
improvement in attack efficacy as teams refined their strategies. These statistics collectively depict a
highly active and competitive challenge.

G Public Dataset Release

To foster continued research and transparency, all data generated from the “Erasing the
Invisible” competition has been publicly released on Hugging Face under the dataset ID
furonghuang-1lab/ETI_Compet ition_Dataﬂ This comprehensive dataset is licensed under Cre-
ative Commons Attribution 4.0 International (CC BY 4.0) and serves as a valuable resource for
researchers in digital watermarking, adversarial machine learning, and content authenticity.

The dataset is structured into four primary subsets:

"https://github.com/erasinginvisible/eval-program

$Beige-box track: https://www.codabench.org/competitions/3821/, Black-box track: https://
www.codabench.org/competitions/3857/

“https://huggingface.co/datasets/furonghuang-lab/ETI_Competition_Data

23

https://github.com/erasinginvisible/eval-program
https://www.codabench.org/competitions/3821/
https://www.codabench.org/competitions/3857/
https://www.codabench.org/competitions/3857/
https://huggingface.co/datasets/furonghuang-lab/ETI_Competition_Data

1001
1002
1003
1004

1005
1006
1007
1008
1009

1010
1011
1012

0.8

0.6

Score |

0.4

0.2

Beige Track Black Track

Figure 3: Final score distributions for the Beige-box and Black-box tracks. The violin plots illustrate

the density of participant scores (lower is better, Score = 1/Q? + A2), including median and in-
terquartile ranges, providing insight into overall performance and score clustering within each track.

B Beige Track B Black Track

100

50

OndﬂJJJJﬂJn “th“““ d“L“ “““d"““dh“hkklhh““h*d

1000

Number of
Submissions

500

Cumulative
Submissions

Sep 29 Oct 6 Oct 13 Oct 20 Oct 27 Nov 3
2024

Submission Date

Figure 4: Submission activity throughout the competition (September 29, 2024 - November 10,
2024, as shown in figure). The top panel displays the number of daily submissions for both Beige-
box (brown) and Black-box (black) tracks, indicating periods of heightened activity. The bottom
panel shows the cumulative number of submissions over time for each track, illustrating the overall
engagement.

* Beige_Track_Images: Contains the 300 original images used in the Beige-box track,
watermarked with either Gaussian Shading (150 images from Stable Diffusion 2.1) or
StegaStamp (150 images from Flux.1 [dev]). Each entry includes the image_index and the
watermarked_image.

* Black_Track_Images: Contains the 300 original images for the Black-box track, featuring
a confidential mix of watermarks. This includes 50 images each for single watermarks (Jig-
Mark, PRC, StableSignature, Trufo) and 50 images each for double watermarks (Gaussian
Shading + JigMark, StableSignature + StegaStamp). Each entry includes the image_index
and the watermarked_image.

* Beige_Track_Submissions: Provides detailed evaluation metadata and scores for all
1,072 valid submissions to the Beige-box track. Key features include submission_id,
submission_time, dictionaries with per-watermark (gaussianshading, stegastamp)

24

1013
1014
1015

1016
1017
1018
1019

1020
1021
1022
1023
1024
1025

1026

1027
1028
1029

1030

1031
1032
1033

1034

1035
1036

Beige Submissions Black Submissions === Beige Best Score === Black Best Score

1 o v
L]
0.8
8 L}
- - .
Y ® = 1 e 8 @8 []
o 06 o [$Neo S0 o Ay
= L O ;
5) kS 5
Q . — -.
N o4 2 %0 0 "
. L
V4 |
0.2
0
Sep 29 Oct 6 Oct 13 Oct 20 Oct 27 Nov 3 Nov 10
2024
Date

Figure 5: Evolution of submission scores over the competition period (September 29, 2024 - Novem-
ber 10, 2024, as shown in figure). Each point represents a submission, with beige indicating Beige-box
track submissions and black indicating Black-box track submissions. The solid lines (brown for
Beige-box, black for Black-box) trace the evolution of the best achieved score (Pareto frontier)
over time, demonstrating continuous improvement in attack strategies. Lower scores indicate better
performance.

and per-image IQM scores (aesthetics, artifacts, clip_fid, legacy_fid (FID),
lpips, nmi, psnr, ssim), and the final performance (A), quality (@), and overall
score.

* Black_Track_Submissions: Contains corresponding evaluation metadata and scores for
the 1,650 valid submissions to the Black-box track. Features are similar to the Beige-box
submissions, with per-watermark score dictionaries for gaussianshading, jigmark, prc,
stablesig, stegastamp, and trufo.

The dataset includes not only the evaluation scores but also allows access to the actual attacked image
files submitted by participants, enabling in-depth analysis of attack strategies. Users can load specific
subsets or the entire dataset using the Hugging Face datasets library. For detailed instructions on
accessing attacked images and the full schema, please refer to the dataset card on Hugging Face. This
resource is intended to support the development of more robust watermarking techniques and better
evaluation methodologies.

H Open-Source Evaluation Toolkit

To ensure transparency, reproducibility, and facilitate future research, the complete evaluation infras-
tructure for the competition is open-sourced under the Apache License 2.0. This includes the core
evaluation program and the Codabench worker container setup.

H.1 Evaluation Program

The core evaluation logic is available on GitHub at erasinginvisible/ eval—prograrrm This
Python-based program was responsible for processing each participant submission (a set of 300
attacked images). Its functionalities include:

* Input Verification: Ensuring submissions adhere to the specified format.

» Standardized Preprocessing: Applying minor image manipulations (e.g., median blur,
JPEG compression) to simulate common distribution conditions.

""https://github.com/erasinginvisible/eval-program

25

https://github.com/erasinginvisible/eval-program

1037
1038
1039

1040
1041
1042

1043
1044

1045

1046
1047
1048

1049

1050
1051
1052
1053

1054
1055
1056

1057
1058
1059

1060
1061

1062
1063
1064

1065

1066

1067
1068
1069
1070
1071
1072
1073

* Watermark Decoding: Executing the relevant watermark decoding algorithms. Separate
entry points (beige.py and black.py) handle the distinct logic for Beige-box (known
watermarks) and Black-box (secret watermarks) tracks.

* Image Quality Assessment: Computing eight distinct Image Quality Metrics (IQMs) by
comparing attacked images to their original watermarked versions. Models for metrics like
LPIPS and CLIP-FID were dynamically fetched.

* Scoring and Output: Calculating the final performance metric A (watermark removal rate)
and quality metric) (image degradation), combining them into the overall competition

score \/@Q? + A2, and reporting these to Codabench.

The repository includes all necessary helper functions, metric calculation scripts, and dependencies
(listed in requirements. txt, which specifies onnxruntime-gpu, indicating GPU optimization).
While designed for Codabench, the program can also be run locally for testing or further research.

H.2 Codabench Worker Container

The Dockerized environment used to run the evaluation program on Codabench is available at
erasinginvisible/worker—containe This setup builds upon the standard Codabench
worker architecture but is specifically configured for GPU-accelerated tasks using the NVIDIA
Container Toolkit. Key aspects include:

* Custom Docker Image: The repository provides Dockerfile.nvidia to build a custom
worker image (johnding1996/codabench-erasinginvisible:latest) equipped with
necessary libraries like PyTorch, ONNXRuntime-GPU, Transformers, and Diffusers.

* GPU Configuration: The docker-compose.yml file is configured to manage multiple
worker instances, allowing for parallel execution and assignment of specific GPUs to
different workers.

¢ Reproducible Environment: Ensures that all submissions were evaluated in a consistent
and reproducible computational environment.

These open-source tools, in conjunction with the public dataset released as described in appendix [G]
provide a comprehensive benchmark and a foundation for future advancements in image watermarking
security and evaluation.

I Winners’ Solutions

I.1 Beige-Box Solutions

Table 3: Beige-box winners’ scores.

Team Prev Overall Watermark Quality Degrad | Quality Degrad Final
Score [|] Detect Perf [|] (Machine) [|] (Human) [|] Score []
Team-MBZUAI 0.1570 0.0367 0.1526 0.1526 0.1570
asky30 0.1834 0.0500 0.1764 0.1683 0.1756
mohammadjafari 0.2558 0.1267 0.2223 0.2221 0.2557
hesiyang 0.3434 0.0567 0.3387 0.2719 0.2777
leiluk 1 0.3197 0.1000 0.3036 0.3387 0.3532

The 1st team [Shamshad et al.| [2025] generated a custom dataset using images processed with
StegaStamp and their inverted messages to fine-tune a VAE that removes invisible watermarks by
minimizing MSE loss between images with opposite messages. They then applied post-processing
techniques, including test-time VAE optimization and color and contrast transfer, to enhance image
quality. Uniquely, for the TreeRing watermarked images, they discovered a vulnerability to phase
attacks and effectively removed the watermark by horizontally translating images by 7 pixels, a
simple yet effective method compared to other submissions.

https://github.com/erasinginvisible/worker-container

26

https://github.com/erasinginvisible/worker-container

1074
1075
1076
1077
1078
1079

1080
1081
1082
1083
1084
1085
1086

1087
1088
1089
1090
1091

1092
1093
1094
1095
1096
1097

1098

1099
1100
1101
1102
1103

The 2nd team confused the StegaStamp decoder by encoding random messages multiple times with
varying perturbation strengths into the target images, effectively overwriting the original watermark.
For the TreeRing watermarked images, they shifted the images 8 pixels upwards and used Stable
Diffusion to inpaint the resulting blank space, disrupting the watermark. Uniquely, they combined
message overwriting with varying strengths and advanced inpainting techniques to remove watermarks
compared to other teams.

The 3rd team Jafari|[2024]) utilized a FLUX.1-dev model with ControlNet Canny for edge preservation
during image manipulation. For StegaStamp images, they performed a multi-pass Img2Img pipeline
with strengths adjusted based on image entropy, and added a precomputed average watermark
pattern during each iteration to weaken the embedded messages. For TreeRing watermarks, they
applied cropping and rescaling techniques. Uniquely, their approach included entropy-based strength
adjustments and the addition of average watermark patterns, which differed from other teams’
methods.

The 4th team used a resize-crop distortion method, adjusting the cropping scale dynamically based on
a strength parameter to effectively remove watermarks while preserving image content. They applied
different strength values for StegaStamp and TreeRing watermarked images, finding that both were
vulnerable to this distortion-based attack. Uniquely, they demonstrated that even robust watermarks
are susceptible to simple distortions like resize-crop, which other teams did not focus on.

The Sth team performed a Watermark Overwriting Attack |Serzhenko et al.| [2025]], on StegaStamp
images by extracting, inverting, and re-embedding the hidden messages using StegaStamp’s encoder
and decoder networks, effectively removing the watermark. For TreeRing images, they applied
a Rinsing Regeneration Attack using multiple cycles of noising and denoising with a pretrained
diffusion model (FLUX-dev). Uniquely, they combined message inversion and re-embedding with
regeneration attacks to remove watermarks, which was distinct from other submissions.

Table 4: Winning teams’ attacks in the Beige-box track.

Team Attacks on StegaStamp Attacks on GaussianShading
ASR Method ASR Method
1 97.3% VAE fine-tuned with paired 95.3% Horizontal shift by 7 pixels
datasets, test-time optimiza- (phase attack vulnerability)

tion, color-contrast transfer

2 90.0% Overwriting watermark with 100.0% Vertical shift by 8 pixels

repeated random message en- with Stable Diffusion-based
coding at varying perturbation inpainting
strengths

3 98.6% Multi-pass Img2Img with 76.0% Cropping and rescaling ma-
entropy-based strengths, nipulations
addition of average watermark
pattern

4 100.0% Message extraction, inversion, 80.0% Rinsing regeneration with
and re-embedding using Ste- pretrained diffusion model
gaStamp encoder-decoder (FLUX-dev)

5 99.3% Resize-crop distortion with dy- 89.3% Resize-crop distortion with
namically adjusted cropping dynamically adjusted crop-
parameters ping parameters

1.2 Black-Box Solutions

The 1st team |Shamshad et al.| [2025]] clustered the watermarked images into four groups based on
observed artifacts and applied tailored methods to each. They used a Stable Diffusion Refiner Model
with cluster-specific strength parameters, and for some clusters, applied their VAE-based watermark
removal method, including test-time VAE optimization and color/contrast transfer. Additionally, they
exploited a vulnerability by horizontally translating images by 7 pixels to perform phase manipulation.

27

1st Team

Watermarked

%2 2nd Team

: 3rd Team

§ 4th Team

5th Team

Figure 6: Examples of top 5 teams’ attacks in the beige-box track.

28

1104
1105

1106
1107
1108
1109
1110
1111
1112

1113
1114
1115
1116
1117
1118

1119
1120
1121
1122
1123
1124
1125
1126

1127
1128
1129
1130
1131

Table 5: Black-box winners’ scores.

Team Prev Overall Watermark Quality Degrad | Quality Degrad Final
Score [|] Detect Perf [|] (Machine)[|] (Human) []] Score [|]
Team-MBZUAI 0.1430 0.0433 0.1363 0.1420 0.1485
mohammadjafari 0.1699 0.0633 0.1576 0.1363 0.1503
asky30 0.2088 0.0667 0.1979 0.1413 0.1563
yepengliu 0.1973 0.0867 0.1773 0.1979 0.2161
egorkov 0.2339 0.1900 0.1365 0.1432 0.2379

Uniquely, their method combined clustering with multiple tailored approaches, including phase
manipulation and VAE-based removal, setting them apart from other teams.

The 2nd team [Jafari [2024]] employed a FLUX.1-dev model with ControlNet Canny for controlled
image manipulation, adjusting attack strength based on image entropy calculations to preserve quality.
They maintained image structure using edge detection and resized images to improve processing.
They performed purification with varying parameters and enhanced visual similarity using PairOp-
timizer, which fine-tunes images with differentiable adjustments. For TreeRing watermarks, they
applied cropping and slight rotation. Uniquely, their method integrated entropy-based adjustments,
ControlNet, and a custom post-processing tool, PairOptimizer, differing from other submissions.

The 3rd team categorized the images into two groups and for Group 1, they applied denoising using
Stable Diffusion with a ’denoise: 1.0’ prompt, then resized the output to the original dimensions.
For Group 2, they denoised images with different prompts ("denoise’, ’dehaze’, *clean’), shifted the
images 7 pixels upwards, and selected the best output based on SSIM. Uniquely, they combined
diffusion-based denoising with spatial shifting and optimization based on structural similarity, which
was different from other teams.

The 4th team proposed Controllable Regeneration (CtrlRegen+) Liu et al.|[2025], a no-box watermark
removal attack that adds adjustable noise to the latent representation to disrupt watermark information.
They introduced semantic control by encoding the watermarked image into an image embedding
and used cross-attention mechanisms to preserve semantic content during regeneration. Additionally,
they incorporated spatial control using edge-detected images to maintain structural layout via a
spatial control network. Uniquely, their method combined semantic and spatial controls in a unified
framework to effectively remove watermarks while preserving image quality, which was distinct from
other teams.

The 5th team hypothesized that the watermark was embedded in the image’s latent representation and
aimed to perturb this latent vector to remove the watermark with minimal quality loss. They applied
image-to-image regeneration using the FLUX model, adjusting parameters like guidance scale, noise
magnitude, and inference steps to optimize results. Uniquely, they focused on perturbing the latent
space via FLUX model regeneration to remove watermarks, differing from other teams’ approaches.

Table 6: Winning teams’ attacks in the Black-box track.

Method Attacked ASR

Team1l Team?2 Team3 Team4 Team 5
JigMark 100.0% 98.0% 98.0% 100.0% 96.0%
PRC 88.0% 96.0% 96.0% 100.0% 96.0%
StableSig 100.0% 100.0% 100.0% 100.0% 100.0%
Trufo 100.0% 100.0% 100.0% 88.0% 100.0%
GaussianShading + JigMark 90.0% 74.0% 56.0% 86.0% 0.0%
StableSig + StegaStamp 96.0% 94.0% 98.0% 86.0% 94.0%

29

Watermarked

3rd Team

5th Team

Figure 7: Examples of top 5 teams’ attacks in the black-box track.

30

