
Appendices776

A Limitations777

As described in Sections 4 and 6, users would tailor attacks to image clusters. In the case of beige778

box, we outright provided these clusters by disclosing which image indices corresponded to which779

general watermark type. For the black-box track, several winning teams clustered images into groups780

by artifact varieties and did so by hand. For the latter, this was made possible because (1) our data set781

was relatively small, enabling this type of manual data labeling, and (2) they were made aware that782

the dataset contained mixtures of several watermarks. A database owner who uses only one type of783

watermark will unlikely produce such variation in artifacts.784

Additionally, we use the watermark models and setting provided in the original papers and do not785

calibrate the strength of watermarks. Therefore, the comparison of watermarks’ robustness could786

be biased. For example, images watermarked by StegaStamp shown visible artifacts that hurt the787

image quality and provide clues of the watermark used. Calibration watermarks is challenging since788

different watermarks use different strategies. One promising solution that future work could consider789

is adjusting the strength of watermarks (e.g., message length) so that the quality degradation of790

watermarked images are the same.791

B Broader Impact792

Erasing the Invisible brings together a global community to rigorously evaluate the resilience of793

invisible watermarks in AI-generated images, uncovering critical vulnerabilities in methods once794

deemed robust. These findings will directly inform the design of next-generation watermarking795

schemes, helping content creators, platforms, and policymakers deploy more reliable provenance796

tools to combat misinformation, copyright infringement, and evidence tampering.797

Moreover, the competition pipeline can be effortlessly extended to live or rolling benchmarks, enabling798

continual evaluation of emerging watermarking techniques. By providing an open, standardized799

benchmark, we enable reproducible progress in both attack and defense, ultimately strengthening800

trust in digital media.801

C Acknowledgment802

Technical Support803

We extend our sincere thanks to the authors of the watermarking methods used in this competition.804

Their permission to employ their models and assistance in setting them up made this work possible.805

Special thanks to Xuandong Zhao and Sam Gunn for providing PRC before publication, Minzhou Pan806

and Yi Zeng for training a JigMark model specifically for this competition, and Trufo for providing807

their API.808

Although certain contributions were ultimately not adopted for various reasons, we are deeply grateful809

to everyone who supported us along the way. Thanks to Ashley Chow and Ryan Holbrook from810

Kaggle for their effort in setting up the infrastructure for us at the initial stage. Thanks to Vikash811

Sehwag for providing a secret diffusion model.812

Sponsors813

A massive shoutout to the UMIACS computing facilities team, led by Derek Yarnell, who worked814

tirelessly with us 24/7 to keep the servers running smoothly throughout the competition. Their815

technical support was absolutely vital, ensuring we could handle the large volume of submissions816

efficiently. We also want to express our sincere gratitude to Emily Hartz, Executive Director of817

Administration & Operations, and Petra Zapf, Director of Finance, for helping us navigate the legal818

complexities surrounding our prize distribution. Their commitment to the success of this competition819

was unmatched. And, of course, none of this would have been possible without Tom Goldstein,820

Director of the Center for Machine Learning. Tom provided invaluable financial and technical support.821

He helped us tackle challenges head-on, all while keeping the spirit of innovation alive. His leadership822

19



and the entire team’s effort turned this competition from a concept into reality. We’re incredibly823

grateful for the collaborative energy and support from UMIACS and the Center for Machine Learning.824

D Related Work825

D.1 Benchmarking Attacks.826

The authors of a new watermark will typically demonstrate their robustness by subjecting them to827

a large number of attacks. A survey of few modern methods [Fernandez et al., 2023, Tancik et al.,828

2020, Wen et al., 2023, Pan et al., 2024, Yang et al., 2024] reveals that they were benchmarked over829

differing datasets, attack types (and intensities), and p-values for attack rejection (i.e., the threshold830

for not accepting a watermark was removed). Attack authors similarly did not assess the same831

watermark types [Nie et al., 2022, Saberi et al., 2024] and/or knowledge scenarios [Lukas et al., 2023,832

Jiang et al., 2023]. This spurred the creation of this competition [Ding et al., 2024], to catalog a833

greater collection of user-submitted attacks according to the principles of a standardized robustness834

benchmark, WAVES [An et al., 2024]. Although winners had to disclose their attack algorithms,835

with several already publicly available as pre-prints or notes [Shamshad et al., 2025, Serzhenko836

et al., 2025, Jafari, 2024], the general user was not required to describe any submitted attack. A837

pseudo-anonymous, publicly-available leaderboard of attacks is novel.4838

D.2 Modern Watermarks839

Watermark design is an active area of research. We refer the reader to [Zhao et al., 2024, Fernandez840

et al., 2023, Gunn et al., 2023, An et al., 2024] for surveys of modern generative watermarks. For841

our competition, we selected watermarks of in-processing and post-processing types, (following the842

taxonomy of [Ding et al., 2024, An et al., 2024]).843

For post-processing watermarks, we used (1) the StegaStamp [Tancik et al., 2020], a watermark844

designed for preventing photographic theft, with enhanced robustness via attack-discrete adversarial845

training (2) the JigMark [Pan et al., 2024] which resists image editing by using an encoder which846

learns to embed a watermark in Fourier low-frequency bands. (3) an industry watermark developed847

by Trufo. It is a Y-channel watermark which targets the noisier regions of images. The exact method848

is proprietary.849

For in-processing watermarks, we used (1) the Stable Signature [Fernandez et al., 2023], which850

trains the decoder module of a Stable Diffusion pipeline to embed a message. (2) Gaussian shading851

[Yang et al., 2024] embeds a message into the latent representation of image which follows a852

Gaussian distribution, thus preserving the latent space. (3) PRC [Gunn et al., 2023], which embeds853

a cryptographically pseudorandom pattern into the latent space and can be decoded via an error-854

correcting code.855

E Detailed Recap of the Competition856

E.1 Competition Structure and Design857

The competition was structured into two distinct tracks designed to probe watermark robustness858

under different attacker knowledge scenarios: the Beige-box Track and the Black-box Track. This859

dual-track approach allowed for a nuanced evaluation, assessing resilience both when attackers have860

partial information and when they operate with minimal knowledge, simulating diverse real-world861

conditions.862

A fundamental distinction in watermarking techniques lies between in-processing methods, which863

embed the watermark during the generative process (typically within AI models), and post-processing864

methods, which apply the watermark to an already generated image (whether AI-generated, natural,865

or human-crafted). Our competition incorporated examples of both paradigms.866

The images used across both tracks were generated using a hybrid approach, employing both the867

Flux. 1 [dev] model and Stable Diffusion 2.1. Prompts were designed to elicit diverse content and868

4OpenAI developed their own Detection Classifier Program, which was a whitelist of testers to attack and
challenge the detectability of DALL-E-generated content. However, these results are currently not available.

20

https://openai.smapply.org/prog/dalle_detection_classifier_access_program/


styles, ensuring a broad testbed for the watermarking techniques. A critical aspect of the competition869

design was the alignment of watermark strength. Prior to the competition, we meticulously tuned the870

hyperparameters for each deployed watermark method to achieve a standardized baseline robustness,871

targeting a False-Positive Rate (FPR) of 0.1%. This ensured that, without any attack, approximately872

99.9% of watermarked images could be correctly detected, providing a consistent starting point for873

evaluating removal efficacy.874

E.1.1 Beige-box Track Details875

In the Beige-box track, participants were provided with the names of the watermarking algorithms876

applied, enabling more targeted attacks and testing the fundamental limits of these specific techniques.877

We employed two representative methods, distributed across 300 images:878

• Gaussian Shading Yang et al. [2024]: An in-processing watermark applied to 150 images879

generated by Stable Diffusion 2.1. This method embeds a unique pattern within the initial880

noise vector used by the diffusion model during image synthesis. Detection involves881

reversing the diffusion process to recover the noise vector and check for the embedded882

pattern.883

• StegaStamp Tancik et al. [2020]: A post-processing watermark applied to 150 images884

generated by Flux. 1 [dev]. StegaStamp utilizes a deep neural network trained to create885

robust, invisible watermarks via learned encoding and decoding mechanisms, designed to886

withstand various distortions, including print-scan operations.887

Providing the method identity allowed participants to potentially leverage public knowledge or888

implementations to devise sophisticated removal strategies.889

E.1.2 Black-box Track Details890

The Black-box track aimed to simulate a more realistic adversarial scenario where the attacker891

possesses limited or no prior knowledge about the specific watermarking technology employed. This892

track featured a total of 300 images, comprising a more complex mix of watermarks kept entirely893

confidential from the participants:894

• Singly-Watermarked Images (200 total): 50 images each were watermarked using one895

of four distinct methods: JIGMARK Pan et al. [2024], PRC Gunn et al. [2023], Stable896

Signature Fernandez et al. [2023], and the Trufo watermark.897

• Doubly-Watermarked Images (100 total): To increase the challenge and reflect potential898

real-world practices, we included images watermarked with combinations: 50 images with899

Gaussian Shading + JIGMARK, and 50 images with Stable Signature + StegaStamp.900

All images in this track were shuffled, preventing participants from inferring methods based on order901

or batching. We intentionally maintained secrecy around the methods used in this track because902

real-world watermarking deployments often rely on confidentiality, alongside other engineering903

enhancements like proprietary implementations, randomized keys, multi-watermark layering, and904

potential (though not explicitly tested here) anti-tampering defenses. Evaluating robustness under905

these conditions provides a more practical assessment of watermark resilience against uninformed906

attacks.907

E.2 Evaluation Metrics and Scoring908

The competition aimed to rigorously assess the trade-off between watermark removal efficacy and the
preservation of image quality. To quantify this, we developed a sophisticated, automated evaluation
system based on the principles established in the WAVES benchmark An et al. [2024]. Each
submission was assigned a final score calculated as the Euclidean distance in a 2D performance-
quality space:

Score =
√

Q2 +A2

where Q represents the normalized image quality degradation and A represents the watermark detec-909

tion performance (specifically, 1− TPR@0.1%FPR). The primary goal for participants (attackers)910

was to minimize this score, signifying successful watermark removal (A ≈ 1) with minimal impact911

on image quality (Q ≈ 0).912

21



E.2.1 Performance Metric913

Watermark detection performance was measured by the True Positive Rate (TPR) at a stringent False914

Positive Rate (FPR) of 0.1% (TPR@0.1%FPR). This metric reflects the ability to correctly identify915

watermarked images while maintaining an extremely low rate of misclassifying unwatermarked916

images.917

• Threshold Determination: For each watermarking algorithm used in the competition, we918

first established a detection threshold. This involved running the specific watermark decoder919

on a large set of 10,000 diverse, unwatermarked images (generated from the same prompt920

distribution as the competition data). The distribution of detection scores (e.g., message921

distance d(m,m′) from the expected message m) from these unwatermarked images was922

analyzed, and the score corresponding to the 0.1 percentile (i.e., the value below which only923

0.1924

• TPR Calculation: During evaluation, participants’ attacked images were processed using925

the relevant watermark decoders. An image was considered "detected" if its decoding score926

fell below the pre-calculated 0.1927

• Final Metric A: The value used in the scoring formula is A = 1 − TPR@0.1%FPR,928

representing the watermark removal rate. A value of A = 1 indicates complete removal929

(TPR=0), while A = 0 indicates no removal (TPR=1).930

E.2.2 Normalized Image Quality Degradation931

To comprehensively assess the visual impact of the attacks, we computed a normalized image quality932

degradation score, Q. This score aggregates information from eight distinct image quality metrics933

(IQMs), comparing the attacked image to its original, unattacked (but potentially watermarked)934

version: (i) Peak Signal-to-Noise Ratio (PSNR) (ii) Structural Similarity Index (SSIM) Wang et al.935

[2004] (iii) Normalized Mutual Information (NMI) (iv) Frechet Inception Distance (FID) Heusel et al.936

[2017] (v) CLIP Image Fidelity (CLIP-FID) Kynkäänniemi et al. [2019] (vi) Learned Perceptual937

Image Patch Similarity (LPIPS) Zhang et al. [2018] (vii) Delta Aesthetics Score (∆Aesthetics) Xu938

et al. [2023] (viii) Delta Artifacts Score (∆Artifacts) Xu et al. [2023] The normalization procedure,939

detailed in An et al. [2024], involved:940

• Establishing baseline distributions for each IQM by applying a diverse set of 26+ known941

attacks to a large image corpus.942

• Determining the 10th and 90th percentile scores for each metric within this corpus, repre-943

senting low and high degradation levels, respectively.944

• Normalizing the IQM score for each submitted attacked image to the range [0.1, 0.9] based945

on these percentiles (scores outside this range were clamped).946

• Calculating the final Q score as a weighted average of these normalized IQM scores, using947

empirically derived coefficients:948

Q = + 1.53× 10−3 FID + 5.07× 10−3 CLIP FID − 2.22× 10−3 PSNR

− 1.13× 10−1 SSIM − 9.88× 10−2NMI + 3.41× 10−1 LPIPS

+ 4.50× 10−2∆Aesthetics − 1.44× 10−1∆Artifacts

A higher Q value indicates greater image degradation (poorer quality relative to the original).949

E.3 Competition Platform and Infrastructure950

The competition was hosted on the Codabench platform Farragi et al. [2020–], an open-source system951

for computational challenges, utilizing dedicated instances for the Beige-box 5 and Black-box 6952

tracks.953

To handle the computationally intensive evaluation process involving deep learning models and954

numerous metrics, we deployed custom compute workers. These workers were built upon the955

5https://www.codabench.org/competitions/3821/
6https://www.codabench.org/competitions/3857/

22

https://www.codabench.org/competitions/3821/
https://www.codabench.org/competitions/3857/


standard Codabench worker architecture but packaged within Docker containers equipped with GPU956

support via the NVIDIA Container Toolkit. This ensured reproducible environments with necessary957

libraries (PyTorch, ONNXRuntime-GPU, Transformers, Diffusers, etc.) and allowed for parallel958

processing across multiple GPU devices, managed via Docker Compose and coordinated through a959

Celery message queue connected to the Codabench backend.960

The core evaluation logic was implemented in a dedicated open-source Python package7, executed by961

the compute workers. Upon receiving a submission (consisting of 300 attacked PNG images), the962

evaluation pipeline performed the following steps automatically:963

1. Input Verification: Checked submission format compliance.964

2. Standardized Preprocessing: Applied minor, standardized image manipulations (3x3965

median blur, JPEG compression at QF=98) to simulate common distribution conditions.966

3. Watermark Decoding: Executed the relevant decoding algorithms for the track (Beige-box967

known methods or Black-box secret methods).968

4. Quality Assessment: Computed the eight IQMs described in the Evaluation Metrics section969

by comparing the preprocessed submission to pristine reference images. Required models970

for metrics like LPIPS and CLIP-FID were dynamically fetched from the Hugging Face971

Hub.972

5. Scoring & Output: Calculated the performance metric A and quality metric Q, computed973

the final score
√
Q2 +A2, and reported results back to Codabench.974

This automated backend enabled a real-time rolling leaderboard, providing participants with975

immediate feedback on their submission’s performance and ranking. To complement the automated976

metrics and ensure fairness, especially in cases of close scores or potential metric exploitation, the977

top-ranked submissions in each track underwent an additional layer of human evaluation by the978

organizers, focusing on subjective visual quality assessment.979

F Competition Submission Statistics and Activity980

The “Erasing the Invisible” competition, hosted on the Codabench platform8, ran from September 16981

to November 5, 2024. It attracted significant global engagement, with a total of 2,722 submissions982

received from 298 participating teams worldwide, underscoring the community’s strong interest in983

evaluating and advancing image watermark robustness. The Beige-box track saw 1,072 submissions984

from 65 distinct teams, while the Black-box track recorded 1,650 submissions from 77 distinct teams.985

The competition’s progression and outcomes are further illustrated by the following figures. Figure 3986

provides a comparative look at the final score distributions for both tracks, highlighting the range and987

concentration of participant performance. Figure 4 details the engagement dynamics, showcasing988

the daily and cumulative submission counts throughout the competition period, reflecting bursts989

of activity and sustained effort from the participants. Finally, Figure 5 visualizes the evolution990

of the best-achieved scores over time, demonstrating the competitive landscape and the gradual991

improvement in attack efficacy as teams refined their strategies. These statistics collectively depict a992

highly active and competitive challenge.993

G Public Dataset Release994

To foster continued research and transparency, all data generated from the “Erasing the995

Invisible” competition has been publicly released on Hugging Face under the dataset ID996

furonghuang-lab/ETI_Competition_Data9. This comprehensive dataset is licensed under Cre-997

ative Commons Attribution 4.0 International (CC BY 4.0) and serves as a valuable resource for998

researchers in digital watermarking, adversarial machine learning, and content authenticity.999

The dataset is structured into four primary subsets:1000

7https://github.com/erasinginvisible/eval-program
8Beige-box track: https://www.codabench.org/competitions/3821/, Black-box track: https://

www.codabench.org/competitions/3857/
9https://huggingface.co/datasets/furonghuang-lab/ETI_Competition_Data

23

https://github.com/erasinginvisible/eval-program
https://www.codabench.org/competitions/3821/
https://www.codabench.org/competitions/3857/
https://www.codabench.org/competitions/3857/
https://huggingface.co/datasets/furonghuang-lab/ETI_Competition_Data


Beige Track
0

0.2

0.4

0.6

0.8

1

Black Track
0

0.2

0.4

0.6

0.8

1

Sc
or

e
Beige Track

0

0.2

0.4

0.6

0.8

1

Black Track
0

0.2

0.4

0.6

0.8

1

Sc
or

e

Figure 3: Final score distributions for the Beige-box and Black-box tracks. The violin plots illustrate
the density of participant scores (lower is better, Score =

√
Q2 +A2), including median and in-

terquartile ranges, providing insight into overall performance and score clustering within each track.

0

50

100

Sep 29
2024

Oct 6 Oct 13 Oct 20 Oct 27 Nov 3
0

500

1000

Beige Track Black Track

Submission Date

N
um

be
r o

f
Su

bm
is

si
on

s

C
um

ul
at

iv
e

Su
bm

is
si

on
s

Loading [MathJax]/extensions/MathMenu.js

0

50

100

Sep 29
2024

Oct 6 Oct 13 Oct 20 Oct 27 Nov 3
0

500

1000

Beige Track Black Track

Submission Date

N
um

be
r o

f
Su

bm
is

si
on

s

C
um

ul
at

iv
e

Su
bm

is
si

on
s

Loading [MathJax]/extensions/MathMenu.js

0

50

100

Sep 29
2024

Oct 6 Oct 13 Oct 20 Oct 27 Nov 3
0

500

1000

Beige Track Black Track

Submission Date

N
um

be
r o

f
Su

bm
is

si
on

s

C
um

ul
at

iv
e

Su
bm

is
si

on
s

Loading [MathJax]/extensions/MathMenu.js

Figure 4: Submission activity throughout the competition (September 29, 2024 - November 10,
2024, as shown in figure). The top panel displays the number of daily submissions for both Beige-
box (brown) and Black-box (black) tracks, indicating periods of heightened activity. The bottom
panel shows the cumulative number of submissions over time for each track, illustrating the overall
engagement.

• Beige_Track_Images: Contains the 300 original images used in the Beige-box track,1001

watermarked with either Gaussian Shading (150 images from Stable Diffusion 2.1) or1002

StegaStamp (150 images from Flux.1 [dev]). Each entry includes the image_index and the1003

watermarked_image.1004

• Black_Track_Images: Contains the 300 original images for the Black-box track, featuring1005

a confidential mix of watermarks. This includes 50 images each for single watermarks (Jig-1006

Mark, PRC, StableSignature, Trufo) and 50 images each for double watermarks (Gaussian1007

Shading + JigMark, StableSignature + StegaStamp). Each entry includes the image_index1008

and the watermarked_image.1009

• Beige_Track_Submissions: Provides detailed evaluation metadata and scores for all1010

1,072 valid submissions to the Beige-box track. Key features include submission_id,1011

submission_time, dictionaries with per-watermark (gaussianshading, stegastamp)1012

24



Sep 29
2024

Oct 6 Oct 13 Oct 20 Oct 27 Nov 3 Nov 10
0

0.2

0.4

0.6

0.8

1

Beige Submissions Black Submissions Beige Best Score Black Best Score

Date

Sc
or

e

Figure 5: Evolution of submission scores over the competition period (September 29, 2024 - Novem-
ber 10, 2024, as shown in figure). Each point represents a submission, with beige indicating Beige-box
track submissions and black indicating Black-box track submissions. The solid lines (brown for
Beige-box, black for Black-box) trace the evolution of the best achieved score (Pareto frontier)
over time, demonstrating continuous improvement in attack strategies. Lower scores indicate better
performance.

and per-image IQM scores (aesthetics, artifacts, clip_fid, legacy_fid (FID),1013

lpips, nmi, psnr, ssim), and the final performance (A), quality (Q), and overall1014

score.1015

• Black_Track_Submissions: Contains corresponding evaluation metadata and scores for1016

the 1,650 valid submissions to the Black-box track. Features are similar to the Beige-box1017

submissions, with per-watermark score dictionaries for gaussianshading, jigmark, prc,1018

stablesig, stegastamp, and trufo.1019

The dataset includes not only the evaluation scores but also allows access to the actual attacked image1020

files submitted by participants, enabling in-depth analysis of attack strategies. Users can load specific1021

subsets or the entire dataset using the Hugging Face datasets library. For detailed instructions on1022

accessing attacked images and the full schema, please refer to the dataset card on Hugging Face. This1023

resource is intended to support the development of more robust watermarking techniques and better1024

evaluation methodologies.1025

H Open-Source Evaluation Toolkit1026

To ensure transparency, reproducibility, and facilitate future research, the complete evaluation infras-1027

tructure for the competition is open-sourced under the Apache License 2.0. This includes the core1028

evaluation program and the Codabench worker container setup.1029

H.1 Evaluation Program1030

The core evaluation logic is available on GitHub at erasinginvisible/eval-program10. This1031

Python-based program was responsible for processing each participant submission (a set of 3001032

attacked images). Its functionalities include:1033

• Input Verification: Ensuring submissions adhere to the specified format.1034

• Standardized Preprocessing: Applying minor image manipulations (e.g., median blur,1035

JPEG compression) to simulate common distribution conditions.1036

10https://github.com/erasinginvisible/eval-program

25

https://github.com/erasinginvisible/eval-program


• Watermark Decoding: Executing the relevant watermark decoding algorithms. Separate1037

entry points (beige.py and black.py) handle the distinct logic for Beige-box (known1038

watermarks) and Black-box (secret watermarks) tracks.1039

• Image Quality Assessment: Computing eight distinct Image Quality Metrics (IQMs) by1040

comparing attacked images to their original watermarked versions. Models for metrics like1041

LPIPS and CLIP-FID were dynamically fetched.1042

• Scoring and Output: Calculating the final performance metric A (watermark removal rate)1043

and quality metric Q (image degradation), combining them into the overall competition1044

score
√

Q2 +A2, and reporting these to Codabench.1045

The repository includes all necessary helper functions, metric calculation scripts, and dependencies1046

(listed in requirements.txt, which specifies onnxruntime-gpu, indicating GPU optimization).1047

While designed for Codabench, the program can also be run locally for testing or further research.1048

H.2 Codabench Worker Container1049

The Dockerized environment used to run the evaluation program on Codabench is available at1050

erasinginvisible/worker-container11. This setup builds upon the standard Codabench1051

worker architecture but is specifically configured for GPU-accelerated tasks using the NVIDIA1052

Container Toolkit. Key aspects include:1053

• Custom Docker Image: The repository provides Dockerfile.nvidia to build a custom1054

worker image (johnding1996/codabench-erasinginvisible:latest) equipped with1055

necessary libraries like PyTorch, ONNXRuntime-GPU, Transformers, and Diffusers.1056

• GPU Configuration: The docker-compose.yml file is configured to manage multiple1057

worker instances, allowing for parallel execution and assignment of specific GPUs to1058

different workers.1059

• Reproducible Environment: Ensures that all submissions were evaluated in a consistent1060

and reproducible computational environment.1061

These open-source tools, in conjunction with the public dataset released as described in appendix G,1062

provide a comprehensive benchmark and a foundation for future advancements in image watermarking1063

security and evaluation.1064

I Winners’ Solutions1065

I.1 Beige-Box Solutions1066

Table 3: Beige-box winners’ scores.

Team Prev Overall
Score [↓]

Watermark
Detect Perf [↓]

Quality Degrad
(Machine) [↓]

Quality Degrad
(Human) [↓]

Final
Score [↓]

Team-MBZUAI 0.1570 0.0367 0.1526 0.1526 0.1570
asky30 0.1834 0.0500 0.1764 0.1683 0.1756
mohammadjafari 0.2558 0.1267 0.2223 0.2221 0.2557
hesiyang 0.3434 0.0567 0.3387 0.2719 0.2777
leiluk1 0.3197 0.1000 0.3036 0.3387 0.3532

The 1st team Shamshad et al. [2025] generated a custom dataset using images processed with1067

StegaStamp and their inverted messages to fine-tune a VAE that removes invisible watermarks by1068

minimizing MSE loss between images with opposite messages. They then applied post-processing1069

techniques, including test-time VAE optimization and color and contrast transfer, to enhance image1070

quality. Uniquely, for the TreeRing watermarked images, they discovered a vulnerability to phase1071

attacks and effectively removed the watermark by horizontally translating images by 7 pixels, a1072

simple yet effective method compared to other submissions.1073

11https://github.com/erasinginvisible/worker-container

26

https://github.com/erasinginvisible/worker-container


The 2nd team confused the StegaStamp decoder by encoding random messages multiple times with1074

varying perturbation strengths into the target images, effectively overwriting the original watermark.1075

For the TreeRing watermarked images, they shifted the images 8 pixels upwards and used Stable1076

Diffusion to inpaint the resulting blank space, disrupting the watermark. Uniquely, they combined1077

message overwriting with varying strengths and advanced inpainting techniques to remove watermarks1078

compared to other teams.1079

The 3rd team Jafari [2024] utilized a FLUX.1-dev model with ControlNet Canny for edge preservation1080

during image manipulation. For StegaStamp images, they performed a multi-pass Img2Img pipeline1081

with strengths adjusted based on image entropy, and added a precomputed average watermark1082

pattern during each iteration to weaken the embedded messages. For TreeRing watermarks, they1083

applied cropping and rescaling techniques. Uniquely, their approach included entropy-based strength1084

adjustments and the addition of average watermark patterns, which differed from other teams’1085

methods.1086

The 4th team used a resize-crop distortion method, adjusting the cropping scale dynamically based on1087

a strength parameter to effectively remove watermarks while preserving image content. They applied1088

different strength values for StegaStamp and TreeRing watermarked images, finding that both were1089

vulnerable to this distortion-based attack. Uniquely, they demonstrated that even robust watermarks1090

are susceptible to simple distortions like resize-crop, which other teams did not focus on.1091

The 5th team performed a Watermark Overwriting Attack Serzhenko et al. [2025], on StegaStamp1092

images by extracting, inverting, and re-embedding the hidden messages using StegaStamp’s encoder1093

and decoder networks, effectively removing the watermark. For TreeRing images, they applied1094

a Rinsing Regeneration Attack using multiple cycles of noising and denoising with a pretrained1095

diffusion model (FLUX-dev). Uniquely, they combined message inversion and re-embedding with1096

regeneration attacks to remove watermarks, which was distinct from other submissions.1097

Table 4: Winning teams’ attacks in the Beige-box track.

Team Attacks on StegaStamp Attacks on GaussianShading
ASR Method ASR Method

1 97.3% VAE fine-tuned with paired
datasets, test-time optimiza-
tion, color-contrast transfer

95.3% Horizontal shift by 7 pixels
(phase attack vulnerability)

2 90.0% Overwriting watermark with
repeated random message en-
coding at varying perturbation
strengths

100.0% Vertical shift by 8 pixels
with Stable Diffusion-based
inpainting

3 98.6% Multi-pass Img2Img with
entropy-based strengths,
addition of average watermark
pattern

76.0% Cropping and rescaling ma-
nipulations

4 100.0% Message extraction, inversion,
and re-embedding using Ste-
gaStamp encoder-decoder

80.0% Rinsing regeneration with
pretrained diffusion model
(FLUX-dev)

5 99.3% Resize-crop distortion with dy-
namically adjusted cropping
parameters

89.3% Resize-crop distortion with
dynamically adjusted crop-
ping parameters

I.2 Black-Box Solutions1098

The 1st team Shamshad et al. [2025] clustered the watermarked images into four groups based on1099

observed artifacts and applied tailored methods to each. They used a Stable Diffusion Refiner Model1100

with cluster-specific strength parameters, and for some clusters, applied their VAE-based watermark1101

removal method, including test-time VAE optimization and color/contrast transfer. Additionally, they1102

exploited a vulnerability by horizontally translating images by 7 pixels to perform phase manipulation.1103

27



Figure 6: Examples of top 5 teams’ attacks in the beige-box track.

28



Table 5: Black-box winners’ scores.

Team Prev Overall
Score [↓]

Watermark
Detect Perf [↓]

Quality Degrad
(Machine)[↓]

Quality Degrad
(Human) [↓]

Final
Score [↓]

Team-MBZUAI 0.1430 0.0433 0.1363 0.1420 0.1485
mohammadjafari 0.1699 0.0633 0.1576 0.1363 0.1503
asky30 0.2088 0.0667 0.1979 0.1413 0.1563
yepengliu 0.1973 0.0867 0.1773 0.1979 0.2161
egorkov 0.2339 0.1900 0.1365 0.1432 0.2379

Uniquely, their method combined clustering with multiple tailored approaches, including phase1104

manipulation and VAE-based removal, setting them apart from other teams.1105

The 2nd team Jafari [2024] employed a FLUX.1-dev model with ControlNet Canny for controlled1106

image manipulation, adjusting attack strength based on image entropy calculations to preserve quality.1107

They maintained image structure using edge detection and resized images to improve processing.1108

They performed purification with varying parameters and enhanced visual similarity using PairOp-1109

timizer, which fine-tunes images with differentiable adjustments. For TreeRing watermarks, they1110

applied cropping and slight rotation. Uniquely, their method integrated entropy-based adjustments,1111

ControlNet, and a custom post-processing tool, PairOptimizer, differing from other submissions.1112

The 3rd team categorized the images into two groups and for Group 1, they applied denoising using1113

Stable Diffusion with a ’denoise: 1.0’ prompt, then resized the output to the original dimensions.1114

For Group 2, they denoised images with different prompts (’denoise’, ’dehaze’, ’clean’), shifted the1115

images 7 pixels upwards, and selected the best output based on SSIM. Uniquely, they combined1116

diffusion-based denoising with spatial shifting and optimization based on structural similarity, which1117

was different from other teams.1118

The 4th team proposed Controllable Regeneration (CtrlRegen+) Liu et al. [2025], a no-box watermark1119

removal attack that adds adjustable noise to the latent representation to disrupt watermark information.1120

They introduced semantic control by encoding the watermarked image into an image embedding1121

and used cross-attention mechanisms to preserve semantic content during regeneration. Additionally,1122

they incorporated spatial control using edge-detected images to maintain structural layout via a1123

spatial control network. Uniquely, their method combined semantic and spatial controls in a unified1124

framework to effectively remove watermarks while preserving image quality, which was distinct from1125

other teams.1126

The 5th team hypothesized that the watermark was embedded in the image’s latent representation and1127

aimed to perturb this latent vector to remove the watermark with minimal quality loss. They applied1128

image-to-image regeneration using the FLUX model, adjusting parameters like guidance scale, noise1129

magnitude, and inference steps to optimize results. Uniquely, they focused on perturbing the latent1130

space via FLUX model regeneration to remove watermarks, differing from other teams’ approaches.1131

Table 6: Winning teams’ attacks in the Black-box track.
Method Attacked ASR

Team 1 Team 2 Team 3 Team 4 Team 5
JigMark 100.0% 98.0% 98.0% 100.0% 96.0%
PRC 88.0% 96.0% 96.0% 100.0% 96.0%
StableSig 100.0% 100.0% 100.0% 100.0% 100.0%
Trufo 100.0% 100.0% 100.0% 88.0% 100.0%
GaussianShading + JigMark 90.0% 74.0% 56.0% 86.0% 0.0%
StableSig + StegaStamp 96.0% 94.0% 98.0% 86.0% 94.0%

29



Figure 7: Examples of top 5 teams’ attacks in the black-box track.

30


