
409

RL4CO: an Extensive Reinforcement Learning for410

Combinatorial Optimization Benchmark411

Supplementary Material412

413

414
415

Table of Contents
416
417

A RL4CO Library: Additional Material 15418

A.1 Why Choosing the RL4CO Library? . 15419

A.2 On the Choice of the Software . 16420

A.3 Licenses . 16421

B Environments 17422

B.1 Routing . 17423

B.1.1 Traveling Salesman Problem (TSP) . 17424

B.1.2 Capacitated Vehicle Routing Problem (CVRP) 18425

B.1.3 Orienteering Problem (OP) . 18426

B.1.4 Prize Collecting TSP (PCTSP) . 18427

B.1.5 Pickup and Delivery Problem (PDP) 19428

B.1.6 Multi-Task VRP (MTVRP) . 19429

B.2 Scheduling . 21430

B.2.1 Job Shop Scheduling Problem (JSSP) 21431

B.2.2 Flexible Job Shop Scheduling Problem (FJSSP) 22432

B.2.3 Flexible Flow Shop Problem (FFSP) 22433

B.3 Electronic Design Automation . 23434

B.3.1 Decap Placement Problem (DPP) . 23435

B.3.2 Multi-Port Decap Placement Problem (mDPP) 24436

B.4 Graph . 24437

B.4.1 Facility Location Problem (FLP) . 24438

B.4.2 Maximum Coverage Problem (MCP) 25439

B.5 Additional Environments and Beyond . 25440

C Baselines 26441

C.1 General-purpose RL Algorithms . 26442

C.1.1 REINFORCE . 26443

C.1.2 Advantage Actor-Critic (A2C) . 26444

C.1.3 Proximal Policy Optimization (PPO) 26445

C.2 Constructive Autoregressive (AR) . 27446

C.2.1 Attention Model (AM) . 27447

C.2.2 Ptr-Net . 29448

C.2.3 POMO . 29449

C.2.4 SymNCO . 29450

C.2.5 PolyNet . 29451

C.2.6 HAM . 30452

C.2.7 MTPOMO . 30453

C.2.8 MVMoE . 30454

C.2.9 L2D . 30455

C.2.10 HGNN . 31456

C.2.11 MatNet . 31457

C.2.12 DevFormer . 32458

C.3 Constructive Non-Autoregressive (NAR) . 32459

C.3.1 DeepACO . 32460

C.3.2 GFACS . 33461

C.3.3 GLOP . 33462

C.4 Improvement methods . 34463

C.4.1 DACT . 34464

13

C.4.2 N2S . 34465

C.4.3 NeuOpt . 34466

C.5 Active Search Methods . 35467

C.5.1 Active Search (AS) . 35468

C.5.2 Efficient Active Search (EAS) . 35469

D Benchmarking Setup 35470

D.1 Metrics . 35471

D.1.1 Gap to BKS . 35472

D.1.2 Primal Integral . 36473

D.1.3 Runtime Measurement . 36474

D.2 Hardware & Software . 36475

D.2.1 Hardware . 36476

D.2.2 Software . 37477

D.3 Hyperparameters . 37478

D.3.1 Common Hyperparameters . 37479

D.3.2 Changing Policy Components . 37480

D.3.3 Mind Your Baseline . 37481

D.3.4 Generalization: Cross-Task and Cross-Distribution 39482

D.3.5 Large-Scale Instances . 39483

D.3.6 Combining Construction and Improvement 39484

D.4 Decoding Schemes . 40485

D.4.1 Augmentations . 40486

D.4.2 Sampling . 40487

E Additional Experiments 42488

E.1 Mind your Baseline: Further Insights . 42489

E.1.1 Main In-distribution Results . 42490

E.1.2 Decoding Schemes Comparison . 43491

E.1.3 Sample Efficiency . 44492

E.1.4 Out-of-distribution . 45493

E.1.5 Search Methods . 46494

E.1.6 Additional Large-scale Results . 47495

E.2 Learning Heuristics for Ant Colony Optimization 48496

E.2.1 Experiment Settings . 48497

E.2.2 Results . 48498

E.3 Learning to Schedule . 49499

E.3.1 JSSP . 49500

E.3.2 FJSSP . 50501

E.3.3 FFSP . 51502

E.3.4 Dense and Episodic Rewards . 52503

E.4 Electronic Design Automation: Learning to Place Decaps 53504

E.4.1 Main Results . 53505

E.4.2 Generalization to Different Number of Components 53506

E.5 Learning to Improve . 54507

E.5.1 Main results . 54508

E.5.2 Discussion . 54509

E.6 Graph Problems: Facility Location Problem (FLP) and Maximum Coverage Prob-510

lem (MCP) . 55511

E.6.1 Experimental settings . 55512

E.6.2 Benchmark Results . 56513

E.6.3 Out-of-distribution . 59514

E.7 Efficient Software Routines . 62515

E.7.1 Mixed-Precision Training . 62516

E.7.2 FlashAttention . 62517

E.7.3 Efficient Memory Handling in Environments 63518

E.8 Towards Foundation Models . 63519

E.8.1 Experimental Setting . 63520

E.8.2 Empirical Results . 65521

E.8.3 Discussion . 65522

E.9 Generalization of Training on Multiple Distributions and Multiple Tasks 66523

F Supplementary Material References 68524
525
526
527

14

A RL4CO Library: Additional Material528

A.1 Why Choosing the RL4CO Library?529

RL4CO, is a unified and extensive benchmark the RL-for-CO research area. We intend RL4CO to530

be used by researchers and practitioners alike of various levels of experience.531

Figure 6: RL4CO benchmark logo.

Availability and Future Support RL4CO can be installed through PyPI4. We adhere to continu-532

ous integration, deployment, and testing to ensure reproducibility and accessibility.5533

pip install rl4co

Figure 7: Installing the RL4CO package using pip.

Open License We adopt the open MIT license for all content contained in RL4CO with source534

code available at https://github.com/ai4co/rl4co. We ascribe to the principles of libre soft-535

ware6. Most reimplementations are from original authors and are re-licensed under the MIT license.536

Data and baseline-specific licenses are reported in Appendix A.3.537

Figure 8: Unofficial - but widely used - open MIT license logo.

Open Community Through our journey, we started the AI4CO community7, which is a non-538

profit, cross-institution, inclusive, and open research community. AI4CO originally started out as539

a Slack channel for discussing the RL4CO but evolved into a broader-visioned and inclusive space540

to communicate with other researchers about general NCO. The RL4CO library can be discussed in541

the AI4CO Slack 8 under the #library-rl4co channel. We warmly invite all interested people to542

join us.543

Figure 9: AI4CO community logo.

4https://pypi.org/project/rl4co/
5https://rl4co.readthedocs.io/en/latest/
6https://www.gnu.org/philosophy/free-sw.en.html
7Community Github: https://github.com/ai4co
8Slack invitation link: https://bit.ly/ai4co-slack

15

https://github.com/ai4co/rl4co
https://pypi.org/project/rl4co/
https://rl4co.readthedocs.io/en/latest/
https://www.gnu.org/philosophy/free-sw.en.html
https://github.com/ai4co
https://bit.ly/ai4co-slack

A.2 On the Choice of the Software544

During the development of RL4CO, we wanted to make it as simple as possible to integrate repro-545

ducible and standardized code adhering to the latest guidelines. As a main template for our codebase,546

we use Lightning-Hydra-Template 9 which we believe is a solid starting point for reproducible deep547

learning. We further discuss framework choices below.548

PyTorch PyTorch [110] is a popular open-source deep-learning framework that has gained signif-549

icant traction in the research community. We chose PyTorch as the primary framework for RL4CO550

due to its intuitive API, dynamic computational graphs, strong community support, and seamless551

integration with the Python ecosystem. These features make PyTorch well-suited for rapid proto-552

typing and experimentation, which are essential in research settings. Moreover, most of the existing553

research in NCO has been implemented. It is currently being implemented using PyTorch, making554

it not only easier to build upon and compare with previous work but also easier for newcomers and555

experienced researchers.556

TorchRL and TensorDict One of the software hindrances in RL is the bottleneck between CPU557

and GPU communication, majorly due to CPU-based operating environments. For this reason, we558

did not opt for OpenAI Gym [23] since, although it includes some level of parallelization, this does559

not happen on GPU and would thus greatly hinder performance. Kool et al. [74] creates ad-hoc560

environments in PyTorch to handle batched data efficiently. However, it could be cumbersome to561

integrate into standardized routines that include step and reset functions. As we searched for a562

better alternative, we found that TorchRL library [20], an official PyTorch project that allows for563

efficient batched implementations on (multiple) GPUs as well as functions akin to OpenAI Gym.564

We also employ the TensorDict [20] to handle tensors efficiently on multiple keys (i.e. in CVRP,565

we can directly operate transforms on multiple keys as locations, capacities, and more). This makes566

our environments compatible with the models in TorchRL, which we believe could further spread567

interest in the CO area.568

PyTorch Lightning PyTorch Lightning [39] is a useful tool for abstracting away the boilerplate569

code, allowing researchers and practitioners to focus more on the core ideas and innovations. It570

features a standardized training loop and an extensive set of pre-built components, including auto-571

mated checkpointing, distributed training, and logging. PyTorch Lightning accelerates development572

time and facilitates scalability. We employ PyTorch Lightning in RL4CO to integrate with the Py-573

Torch ecosystem - which includes TorchRL- enabling us to leverage the rich set of tools and libraries574

available.575

Hydra Hydra [148] is a powerful open-source framework for managing complex configurations in576

machine-learning models and other software. Hydra facilitates creating hierarchical configurations,577

making it easy to manage even very large and intricate configurations. Moreover, it integrates with578

command-line interfaces, allowing the execution of different configurations directly from the com-579

mand line, thereby enhancing reproducibility. We found Hydra to be effective when dealing with580

multiple experiments since configurations are saved both locally, as yaml files, and can be uploaded581

to monitoring software as Wandb 10 (or to any of the monitoring software supported by PyTorch582

Lightning).583

A.3 Licenses584

We summarize the license of software that we employ in RL4CO in a non-exhaustive list in Table 6.585

Original environments and models from the authors are acknowledged through their respective cita-586

tions, with several links available in the library. RL4CO is licensed under the MIT license.587

9https://github.com/ashleve/lightning-hydra-template
10https://wandb.ai/

16

https://github.com/ashleve/lightning-hydra-template
https://wandb.ai/

Table 6: Reference code licenses and links.

Type Asset License Link

Library

PyTorch [110] BSD-3 License link
PyTorch Lightning [39] Apache-2.0 License link

TorchRL+TensorDict [20] MIT License link
Hydra [148] MIT License link

Dataset
TSPLIB [116] Available for any non-commercial use link
CVRPLib [86] Available for any non-commercial use link

DPP PDNs [108] Apache-2.0 link

Solver
PyVRP [144] MIT link
LKH3 [46] Available for any non-commercial use link

OR-Tools [111] Apache 2.0 License link

B Environments588

This section provides an overview of the list of environments we experimented with at the time of589

writing. We organize environments by categories, which, at the time of writing, are:590

1. Routing (B.1)591

2. Scheduling (B.2)592

3. Electronic Design Automation (B.3)593

4. Graph (B.4)594

B.1 Routing595

Routing problems are perhaps the most known class of CO problems. They are problems of great596

practical importance, not only for logistics, where they are more commonly framed, but also for597

industry, engineering, science, and medicine. The typical objective of routing problems is to mini-598

mize the total length of the paths needed to visit some (or all) the nodes in a graph. In the following599

section, we present each of these variants with details of their implementations.600

Common instance generation details Following the standard protocol of NCO for routing, we601

randomly sample node coordinates from the 2D unit square (i.e., [0, 1]2). To ensure reproducibility602

in our experiments, we use specific random seeds for generating validation and testing instances. For603

the 10,000 validation instances, we use a random seed of 4321. For the 10,000 testing instances, we604

use a random seed of 1234. All protocols, including seed selection, align with the practices outlined605

by Kool et al. [74].606

B.1.1 Traveling Salesman Problem (TSP)607

The Traveling Salesman Problem (TSP) is a fundamental routing problem that aims to find the608

Hamiltonian cycle of minimum length. While the original TSP formulation employs mixed-integer609

linear programming (MILP), in the NCO community, the solution-finding process of TSP is dif-610

ferently formulated for constructive and improvement methods. For constructive methods, the TSP611

solution is generated by autoregressive solution decoding (i.e., the construction process) in line with612

Kool et al. [74]. In each step of node selection, we preclude the selection of nodes already picked in613

previous rounds. This procedure ensures the feasibility of constructed solutions and also allows for614

the potential construction of an optimal solution for any TSP instance. For improvement methods,615

it starts with an initial solution and iteratively searches for an optimal one using local search. In616

each step, the solution is locally adjusted based on a specified local search operator. We support617

two representative operators for TSP variants, including the 2-opt in line with Ma et al. [96] and the618

flexible k-opt in line with Ma et al. [98]. The former selects two nodes in the current solution and619

reverses the solution segment between them to perform a 2-opt exchange. The latter selects k nodes620

17

https://github.com/pytorch/pytorch
https://github.com/Lightning-AI/pytorch-lightning
https://github.com/pytorch/rl
https://github.com/facebookresearch/hydra
https://github.com/rhgrant10/tsplib95
http://vrp.galgos.inf.puc-rio.br/index.php/en/
https://github.com/kaist-silab/devformer
https://github.com/PyVRP/PyVRP
http://webhotel4.ruc.dk/~keld/research/LKH-3/
https://github.com/google/or-tools

so that a k-opt is performed. Both methods ensure the feasibility of the solutions by masking invalid621

actions. The best solution after a set number of iterations is the final output.622

0 250 500 750 1000 1250 1500 1750
Cost: 7542

0

200

400

600

800

1000

1200
Optimal (or BKS)

0 250 500 750 1000 1250 1500 1750
Cost: 7897

0

200

400

600

800

1000

1200
AM 50

0 250 500 750 1000 1250 1500 1750
Cost: 7603

0

200

400

600

800

1000

1200
POMO 50

0 250 500 750 1000 1250 1500 1750
Cost: 7616

0

200

400

600

800

1000

1200
SymNCO 50

0 250 500 750 1000 1250 1500 1750
Cost: 7674

0

200

400

600

800

1000

1200
AM-XL 50

Figure 10: Sample TSP tours on TSPLib’s Berlin 52 with different autoregressive models.

B.1.2 Capacitated Vehicle Routing Problem (CVRP)623

The Capacitated Vehicle Routing Problem (CVRP) is a popular extension of TSP, applicable to a624

variety of real-world logistics/routing problems (e.g., delivery services). In CVRP, each node has its625

own demand, and the vehicle visiting them has a specific capacity and always leaves from a special626

node called “depot”. The vehicle can visit new nodes while their demand fits in its residual capacity627

(i.e. the total capacity decreased by the sum of the demands visited in the current path). When no628

nodes can be added to the path, the vehicle returns to the depot, and its full capacity is restored.629

Then, it embarks on another tour. The process is repeated until all nodes have been visited. By630

applying a similar logic to that of the TSP environment, we can reformulate CVRP as a sequential631

node selection problem, taking into account demands and capacity.632

0 20 40 60 80
Cost: 1167

0

20

40

60

80

D

Optimal (or BKS)

0 20 40 60 80
Cost: 1200

0

20

40

60

80

D

AM 50

0 20 40 60 80
Cost: 1181

0

20

40

60

80

D

POMO 50

0 20 40 60 80
Cost: 1196

0

20

40

60

80

D

SymNCO 50

0 20 40 60 80
Cost: 1176

0

20

40

60

80

D

AM-XL 50

Figure 11: Sample CVRP tours on CVRPLib’s A-n54-k7 instance with different autoregressive models.

Additional generation details To generate the demand, we randomly sample integers between 1633

and 10. Without loss of generality, we fix the capacity of the vehicle at 1.0. Then, we normalize634

the demands by multiplying them by a constant that varies according to the size of the CVRP. The635

specific constant can be found in our implementation.636

B.1.3 Orienteering Problem (OP)637

The Orienteering Problem (OP) is a variant of the TSP. In the OP, each node is assigned a prize. The638

objective of the OP is to find a tour, starting and ending at the depot, that maximizes the total prize639

collected from visited nodes, while abiding by a maximum tour length constraint. The OP can be640

framed as a sequential decision-making problem by enforcing the “return to depot” action when no641

nodes are visitable due to the maximal tour length constraint.642

Additional generation details To generate the prize, we use the prize distribution proposed in643

Fischetti et al. [41], particularly the distribution that allocates larger prizes to nodes further from the644

depot.645

B.1.4 Prize Collecting TSP (PCTSP)646

In the Prize Collecting TSP (PCTSP), each node is assigned both a prize and a penalty. The objec-647

tive is to accumulate a minimum total prize while minimizing the combined length of the tour and648

18

the penalties for unvisited nodes. By making a minor adjustment to the PCTSP, it can model dif-649

ferent subproblems that arise when using the Branch-Price-and-Cut algorithms for solving routing650

problems.651

B.1.5 Pickup and Delivery Problem (PDP)652

The Pickup and Delivery Problem (PDP) is an extension of TSP in the literature Helsgaun [46], Ma653

et al. [97].11 In PDP, a pickup node has its own designated delivery node. The delivery node can be654

visited only when its paired pickup node has already been visited. We call this constraint precedence655

constraint. The objective of the PDP is to find a complete tour with a minimal tour length while656

starting from the depot node and satisfying the precedence constraints. We assume that stacking657

is allowed, meaning that the traveling agent can visit multiple pickups prior to visiting the paired658

deliveries. For constructive methods, the PDP solution construction is similar to that of TSP but659

must obey precedence constraints. For improvement methods, we consider the ruin and repair local660

search operator presented by Ma et al. [96]. In each step, a pair of pickup and delivery nodes are661

removed from the current solution and then reinserted back into the solution with potentially better662

positions. Invalid actions that violate precedence constraints are masked out to ensure the feasibility663

of PDP solutions.664

Additional generation details To generate the positions of the depot, pickups, and deliveries, we665

sample the node coordinates from the 2D unit square. The first N/2 generated nodes are pickups,666

and the remaining N/2 are their respective deliveries. The pickups and deliveries are paired. For a667

pickup node i, its respective delivery is i+N/2 (excluding the depot index).668

B.1.6 Multi-Task VRP (MTVRP)669

This environment introduces the 16 VRP variants in Liu et al. [89], Zhou et al. [157] with additional670

enhancements, such as support for any number of variants in the same batch, as done in Berto et al.671

[13]. The base logic is the same as CVRP: each node has a demand, and the vehicle has a specific672

capacity by which it can deliver to nodes and return to the depot to replenish its capacity, with673

the goal of minimizing the total tour distance. We report each modular constraint definition in the674

following paragraphs according to Berto et al. [13], Wouda et al. [144]. Table 7 reports the list of all675

variants and Fig. 12 illustrates the meaning of each MTVRP component.676

VRP Variant Capacity
(C)

Open Route
(O)

Backhaul
(B)

Duration Limit
(L)

Time Windows
(TW)

CVRP ✓
OVRP ✓ ✓
VRPB ✓ ✓
VRPL ✓ ✓
VRPTW ✓ ✓
OVRPTW ✓ ✓ ✓
OVRPB ✓ ✓ ✓
OVRPL ✓ ✓ ✓
VRPBL ✓ ✓ ✓
VRPBTW ✓ ✓ ✓
VRPLTW ✓ ✓ ✓
OVRPBL ✓ ✓ ✓ ✓
OVRPBTW ✓ ✓ ✓ ✓
OVRPLTW ✓ ✓ ✓ ✓
VRPBLTW ✓ ✓ ✓ ✓
OVRPBLTW ✓ ✓ ✓ ✓ ✓

Table 7: The 16 VRP variants that are modeled by the MTVRP environment. All variants include the base
Capacity (C). The k = 4 features O, B, L, and TW can be combined into any subset, including the empty set
and itself (i.e., a power set) with 2k = 16 possible combinations.

11PDP is also called PDTSP (pickup and delivery TSP).

19

Open route (O)

< L

0.2

0.1

0.3

0.1

0.2
0.1

Duration limit (L) Time windows (TW)

0.1

0.2
0.4

0.5

0.3

Linehaul demands (C) Backhaul demands (B)

Depot Customer Linehaul Backhaul Feasible route Customer time window

sd:0.5

sd:1.2

sd:0.7

sd:0.2
sd:0.3sd:0

sd:0.2 Service duration

Figure 12: Different VRP attributes. Open routes (O) and duration limits (L) are global attributes, whereas time
windows (TW), capacitated vehicles for linehaul demands (C) and backhaul demands (B) are node attributes.
Attributes may be combined in different ways to define VRP variants.

(C) Demand and Vehicle Capacity [q ∈ [0, Q]]: Every node i, except the depot, has a demand qi that677

must be satisfied by the vehicle with a uniform capacity of Q > 0. The sum of the demands served678

by a vehicle in the same path must not exceed its capacity Q at any point along its route.679

(O) Open Routes [o ∈ {0, 1}]: With open routes, the distance between the last node and the depot680

is not counted in the total path length. This represents the scenarios where vehicles are not required681

to return to the depot after serving all assigned customers. Open routes are commonly found in682

scenarios involving third-party drivers, who are typically compensated only for the deliveries they683

complete, without the need to return to the depot [80].684

(B) Backhauls [p ∈ [0, Q]]: Backhauls extend the concept of demand to include both delivery and685

pickup requests, thus increasing vehicle utilization and leading to savings. Nodes are categorized as686

either linehaul or backhaul nodes.12 Linehaul nodes require delivery of demand qi from the depot687

to the node i (similar to CVRP), while backhaul nodes require a pickup of an amount pi to be trans-688

ported from the node back to the depot. A vehicle can serve both linehaul and backhaul customers in689

a single route, but all linehaul customers must be served before any backhaul customers. A typical690

example of a backhaul problem is a laundry service for hotels that has to deliver clean towels and691

pick up dirty ones, in which the precedence constraint of linehaul nodes is important due to possible692

contamination [26].693

(L) Duration Limits [l ∈ [0, L]]: Imposes a limit L on the total travel duration (or distance) of694

each vehicle route, ensuring a fair distribution of workload among different paths. This limit is695

consistently applied to all routes in the problem.696

(TW) Time Windows [e, s, l ∈ [0, T]3]: Each node i, except for the depot, has an associated time697

window [ei, li], which specifies the earliest and latest times at which it can be visited. When visiting698

node i, the vehicle must wait for a time si before leaving. The vehicle must arrive at customer i699

before the end of its time window li, but if they arrive before the start of the time window ei, they700

must wait at the customer’s location until the time window begins before starting the service. When701

the vehicle returns to the depot, the time is reset to 0.702

Additional generation details We introduce the data generation details as follows:703

Locations: We generate n+1 locations randomly with xi and yi ∼ U(0, 1),∀i ∈ {0, . . . , n}, where704

[x0, y0] represents the depot and [xi, yi], i ∈ {1, . . . , n} are the other n nodes.705

Capacity: The capacity C of the vehicle is determined based on the following calculation:

C =





30 +
⌊
1000
5 + n−1000

33.3

⌋
if 1000 < n

30 +
⌊
n
5

⌋
if 20 < n ≤ 1000

30 otherwise
.

12Note that another name of this problem, as adopted in LKH3 [46], is VRP with Pickup and Deliveries
(VRPPD). However, we align with PyVRP [144] and do not use this name to prevent confusion with the one-
to-one PDP, as we described before, where there is strict precedence between each pair of pickup and delivery.

20

Open route: the open route is an instance-wise flag: when set to 1, the route is open, when 0 is706

closed. We sample the flag from a uniform distribution with the same probability of the route being707

open or closed.708

Linehaul and Backhaul demands: We generate demands according to the following schema:709

1. Generate linehaul demands qi ∈ {0, . . . , Q} for all nodes i ∈ {i, . . . , n}. These are needed710

for both backhaul and linehaul scenarios.711

2. Generate backhaul demands pi ∈ {0, . . . , Q} for all nodes i ∈ {i, . . . , n}.712

3. For each node i ∈ {i, . . . , n}, there is a probability of 0.2 that it is assigned a backhaul713

demand, otherwise, its backhaul demand is set to be 0.714

Note that even in a backhaul setting, usually not all nodes are backhaul nodes, i.e., we need to715

consider both linehaul and backhaul demands in backhaul problem settings. All demands, both716

linehauls and backhauls, are scaled to [0, 1] through division by the vehicle capacity.717

Duration limits: Each route is assigned a fixed duration limit L with a default value of 3. We check718

that 2 ∗ d0i < L to make sure there is a feasible route for any customer.719

Time Windows: We generate the time windows for each node i ∈ {1, . . . , n} according to the720

following steps:721

1. Generate service time si ∈ [0.15, 0.18].722

2. Generate time window length ti ∈ [0.18, 0.2].723

3. Calculate distance d0i from node to depot.724

4. Calculate the upper bound for the start time hi = tmax−si−ti
d0i

− 1, where tmax is the725

maximum time with a default value of 4.6.726

5. Calculate the start time as ei = (1 + (hi − 1) · ui) · d0i with ui ∼ U(0, 1).727

6. Calculate the end time as li = ei + ti.728

Classical solvers We employ the SotA HGS implementation in PyVRP [144] and OR-Tools [111].729

We make these solvers conveniently available through the solve API of the environment.730

B.2 Scheduling731

Scheduling problems are a fundamental class of problems in operations research and industrial en-732

gineering, where the objective is to optimize the allocation of resources over time. These problems733

are critical in various industries, such as manufacturing, computer science, and project manage-734

ment. Currently, RL4CO implements three central scheduling problems, namely the flexible flow735

shop (FFSP), the job shop (JSSP), and the flexible job shop problem (FJSSP). Each of these prob-736

lems has unique characteristics and complexities that need to be translated into the environment737

classes that we will describe hereafter.738

B.2.1 Job Shop Scheduling Problem (JSSP)739

The job shop scheduling problem is a well-known combinatorial optimization problem. It is widely740

used in the operations research community as well as many industries, such as manufacturing and741

transportation. In the JSSP, a set of jobs J must be processed by a set of machines M . Each job742

Ji ∈ J consists of a set of ni operations Oi = {oij}ni
j=1 which must be processed one after another743

in a given order. The goal of the JSSP is to construct a valid schedule that adheres to the precedence744

order of the operations and minimizes the makespan, i.e., the time until the last job is finished. One745

example of such a schedule is shown in Fig. 13.746

We formulate the JSSP as a sequential decision problem following the implementation of Tassel747

et al. [132]. Here, the environment iterates through distinct time steps t = 1, . . . , T . At each time748

21

0 20 40 60 80
Time

Machine 1

Machine 2

Machine 3

Machine 4

Machine 5

1112 13 20 24 25 3439 4047 51 52

6 1718 19 2138 4348

1 2 4 527 29 333742

37 1014 15 1623 262831 32 35

8 922 303641 44 45 4649 50

Gantt Chart

Job 0
Job 1
Job 2
Job 3
Job 4
Job 5
Job 6
Job 7
Job 8
Job 9

Figure 13: Example Schedule for the JSSP

step, the agent decides for each machine whether and which job to process next until all machines749

are busy or all jobs are being processed. In this case, the environment transitions to the next time750

step at which a machine becomes idle.751

Instance Generation We follow the instance generation method described by Zhang et al. [153],752

which assumes that each job has exactly one operation per machine, i.e. ni = |M |. Further,753

processing times for all operations are sampled iid. from a uniform distribution, with parameters754

specified in Table 8.755

B.2.2 Flexible Job Shop Scheduling Problem (FJSSP)756

The flexible job shop scheduling problem is very similar to the JSSP. However, while in the classical757

JSSP, each operation oij ∈ O has a specified machine and processing time pij , the flexible job shop758

scheduling problem (FJSSP) relaxes this assumption by allowing each operation to be processed by759

multiple eligible machines Mk ⊆ M , potentially with different processing times pijk associated760

with the respective operation-machine pair. As a consequence, the agent does not only need to761

decide which job to process next, but also on which machine it should be processed.762

Instance Generation We follow the instance generation method described by Song et al. [125],763

who sample ni operations for each job Ji from a uniform distribution. Further, an average processing764

time p̄ij is drawn for each operation oij ∈ O, and the actual processing time per eligible operation-765

machine pair is subsequently sampled from U(0.8 · p̄ij , 1.2 · p̄ij). The parameters used for instance766

generation can be found in Table 8.767

Table 8: Instance generation parameters

JSSP FJSSP
6× 6 10× 10 15× 15 20× 20 10× 5 20× 5 15× 10 20× 10

|J | 6 10 15 20 10 20 15 20
|M | 6 10 15 20 5 5 10 10
ni 6 10 15 20 U(4, 6) U(4, 6) U(8, 12) U(8, 12)
p̄ij U(1, 99) U(1, 99) U(1, 99) U(1, 99) U(1, 20) U(1, 20) U(1, 20) U(1, 20)
|Mi| 1 1 1 1 U(1, 5) U(1, 5) U(1, 10) U(1, 10)

B.2.3 Flexible Flow Shop Problem (FFSP)768

The flexible flow shop problem (FFSP) is a complex and widely studied optimization problem in769

production scheduling. It involves N jobs to be processed in S stages, each containing multiple770

machines (M > 1). Each job must pass through the stages in a specified order, but within each771

stage, it can be processed by any available machine. A critical constraint is that no machine can772

process more than one job at a time. The objective is to find an optimal schedule that minimizes the773

22

Industrial & Systems Engineering 6

Package
PDN

Interposer
PDN

Hardware
Device

On-chip
PDN

𝑍𝑍1,1 ⋯ 𝑍𝑍1,𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
⋮ ⋱ ⋮

𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐,1 ⋯ 𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐,𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
𝑍𝑍1,1 ⋯ 𝑍𝑍1,𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
⋮ ⋱ ⋮

𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐,1 ⋯ 𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐,𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

𝑍𝑍1,1 ⋯ 𝑍𝑍1, 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
⋮ ⋱ ⋮

𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐,1 ⋯ 𝑍𝑍𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐, 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟×𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

EM simulation at the probing port

𝑱𝑱(𝒂𝒂;𝒙𝒙)Keep-Out
Probing Port

Decap

Frequency-dependent Impedances

Objective function

Figure 14: Grid representation of the target on-chip PDN for the DPP problem with a single probing port from
Kim et al. [67].

total time required to complete all jobs. We formulate the FFSP as a sequential decision process,774

where at each time step t = 0, 1, ... and for each idle machine, the agent must decide whether775

and which job to schedule. If all machines are busy or all jobs are currently being processed, the776

environment moves to the next time step t + 1, and the process repeats until all jobs for each stage777

have been scheduled.778

Instance Generation We follow the data generation process described by Kwon et al. [77], who779

sample processing times for each job-machine pair and for every stage independently from a discrete780

uniform distribution.781

B.3 Electronic Design Automation782

Electronic Design Automation (EDA) is a sophisticated process that involves the use of software783

tools to design, simulate, and analyze electronic systems, particularly integrated circuits (ICs) and784

printed circuit boards (PCBs). EDA encompasses a wide range of tasks, from schematic capture785

and layout design to verification and testing. Optimization is a critical aspect of EDA, where the786

goal is to achieve the best possible performance, power efficiency, and cost within the constraints787

of the design. This involves solving complex problems that can be either continuous, such as cell788

placement [52], or combinatorial, like decap placement [67]. RL4CO integrates CO problems in789

EDA as benchmarking environments.790

B.3.1 Decap Placement Problem (DPP)791

The decap placement problem (DPP) is an electronic design automation problem (EDA) in which792

the goal is to maximize the performance with a limited number of the decoupling capacitor (decap)793

placements on a hardware board characterized by asymmetric properties, measured via a probing794

port. The decaps cannot be placed on the location of the probing port or in keep-out regions (which795

represent other hardware components) as shown in Fig. 14. The optimal placement of a given num-796

ber of decaps can significantly impact electrical performance, specifically in terms of power integrity797

(PI) optimization. PI optimization is crucial in modern chip design, including AI processors, espe-798

cially with the preference for 3D stacking memory systems like high bandwidth memory (HBM)799

[54]. For comprehensive details, we follow the configuration guidelines provided in [67].800

Baseline solvers We employ two meta-heuristic baselines commonly used in hardware design as801

outlined in [67]: random search (RS) and genetic algorithm (GA) [62]. GA has shown promise as a802

method for addressing the decap placement problem (DPP).803

Instance generation details We use the same data for simulating the hardware board as Kim et al.804

[67], with power distribution network (PDN) datasets from Park et al. [108]. We randomly select one805

23

probing port and a number between 1 and 50 keep-out regions sampled from a uniform distribution806

for generating instances. As in the routing benchmarks, we select seed 1234 for testing the 100807

instances.808

B.3.2 Multi-Port Decap Placement Problem (mDPP)809

We further consider a more complex and realistic version compared to Kim et al. [67]. The multi-810

port decap placement problem (mDPP) is a generalization of DPP from Appendix B.3.1 in which811

measurements from multiple probing ports are performed. The objective function can be either the812

mean of the reward from the probing ports: 1) (Maxsum): the objective is to maximize the average813

PI among multiple probing ports and 2) (Maxmin): maximize the minimum PI between them.814

Instance generation details The generation details are the same as DPP, except for the probing815

port. A number of probing ports between 2 and 5 is sampled from a uniform distribution, and816

probing ports are randomly placed on the board, just like the other components.817

B.4 Graph818

Many CO problems can be (re-)formulated on graphs [64]. In typical CO problems on graphs, ac-819

tions are defined on nodes/edges, while problem variables and constraints are incorporated in graph820

topology and node/edge attributes (e.g., weights). The graph-based formulation gives us concise and821

systematic representations of CO problems. Moreover, existing traditional and machine-learning al-822

gorithms for graphs are off-the-shelf tools.823

B.4.1 Facility Location Problem (FLP)824

The optimal usage of limited resources is an important problem to consider in many different fields825

and has various forms. One specific form of such a problem can be formulated as the facility location826

problem (FLP), where one aims to choose a given number of locations among given candidates, and827

the objective is to minimize the overall cost of service (e.g., the sum of the distance from the users828

to the nearest facility) [38].829

Many real-world problems can be abstracted as instances of FLP. For example, franchise brands may830

need to determine where to open new retail stores to maximize accessibility and profitability [120];831

governments may need to consider the placement of public facilities (e.g., hospitals and schools) to832

maximize the convenience for citizens to use them [101]; energy companies may need to determine833

the best locations for power centers (e.g., power plants and wind farms) to minimize transmission834

losses [92].835

Formal definition We consider the following specific form of the facility location problem (FLP)836

used in existing NCO literature [141, 25]: (1) given a group of n locations x1, x2, . . . , xn ∈ Rd837

in a d-dimensional space (usually d = 2 or 3) and k < n, (2) we aim to choose k locations838

xi1, xi2, . . . , xik among the given n locations as the locations of facilities, (3) to minimize the sum839

of the distance from all the n locations to the nearest facility, i.e.,
∑n

j=1 minkt=1 dist(xj , xit). We840

specially consider the Euclidean distance, i.e., dist(xi, xj) = ∥xi − xj∥2.841

Instance generation details The locations are (d = 2)-dimensional generated i.i.d. at random.842

For each location, each coordinate is sampled i.i.d. uniformly at random between 0 and 1. Each843

instance contains n = 100 locations, and k = 10 locations are to be chosen.844

Classical solvers We apply two MIP solvers, Gurobi [44] and SCIP [14], to obtain the optimal845

solutions.846

24

B.4.2 Maximum Coverage Problem (MCP)847

In many real-world scenarios, one needs to allocate limited resources to achieve maximum coverage,848

which is a fundamental concern across various domains. One specific formulation is called the849

maximum coverage problem (MCP), where the goal is to select a subset of sets from a given family850

of sets to maximize the coverage, i.e., the (weighted) size of the union of the selected sets [65].851

As a mathematical abstraction, the MCP can be used to represent many real-world problems. For852

example, radio frequency identification (RFID) system engineers may need to set RFID readers in853

an optimal way to ensure the maximum coverage of RFID tags [4]; marketers may need to choose854

proper forms of advertisement to reach the maximum number of customers [126]; in security ap-855

plications (e.g., deploying security cameras), one may need to select the optimal deployment to856

maximize the coverage of the protected area [105].857

Formal definition We consider the following specific form of the maximum coverage prob-858

lem (MCP) used in existing NCO literature [141, 25]: (1) given m items (WLOG, [m] :=859

{1, 2, 3, . . . ,m}), where each item t has weight wt, and a family of n sets S1, S2, . . . , Sn ⊆ [m] for860

some positive integer m and k < n, (2) we aim to choose k sets Si1, Si2, . . . , Sik among the given861

n sets, (3) to maximize the total weighted coverage of the k chosen sets, which is the sum of the862

weights of items contained in any chosen set, i.e.,
∑

t∈⋃k
j=1 Sij

wt.863

Instance generation details First, m = 200 items are generated, and the item weights are gener-864

ated i.i.d., where each weight is a random integer sampled between 1 and 10 (inclusive) uniformly at865

random. Then, n = 100 sets are generated i.i.d., where for each set, we first sample its size between866

5 and 15 uniformly at random and then choose that number of items uniformly at random. After867

generation, k = 10 locations are to be chosen.868

Classical solvers We apply two MIP solvers, Gurobi [44] and SCIP [14], to obtain the optimal869

solutions.870

B.5 Additional Environments and Beyond871

We also include in the library additional environments that have been implemented but not fully872

benchmarked in this paper yet, such as the ATSP, mTSP, Skill-VRP, SMTWTP, and SPCTSP, to873

name a few. We did not count these in the total environment count (hence the “conservative” esti-874

mate). Moreover, several projects, among which co-authors of this paper, have adapted several new875

environments to their own tasks, which may be included in the future.876

Although RL4CO already contains several environments, we acknowledge that the library can be877

further extended within new directions, which we briefly describe. One such direction is multi-878

objective combinatorial optimization [87, 29], which is a recently trending research topic of practical879

importance. Moreover, providing modular reward evaluators to optimize different objectives (for880

instance, min-max, tardiness) is another avenue of research that we recommend exploring [109].881

Of practical importance is also non-euclidean routing, which so far has received comparatively less882

attention in this field but is practically important (i.e., DIMACS challenge13). Finally, multi-agent883

CO [40, 130, 131, 15] is another interesting area of research, which recent approaches model as a884

sequential decision-making process [123, 155].885

Implementing new environments is relatively easy: we created a notebook under the examples/886

folder demonstrating how one can implement a custom environment from the base logic to a fully887

functioning model. We expect to host an even wider variety of environments in the future, thanks to888

the community, and invite contributors to help us in our journey.889

13http://dimacs.rutgers.edu/programs/challenge/vrp/

25

http://dimacs.rutgers.edu/programs/challenge/vrp/

C Baselines890

This section provides an overview of the key components and methods implemented in RL4CO that891

can be used as baselines for comparative evaluation. The term “baselines” broadly refers to both the892

RL algorithms that define the learning objectives and update rules, as well as the policy architectures893

that parameterize the agent’s behavior in the environment, given that several papers introduce a mix894

of RL training schemes and policy improvements. We categorize baselines into:895

1. General-purpose RL algorithms (C.1)896

2. Constructive autoregressive (AR) methods (C.2)897

3. Constructive non-autoregressive (NAR) methods (C.3)898

4. Improvement methods (C.4)899

5. Active search methods (C.5)900

C.1 General-purpose RL Algorithms901

In the following descriptions of RL algorithms, we use the notations of a full problem instance x902

and a complete solution a for simplicity. However, note that these algorithms are also applicable to903

the usual notion of the sum of rewards over partial states st and actions at.904

C.1.1 REINFORCE [128]905

REINFORCE (also known as policy gradients in the literature) is an online RL algorithm whose loss906

function gradient is given by:907

∇θLa(θ|x) = Eπ(a|x) [(R(a,x)− b(x))∇θ log π(a|x)] , (5)
where b(·) is a baseline function used to stabilize training and reduce gradient variance. The choice908

of b(·) can greatly influence the final performance.909

C.1.2 Advantage Actor-Critic (A2C) [73]910

A2C is an algorithm that can be used to solve the RL objective in Eq. (3). It consists of an actor (pol-911

icy network) and a critic (value function estimator). The actor is trained to maximize the expected912

cumulative reward by following the policy gradient, while the critic is trained to estimate the value913

function. The advantage function, computed as the difference between the reward R(a,x) and the914

value function V (x), is used to weight the policy gradient update for the actor. This can be seen915

as a modification of the REINFORCE gradient, where the baseline b(x) is replaced by the value916

function V (x):917

∇θLa(θ|x) = Eπ(a|x) [(R(a,x)− V (x))∇θ log π(a|x)] . (6)
The critic is updated by minimizing the mean-squared error between the estimated value function918

and the target value, which is the reward for the given problem instance x:919

Lc = Ex∼P (x)(R(a,x)− V (x))2. (7)
By using the advantage function, A2C reduces the variance of the policy gradient and stabilizes920

training compared to the standard REINFORCE algorithm.921

C.1.3 Proximal Policy Optimization (PPO) [119]922

PPO is another algorithm that can be used to solve the RL objective in Eq. (3). It is an on-policy923

algorithm that aims to improve the stability of policy gradient methods by limiting the magnitude924

of policy updates. To this end, PPO introduces a surrogate objective function that constrains the925

probability ratio between the target policy πθ that is optimized and a reference policy πθold , which926

is periodically updated. This clipping mechanism prevents drastic changes to the target policy,927

ensuring more reliable and stable learning. Formally, the PPO objective function is given by:928

LCLIP(θ) = Ex∼P (x)

[
Ea∼πθold (a|x)

[
min(

πθ(a|x)
πθold(a|x)

Aπθold (x,a),

26

clip(
πθ(a|x)
πθold(a|x)

, 1− ϵ, 1 + ϵ)Aπθold (x,a))
]]
, (8)

where θold represents the parameters of the reference policy, typically a periodically created copy of929

the parameters θ of the target policy. Further, Aπθold (x,a) is the advantage function estimated using930

the reference policy, and ϵ is a hyperparameter that controls the clipping range, typically set to a931

small value like 0.2.932

The advantage function in PPO is estimated using a learned value function Vϕ(x), where ϕ repre-933

sents the parameters of the value function. The advantage is computed as:934

Aπθold (x,a) = R(a,x)− Vϕ(x). (9)
The value function is learned by minimizing the mean-squared error between the estimated value935

and the actual return:936

LV (ϕ) = Ex∼P (x)

[
(R(a,x)− Vϕ(x))

2
]
. (10)

An optimization step in PPO updates both, the parameters θ of the target policy and the parameters937

ϕ of the value function by combining LCLIP and LV (ϕ) in a single loss LPPO = LCLIP + βLV (ϕ),938

where β is a hyperparameter [119].939

C.2 Constructive Autoregressive (AR)940

C.2.1 Attention Model (AM) [74]941

The Attention Model (AM) from Kool et al. [74] is an encoder-decoder architecture based on the942

self-attention mechanism [136] that is at the heart of several state-of-the-art NCO methods, including943

RL-based ones [76, 69, 51] as well as (self-)supervised ones [37, 93, 94]. In the original AM, only944

node features are considered: with abuse of notation from Fig. 3, we consider the InitEmbedding945

as the node embedding, and split the context embedding into a ContextEmbedding which updates946

the current query and DynamicEmbedding that updates the current cached keys and values.947

Multi-Head Attention Before delving into the encoder and decoder structures, we briefly intro-948

duce the notion of Multi-Head Attention (MHA) from Vaswani et al. [136], since it is used across949

several NCO methods. MHA allows the model to jointly attend to information from different rep-950

resentation subspaces at different positions, enabling it to capture various relationships between the951

input elements. Importantly, it is flexible in handling a variable number of elements.952

In the MHA operation, the input sequences Q (queries), K (keys), and V (values) are linearly953

projected to H different subspaces using learned matrices WQ
i , WK

i , and WV
i , respectively, where954

H is the number of attention heads:955

Qi = QWQ
i (11)

Ki = KWK
i (12)

Vi = VWV
i (13)

for i = 1, . . . ,H .956

The attention weights are computed as the scaled dot-product between the queries and keys, followed957

by a softmax operation:958

Ai = Softmax
(
QiK

T
i√

dk
+M

)
(14)

where dk is the dimension of the keys, used as a scaling factor to prevent the dot-products from959

getting too large, and M is an optional mask matrix that can be used to prevent attention to certain960

positions (e.g. infeasible actions in a CO problem).961

The output of each attention head is computed as the weighted sum of the values, using the attention962

weights:963

Zi = AiVi (15)
Finally, the outputs of all attention heads are concatenated and linearly projected using a learned964

matrix WO to obtain the final output of the MHA operation:965

MHA(Q,K, V) = Concat(Z1, . . . , ZH)WO (16)

27

This multi-head attention mechanism allows the model to learn different attention patterns and cap-966

ture various dependencies between the input elements, enhancing the representational power of the967

model. The queries, keys, and values can come from the same input sequence (self-attention, i.e.968

Q = K = V) or from different sequences (cross-attention), depending on the application. While969

the attention operation is at the core of much of the current SotA deep learning [134], this scales970

as O(L)2 where L is the sequence length, such as the number of nodes in a TSP. Thus, an efficient971

implementation such as FlashAttention [34, 33] is important, as shown in Appendix E.7.2.972

Encoder The encoder’s primary task is to encode input x into a hidden embedding h. The973

structure of fθ comprises two trainable modules: the InitEmbedding and encoder blocks. The974

InitEmbedding module typically transforms problem features into the latent space and problem-975

specific compared to the encoder blocks, which often involve plain multi-head attention (MHA):976

h = fθ(x) ≜ EncoderBlocks(InitEmbedding(x)) (17)

Each encoder block in the AM is composed of an Attention Layer, similar to Vaswani et al. [136].977

Each layer ℓ is composed of multi-head attention (MHA) for message passing and a Multi-Layer978

Perceptron (MLP, also known as feed-forward network (FFN)), with skip-connections and normal-979

ization (Norm):980

ĥ = Norm
(
h(ℓ−1) + MHA(h(ℓ−1),h(ℓ−1),h(ℓ−1))

)
(18)

h(ℓ) = Norm
(
ĥ+ MLP(ĥ)

)
(19)

with ℓ = [1, . . . , N] where N is the number of encoding layers and h0 = InitEmbedding(x). In981

the encoder side, we have Q = K = V = h(ℓ−1)), hence self-attention.982

The original implementation of the AM uses N = 3 layers H = 8 heads of dimension dk = dh
M =983

16, an MLP with one hidden layer of dimension 512 with a ReLU activation function, and a Batch984

Normalization [56] as normalization.985

Embedding

Encoder Decoder

Initial

Layers

Encoder

Environment

Context Embedding

Dynamic Embedding

Node 1

Node 2

Node i

Node N

…
…

…
…

Node 1

Node 2

Node i

Node N

States current_state=i

…

…

…

…

…

…

Node 1

Node 2

Node i

Node N

…
…

…
…

…
…

Decoder

Layers

Hidden States

Action

reset()

step()

Action

Probabilities

Node 1

Node 2

Node i

Node N

…

…
…

…

…

…

Node Features

Figure 15: An overview of the modularized Attention Model policy in RL4CO.

Decoder The decoder gθ autoregressively constructs the solution based on the encoder output h986

and the state at current step t, st. The solution decoding involves iterative steps until a complete987

solution is constructed: at each step, starting from the current node’s i query qit988

qit = ContextEmbedding(h, st), (20)

hct = MHA(qit,K
g
t , V

g
t ,Mt), (21)

z =
V p
t h

c
t√

dk
(22)

where Mt is the set of feasible actions (i.e. the action_mask), projections Kg
t , V

g
t , V

p
t =989

W g
kh,W

g
v h,W

p
v h can either be precomputed once as cache or updated via a dynamic embedding990

Kg
t , V

g
t , V

p
t = DynamicEmbedding(W g

k h,W
g
v h,W

p
v h, st,h,x),, depending on the problem. We991

note that Eq. (22) is usually referred to as the pointer mechanism (in the codebase, we refer to992

Eq. (21) and Eq. (22) as the PointerAttention). Finally, logits z (unnormalized output of policy993

28

π) are transformed into a probability distribution over the action space:994

p = Softmax (C · tanh(z)) (23)
where logits z for infeasible actions can be set to −∞ to avoid choosing them; and the C value995

(called tanh clipping, usually set to 10) serves in improving the exploration [8]. We note that Eq. (23)996

can also include additional operations such as temperature scaling, top-k, and top-p filtering.997

Baseline Kool et al. [74] additionally introduces the rollout baseline b for Eq. (5). At the end of998

each epoch, a greedy rollout of a baseline policy πBL is executed for each of the sampled instances999

x, whose values become baselines for REINFORCE. The algorithm compares the current training1000

policy with a saved baseline policy (similar to the DQN target network [103]) at the end of every1001

epoch, and replace the parameters of πBL with the current trained π if the improvement is significant1002

with a paired t-test of (i.e., 5% in the original paper).1003

C.2.2 Ptr-Net [139]1004

The original Pointer Network (Ptr-Net) is introduced in Vinyals et al. [139] and further refined to1005

be trained with RL in [8]. The base architecture predates the AM [74]: an attention mechanism is1006

employed to select outputs of variable length, thus “pointing” at them. The baseline architecture1007

additionally uses an LSTM [47], which in practice has less expressivity than full-fledged attention.1008

C.2.3 POMO [76]1009

POMO introduces the shared baseline to lower the REINFORCE variance. The key idea is that one1010

can sample rollouts when decoding by forcing diverse starting nodes, which is a powerful inductive1011

bias for certain problems, such as the TSP, in which multiple optimal initial starting points exist.1012

The baseline bshared is the average of all rollouts:1013

bshared(s) =
1

N

N∑

j=1

R(aj ,x) (24)

where N is the number of sampled trajectories (typically set as the number of nodes).1014

C.2.4 SymNCO [69]1015

SymNCO considers the symmetric nature of combinatorial problems and solutions. There are two1016

major symmetries in combinatorial optimization: 1) Problem symmetries: The representation of1017

the input 2D coordinates should have equivalent optimal solution sets and 2) Solution symmetries:1018

Multiple permutations can represent an identical cyclic line graph. To reflect this symmetric nature,1019

SymNCO augments the AM architecture by incorporating an auxiliary invariant representation loss1020

function to ensure input 2D symmetries. Additionally, SymNCO employs a shared baseline as1021

Eq. (24) similar to POMO but samples rollouts from both different symmetric problem inputs and1022

solutions together. The implementation is not vastly different from AM and POMO; the primary1023

addition is the symmetric-aware augmentation functions.1024

C.2.5 PolyNet [51]1025

The PolyNet method proposed by Hottung et al. [51] enables the learning of a set of complementary1026

solution strategies within a single model. This facilitates the easy sampling of diverse solutions at1027

test time, resulting in improved exploration of the search space and, consequently, enhanced overall1028

performance. Unlike many other approaches, PolyNet does not artificially increase exploration by1029

forcing diverse starting actions, as initially proposed by Kwon et al. [76]. Instead, PolyNet utilizes1030

its inherent diversity mechanism, based on its novel architecture and the Poppy loss [43, 27]:1031

∇θL = Eπ(a∗|x) [(R(a
∗,x)− b◦(x))∇θ log πθ(a

∗|x)] , (25)
to facilitate exploration during the search process, where a∗ is the best solution of K PolyNet sam-1032

ples and b◦(x)) is the average reward of theK samples. This can improve performance for problems1033

in which the first action greatly influences the performance.1034

29

C.2.6 HAM [82]1035

The Heterogeneous Attention Model (HAM) [82] is a model specialized for Pickup and Delivery1036

problems (PDP, Appendix B.1.5), characterized by hard one-to-one precedence constraints. To dif-1037

ferentiate between pickup and delivery pairs, it introduces ad hoc encoder blocks with a specialized1038

attention mechanism that can differentiate between pickup and delivery pairs.1039

C.2.7 MTPOMO [89]1040

The MTPOMO developed by Liu et al. [89] proposes to adopt a unified model to learn across var-1041

ious VRP variants. It is motivated by the fact that the diverse VRPs are different combinations1042

of several shared underlying attributes. By training on a limited number of VRPs with basic at-1043

tributes, the model is capable of generalizing to a vast array of VRP variants, each representing1044

different combinations of these attributes. This approach extends POMO [76] by incorporating1045

an attribute composition block, facilitating learning across different problems. The cross-problem1046

learning demonstrates promising zero-shot generation performance on unseen VRPs and benefits1047

out-of-distribution performance.1048

C.2.8 MVMoE [157]1049

The MVMoE architecture proposed by Zhou et al. [157] incorporates mixture-of-experts1050

(MoEs) [57, 60, 121] into attention-based model (e.g., POMO [76]), such that the model capac-1051

ity can be greatly enhanced without a proportional increase in computation. For the encoder part,1052

MVMoE replaces a feed-forward network (FFN) with an MoE layer, which typically consists of 1)1053

m experts {E1, E2, . . . , Em}, each of which is also an FFN with independent trainable parameters,1054

and 2) a gating network G parameterized by WG, which decides how the inputs are distributed to1055

experts. Given a single input x, G(x) and Ej(x) denote the output of the gating network (i.e., an1056

m-dimensional vector), and the output of the jth expert, respectively. The output of an MoE layer is1057

calculated as:1058

MoE(x) =
m∑

j=1

G(x)jEj(x). (26)

The gating algorithm follows the node-level input-choice gating proposed by Shazeer et al. [121],1059

which leverages a sparse gating network: G(x) = Softmax(TopK(x · WG)). In this way, only1060

k experts with partial model parameters are activated, hence saving the computation. For the de-1061

coder part, MVMoE replaces the final linear layer of MHA with an MoE layer, including m linear1062

layers and a gating network G. To balance the empirical performance and computational com-1063

plexity, a hierarchical gating mechanism is further proposed to utilize MoEs during decoding effi-1064

ciently. In this case, the MoE layer in the decoder includes two gating networks {G,G′}, m experts1065

{E1, E2, . . . , Em}, and a dense layer D. Given a batch of inputs X , the hierarchical gating routes1066

them in two stages. In the first stage, G′ decides to distribute inputs X to either the sparse or dense1067

layer. In the second stage, if X is routed to the sparse layer, the gating network G is activated to1068

route nodes to experts on the node level by using the default gating algorithms, i.e., the input-choice1069

gating. Otherwise, X is routed to the dense layer D and transformed into D(X). In summary, the1070

hierarchical gating learns to output G′(X)0
∑m

j=1G(X)jEj(X) or G′(X)1D(X). Empirically, hi-1071

erarchical gating has been found to be more efficient, albeit with a slight sacrifice in in-distribution1072

performance, while demonstrating superiority with out-of-distribution data.1073

C.2.9 L2D [153]1074

Learning to Dispatch (L2D) proposed by Zhang et al. [153] is a DRL method to solve the JSSP.1075

It comprises of the usual encoder-decoder structure, where a graph convolution network (GCN) is1076

employed to extract hidden representations from the JSSP instance. To this end, L2D formulates the1077

JSSP as a disjunctive graph, with nodes reflecting the operations of the problem instance. Nodes of1078

operations that belong to the same job are connected via directed arcs, specifying their precedence1079

relation. Moreover, operations to be processed on the same machine are connected using undirected1080

30

arcs. Using the resulting neighborhood N of the nodes, the GCN performs massage passing be-1081

tween adjacent operations to construct their hidden representations. Formally, let h0 be the initial1082

embeddings of operations O and Ã the adjacency matrix with added self-loops of operations, then1083

a graph convolutional layer can be described as follows:1084

h(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2h(l)W (l)

)

Here, h(l) are the operation embeddings at layer l, W (l) is a trainable weight matrix at layer l, and1085

σ(·) is an activation function such as ReLU. Further, D̃ is the diagonal degree matrix of Ã, ensuring1086

appropriate scaling of the features.1087

Given the operation embeddings, the decoder of L2D first extracts for each job the embedding of1088

the operation that needs to be scheduled next and then feeds them to an MLP f : RJ×d → RJ×1 to1089

obtain logits for each job j ∈ (1, ..., J). In contrast to Kool et al. [74] for example, who encode the1090

CO problem once and then generate actions autoregressively using only the decoder, Zhang et al.1091

[153] use the GCN encoder after each step to generate new hidden representations that reflect the1092

current state of the problem.1093

C.2.10 HGNN [125]1094

The heterogeneous graph neural network (HGNN) is a neural network architecture proposed by1095

[125] to solve the FJSSP. Similar to L2D, HGNN considers an FJSSP instance as a graph. However,1096

instead of treating an FJSSP instance as a disjunctive graph, Song et al. [125] formulate it as het-1097

erogeneous graph with operations and machines posing different node types. Again, operations are1098

connected to each other via directed arcs that specify the precedence relation. Machines are only1099

connected to operations that they are able to process, and the edge weights indicate the respective1100

processing times. To encode the graph, HGNN first projects operationsO ∈ x and machinesM ∈ x1101

into a mutual embedding space Rd using type-specific transformations WO and WM , respectively.1102

Given the initial hidden representations h0
i and h0

k for operations oi ∈ O and machines mk ∈ M ,1103

respectively, as well as edge embeddings hik, an HGNN layer conducts weighted message passing1104

between operations and machines using the processing times of operation-machine pairs:1105

hl+1
i =

∑

j∈Ni

ϵih
l
j , where (27)

ϵij = Softmax
j∈Ni

(a⊤[hl
j ||hij]). (28)

Since operations in the FJSSP can be processed by multiple machines, the decoder must specify1106

not only which job to process next but also on which machine the operation of the selected job1107

should be executed. To this end, Song et al. [125] concatenates the hidden representations of every1108

operation with the embeddings of every machine. The resulting embeddings are fed to an MLP1109

f : RJ×M×2d → RJ×M×1, which generates the sampling probabilities for the respective action.1110

C.2.11 MatNet [77]1111

The MatNet architecture proposed by Kwon et al. [77] adjusts the attention model [74] so that it is1112

applicable to bipartite graphs with node types I and J as well as a weight matrix E ∈ R|I|×|J |1113

corresponding to the edges connecting nodes from the two sets. The novelty of this architecture is1114

that instead of using self-attention as in the attention model, MatNet uses cross-attention to perform1115

message passing between both node sets and augments the resulting attention scores with the weight1116

matrix E. Formally, let Z be the set of all nodes i ∈ I ∪ J , Zϕi the subset of nodes of the same1117

type as i and Z∁
ϕi

the set of nodes of the respective type. Then, cross-attention is defined as:141118

α′
ij =

q⊤
i kj√
dk

, ∀i ∈ Z, j ∈ Z∁
ϕi

(29)

14For succinctness, note that we omit head and layer enumeration.

31

where1119

qi =WQ
ϕi
hl−1
i kj =WK

ϕi
hl−1
j (30)

and weight matricesWQ
ϕi

andWK
ϕi

∈ Rdk×dh being learned by the update function corresponding to1120

nodes of type ϕi. After that, MatNet augments α′
ij with the corresponding edge weight eij and maps1121

it through a feed-forward neural network FF : R2 → R to a scalar score, which is then normalized1122

using the softmax function:1123

αij =
exp(ϵij)∑

q∈Z∁
ϕi

exp(ϵiq)
, ϵij = FF

(
[α′

ij ||eij]
)

(31)

The resulting weights are used to compute a weighted average of the embeddings vj = WV
ϕi
hl−1
j1124

of the nodes in Z∁
ϕi

. In the end, skip connections, layer normalization (LN), and feed-forward1125

layers are used as in Vaswani et al. [136]. Besides the original MatNet implementation, RL4CO1126

also implements a version that applies both self- and cross-attention, successively as proposed by1127

Luttmann and Xie [95]. This makes MatNet not only applicable to bipartite graph problems but to1128

the more general class of heterogeneous graphs [95].1129

C.2.12 DevFormer [67]1130

We employ online RL variants of DevFormer [67] (DF), an Attention-Model [74] variant specifically1131

designed for autoregressive construction of DPP solutions from Appendix B.3.1. We note that the1132

DF training scheme was initially designed for offline training; however, in this study, we benchmark1133

DF as a sample-efficient online reinforcement learning approach. We benchmark the DF version1134

for RL with the same node and context embedding structure as the original in Kim et al. [67]. We1135

modify the embeddings in the mDPP environment (Appendix B.3.2) version to include the location1136

of multiple probing ports. Min-max and min-sum mDPP versions utilize the same embeddings and1137

are trained separately.1138

C.3 Constructive Non-Autoregressive (NAR)1139

C.3.1 DeepACO [150]1140

Ant Colony Optimization (ACO) is an evolutionary algorithm that has been successfully applied to1141

various COPs. Traditionally, customizing ACO for a specific problem requires the expert design1142

of knowledge-driven heuristics. However, this routine of algorithm customization exhibits certain1143

deficiencies: 1) it requires extra effort and makes ACO less flexible; 2) the effectiveness of the1144

heuristic measure heavily relies on expert knowledge and manual tuning; and 3) designing a heuristic1145

measure for less-studied problems can be particularly challenging, given the paucity of available1146

expert knowledge.1147

DeepACO is designed to automatically strengthen the heuristic measures of existing ACO algo-1148

rithms and dispense with laborious manual design in future ACO applications. DeepACO consists1149

of two stages: 1) training a neural model to map a COP instance to its heuristic measures, and 2) in-1150

corporating the learned heuristic measures into ACO to bias solution constructions and local search.1151

During the training phase, DeepACO parameterizes the heuristic space with a graph neural network1152

(GNN) [61]. It trains the GNN across COP instances with REINFORCE, towards minimizing the1153

expected objective value of both constructed solutions and solutions refined by local search. Dur-1154

ing the inference phase, DeepACO utilizes the well-trained GNN to generate heuristic measures for1155

ACO. Optionally, DeepACO interleaves local search with neural-guided perturbation to refine the1156

constructed solutions. For more details, please refer to [150].1157

DeepACO is the first NAR model implemented in RL4CO, laying the foundation for other NAR1158

models later integrated into RL4CO. DeepACO offers a versatile methodological framework that1159

allows for further algorithmic enhancements in neural architecture, training paradigms, decoding1160

32

strategies, and problem-specific adaptations. Notable improvements over DeepACO are introduced1161

by GFACS [70].1162

C.3.2 GFACS [70]1163

While DeepACO [150] provides promising results and opens new doors for pretraining heuristic1164

measures for the ACO algorithm using deep learning, their method is sub-optimal for two ma-1165

jor reasons. Firstly, they utilized policy gradient reinforcement learning (RL), which is an on-1166

policy method that cannot leverage powerful off-policy techniques such as local search. Secondly,1167

their method cannot effectively capture the multi-modality of heuristic distribution because the RL1168

method cannot accurately model multi-modal probabilistic distributions considering the symmetric1169

nature of combinatorial space, where multiple trajectories can lead to identical solutions.1170

The methodology of GFACS shares a very similar structure with DeepACO. The key difference1171

lies in the learning procedure; GFACS employs generative flow networks (GFlowNets) [9, 11] for1172

learning the heuristic matrix. Additionally, they leverage effective off-policy exploration methods1173

using local search. The inference procedure with the learned heuristic matrix remains exactly the1174

same. With the RL4CO modular implementation, both DeepACO and GFACS can run similarly1175

and be comparable at the modular level, allowing future researchers to improve certain modules of1176

training or inference.1177

C.3.3 GLOP [152]1178

Most NCO methods struggle with real-time scaling-up performance; they are unable to solve routing1179

problems involving thousands or tens of thousands of nodes in seconds, falling short of the needs1180

of modern industries. GLOP (Global and Local Optimization Policies) is proposed to address this1181

challenge. It partitions a large routing problem into sub-TSPs and further partitions potentially large1182

(sub-)TSPs into small Shortest Hamiltonian Path Problems (SHPPs). It is the first hybrid method to1183

integrate NAR policies for coarse-grained problem partitions and AR policies for fine-grained route1184

constructions, leveraging the scalability of the former and the meticulousness of the latter.1185

1) AR (Sub-)TSP Solver. The (Sub-)TSP Solver in GLOP initializes TSP tours using a Random1186

Insertion heuristic, which greedily inserts nodes to minimize cost. These tours are then improved1187

through a process of decomposition and reconstruction. Specifically, the solver decomposes a com-1188

plete tour into several subtours, which are treated as instances of the Shortest Hamiltonian Path1189

Problem (SHPP). Each subtour is solved using an AR local policy referred to as a “reviser”. These1190

revisers are applied in rounds called “revisions” to enhance the initial tour iteratively. The subtours1191

are normalized and optionally rotated to improve the model’s performance. After solving the SHPP1192

instances, the subtours are reassembled into an improved complete tour. This method allows for1193

efficient and parallelizable improvements on large-scale TSPs.1194

2) NAR General Routing Solver. The general routing solver in GLOP additionally implements1195

an NAR global policy that either partitions all nodes into multiple sub-TSPs (e.g., for CVRP) or1196

subsets all nodes to form a sub-TSP (e.g., for PCTSP). The NAR global policy is parameterized by a1197

graph neural network (GNN) that processes sparsified input graphs and outputs a partition heatmap.1198

GLOP clusters or subsets nodes by sequentially sampling nodes based on the partition heatmap1199

while adhering to problem-specific constraints. The sub-TSPs are then solved by the (Sub-)TSP1200

solver. The global policy is trained using REINFORCE to output partitions that could lead to the1201

best-performing final solutions after solving sub-TSPs.1202

GLOP is integrated into RL4CO as the first hybrid method that combines NAR and AR policies,1203

indicating the versatility of RL4CO in accommodating various methodological paradigms. It is1204

promising to further investigate the emerging possibilities that arise when viewing AR and NAR1205

methods from a unified perspective and combining them synergistically. RL4CO provides a flexible1206

and extensible platform for exploring such hybridization in future research.1207

33

C.4 Improvement methods1208

Improvement methods leverage RL to train a policy that iteratively performs rewriting exchanges on1209

the current solution, aiming to generate a new solution with potentially lower costs. As in construc-1210

tive methods, the policy of improvement methods is also based on the encoder-decoder structure.1211

C.4.1 DACT [96]1212

Improvement methods typically take node features and solution features (positional information of1213

nodes in the current solution) as key inputs. Encoding VRP solutions involves processing com-1214

plex relationships between Node Feature Embeddings (NFEs) and Positional Feature Embeddings1215

(PFEs). However, directly adopting the original Transformer to add the two types of embeddings, as1216

done by Wu et al. [145], can cause mixed attention score correlations and impairing performance.1217

To address this, the Dual-Aspect Collaborative Transformer (DACT) proposes DAC-Att, which pro-1218

cesses NFEs and PFEs separately and employs cross-aspect referential attention to understand the1219

consistencies and differences between the two embedding aspects. This approach avoids mixed1220

correlations and allows detailed modeling of hidden patterns. Another key issue is the Positional1221

Encoding (PE) method. While the original Transformer’s PE works well for linear sequences, it1222

may not suit the cyclic nature of VRP solutions. To address this, DACT proposes Cyclic Positional1223

Encoding (CPE), inspired by cyclic Gray codes, which generates cyclic real-valued coding vectors to1224

capture the topological structure of VRP solutions and improve generalization. Additionally, DACT1225

redesigns the RL algorithm for improvement methods, introducing a Proximal Policy Optimization1226

with Curriculum Learning (PPO-CL) algorithm to improve training stability and efficiency.1227

In RL4CO, DACT is implemented and modularized so that other methods can easily reuse com-1228

ponents like CPE encoding and the PPO-CL algorithm. It also reuses common parts (such as node1229

embedding initialization, decoding functions, etc) from the implementation of constructive methods,1230

indicating the flexibility of the RL4CO framework.1231

C.4.2 N2S [97]1232

The Neural Neighborhood Search (N2S) method extends the capabilities of improvement methods1233

to pickup and delivery problems (PDP). Expanding on the DACT approach, N2S leverages a tai-1234

lored MDP formulation for a ruin-repair neighborhood search process. It uses a Node-Pair Removal1235

decoder in the ruin stage and a Node-Pair Reinsertion decoder in the repair stage, allowing efficient1236

operation on pickup-delivery node pairs. However, more complex decoders increase computational1237

costs in the policy network, requiring a balance between encoders and decoders. To address this,1238

N2S introduces Synthesis Attention (Synth-Att), which learns a single set of embeddings and synthe-1239

sizes attention scores from various node feature embeddings using a Multilayer Perceptron (MLP)1240

module. This promotes lightweight policy networks and enhances model expressiveness. The N2S1241

encoder with the efficient Synth-Att represents a state-of-the-art design of improvement encoder,1242

which is adopted in the latest works [97, 98].1243

In RL4CO, N2S reuses the CPE encoding and the PPO-CL algorithm implemented in DACT. The1244

efficient N2S encoder is also modularized and designed to be shared among other improvement1245

methods to process the complex relationships between different feature embeddings.1246

C.4.3 NeuOpt [98]1247

A key bottleneck of improvement methods like DACT is their simplistic action space design, which1248

typically uses smaller, fixed k values (2-opt or 3-opt) due to decoders struggling with larger, varying1249

k. To address this, the latest improvement method introduces Neural k-Opt (NeuOpt), a flexible1250

solver capable of handling any given k ≥ 2. NeuOpt employs an action factorization method to1251

break down complex k-opt exchanges into a sequence of basis moves (S-move, I-move, E-move),1252

with the number of I-moves determining the k value. This step-by-step construction allows the1253

model to automatically determine a suitable k. Similar to variable neighborhood search, NeuOpt1254

combines varying k values across search steps, balancing coarse-grained and fine-grained searches,1255

34

which is crucial for optimal performance. NeuOpt also features a Recurrent Dual-Stream (RDS)1256

decoder with recurrent networks and two decoding streams for contextual modeling and attention1257

computation, effectively capturing the complex dependencies between removed and added edges.1258

In RL4CO, NeuOpt is implemented by reusing the successful CPE and PPO-CL training modules1259

from DACT, as well as the efficient encoder from N2S. This demonstrates the strength and versatility1260

of the RL4CO coding library, which allows for the easy integration of proven methodologies.1261

C.5 Active Search Methods1262

Active search methods are examples of transductive RL, in which an RL algorithm is run to finetune1263

a pre-trained policy on specific test-time instances.1264

C.5.1 Active Search (AS) [8]1265

In active search proposed by Bello et al. [8], a model is fine-tuned to a single test instance. To1266

this end, active search uses the same loss formulation as during the original training of the model.1267

Over the course of the search process, the model’s performance on the single test instance improves,1268

leading to the discovery of high-quality solutions. While active search is easy to implement, as the1269

search process closely follows the training process, it is often very slow since all model weights are1270

adjusted for each test instance individually.1271

C.5.2 Efficient Active Search (EAS) [50]1272

Efficient active search (EAS), proposed by Hottung et al. [50], builds upon the idea of active search1273

and trains a model on a single instance at test time to enable a guided search. However, EAS only1274

updates a subset of parameters during the search and allows most operations to be performed in1275

parallel across a batch of different instances. This approach not only reduces computational costs1276

but also results in a more stable fine-tuning process, leading to an overall improvement in solution1277

quality.1278

D Benchmarking Setup1279

D.1 Metrics1280

D.1.1 Gap to BKS1281

The Gap to Best Known Solution (BKS) is a commonly used metric to evaluate the performance1282

of optimization algorithms on benchmark instances. It measures the relative difference between the1283

best solution found by the algorithm and the BKS for a given problem instance. Given a problem1284

instance i, let ai be the objective value of the best solution found by the algorithm, and let a∗
i be the1285

objective value of the BKS for that instance. The Gap to BKS for the i-th instance is defined as:1286

Gap to BKSi = 100×
(
ai − a∗

i

a∗
i

)
(32)

The Gap to BKS is expressed as a percentage, with a value of 0% indicating that the algorithm1287

has found a solution that matches the BKS. A positive Gap to BKS indicates that the algorithm’s1288

solution is worse than the BKS, while a negative Gap to BKS (though less common) indicates that1289

the algorithm has found a new best solution for the instance15.1290

15Note that when calculating the gap for a set of instances, one should do an average of gaps, i.e.
1
n

∑n
i=1 Gap to BKSi, instead of calculating the gap of the average 100 ×

∑
ai/

∑
a∗
i , which might yield

similar results in some settings but prone to error especially for certain distributions.

35

D.1.2 Primal Integral1291

The Primal Integral (PI) is a metric that evaluates the anytime performance of optimization algo-1292

rithms by capturing the trade-off between solution quality and computational time [12, 133]. It is1293

defined as the area under the curve of the incumbent solution value plotted against time, normalized1294

by the BKS value and the total time budget:1295

PI = 100×
(∑n

i=1 ai−1 · (ti − ti−1) + an · (Tmax − tn)

Tmax · a∗ − 1

)
(33)

where Tmax is the total time budget, ai is the incumbent solution value at time ti, and a∗ is the1296

best known solution value. A lower PI percentage indicates better anytime performance. The PI1297

complements other metrics, such as the Gap to BKS, by providing insights into the temporal aspect1298

of an algorithm’s performance, making it particularly useful for assessing anytime algorithms [58].1299

D.1.3 Runtime Measurement1300

Runtime normalization Comparing the run-time efficiency of different methods across various1301

hardware configurations can be challenging. In the RL4CO benchmark, we generally run the in-1302

ference on a single machine; when this is not possible due to resource limitations, we employ the1303

run-time normalization approach based on the PassMark hardware rating16. This approach nor-1304

malizes time budgets and run times during the evaluation process, allowing for a more equitable1305

comparison of methods. We use the definition of Accorsi et al. [1], Thyssens et al. [133] in normal-1306

izing: the reference machine combines a single CPU thread and a single GPU, the PassMark score1307

s for GPU-based methods is calculated as:1308

s =
1

2
(#CPU · CPU_Mark +#GPU · GPU_Mark) (34)

To normalize the solution time from machine 1 to machine 2, we calculate t̃2 = t1
s1
s2

, where t1 is1309

the solution time on machine 1, s1 is the PassMark score of machine 1, and s2 is the PassMark score1310

of machine 2. Note that in the case of most classical solvers, the GPU_Mark is simply set to 0 due1311

to them running on CPU.1312

Cross-solver comparisons Another aspect of NCO evaluation that has to be addressed is the fact1313

that evaluation between classical and learned solvers is often done on different devices, namely on1314

(single-threaded) CPUs and GPUs, respectively. Moreover, while multiple instances in NCO can1315

usually be solved in a batch, this is not usually the case for classical solvers. A more correct way is1316

to measure the per-instance solution time (which we do on large-scale NAR routing), which is more1317

realistic for real-world applications. For other studies, we employ the standard procedure of NCO of1318

evaluating times on batches as done in the original methods, making sure to compare “apples with1319

apples” (i.e., different NCO approaches are compared with the same settings). We note that while1320

RL4CO focuses on comparisons between NCO solvers and creating an open-source ecosystem for1321

this specific area, future studies (and possibly works in the RL4CO community) may also include1322

comparisons with classical solvers under different conditions, which we recognize as an important1323

research direction.1324

D.2 Hardware & Software1325

D.2.1 Hardware1326

Most experiments (during testing) were carried out on a machine equipped with two AMD EPYC1327

7542 32-CORE PROCESSOR CPUs with 64 threads each and four NVIDIA RTX A6000 graphic1328

cards with 48 GB of VRAM, of which only one is used during inference. We note that, due to the1329

amount of experiments and contributions, training was performed on a variety of hardware combina-1330

16PassMark: https://www.passmark.com/ is also used in the 2022 DIMACS challenge: http://
dimacs.rutgers.edu/programs/challenge/vrp/.

36

https://www.passmark.com/
http://dimacs.rutgers.edu/programs/challenge/vrp/
http://dimacs.rutgers.edu/programs/challenge/vrp/

tions, particularly University clusters. We found RL4CO to be robust and efficient across different1331

combinations of CPU, GPU, and software. Throughout the text, we may report the hardware setting1332

on which testing took place if it differs from the default one. In case different configurations were1333

used or results were reported from previous works, we refer to Appendix D.1.3 for result standard-1334

ization.1335

D.2.2 Software1336

Software-wise, we used Python 3.11 and PyTorch 2.3 [110]17, most notably due to the native1337

implementation of scaled_dot_product_attention. Given that most models in RL construc-1338

tive methods for CO generally use attention for encoding states, FlashAttention has some boost on1339

the performance (between 5% and 20% saved time depending on the problem size) when train-1340

ing is subject to mixed-precision training, which we do for all experiments. During decoding, the1341

FlashAttention routine is not called since, at the time of writing, it does not support maskings other1342

than causal; this could further boost performance compared to older implementations. Refer to Ap-1343

pendix A.2 for additional details regarding notable software choices of our library, namely TorchRL,1344

PyTorch Lightning, and Hydra.1345

D.3 Hyperparameters1346

D.3.1 Common Hyperparameters1347

Common hyperparameters can be found in the config/ folder from the RL4CO library, which1348

can be conveniently loaded by Hydra. We provide yaml-like configuration files below, divided by1349

experiments in Listing 1.1350

D.3.2 Changing Policy Components1351

We train the models evaluated in Table 2 using the same number of training instances as well as1352

identical hyperparameters. Specifically, models are trained for 10 epochs on 2.000 training instances1353

using the PPO algorithm with clip range ϵ = 0.2. The training dataset is split into batches of size1354

100 to construct the replay buffer. For the PPO optimization we sample mini-batches of size 5121355

from the replay buffer until it is empty and repeat this for R = 3 inner epochs. All models use1356

an embedding dimension dh of 256. The number of encoder layersis set to L = 3 in each case.1357

Further, MatNet and the AM Pointer use H = 8 attention heads. The parameters of the models1358

are updated using the Adam optimizer with learning rate 10−4. Afterwards, the trained policies1359

are evaluated on 1.000 randomly generated test instances. The Hydra config files corresponding1360

to this experiment, which also implement the different model architectures, can be found in the1361

config/experiment/scheduling folder from the RL4CO library1362

D.3.3 Mind Your Baseline1363

We run all models to match the original implementation details under controlled settings. In par-1364

ticular, we run all models for 250, 000 gradient steps with the same Adam [71] optimizer with a1365

learning rate of 10−4 and 0 weight decay. For POMO, we match the original implementation de-1366

tails of weight decay as 10−6. For POMO, the number of multistarts is the same as the number of1367

possible initial locations in the environment (for instance, for TSP50, 50 starts are considered). In1368

the case of Sym-NCO, we use 10 as augmentation for the shared baseline; we match the number1369

of effective samples of AM-XL to the ones of Sym-NCO to demonstrate the differences between1370

models.1371

17During development, we also used beta wheels as well as manually installed version of FlashAttention [34,
33]. Note that software version varied in terms of training runs depending on the author who ran experiments
(e.g. any range of Python and PyTorch as [3.9, 3.10, 3.11] × [2.0, 2.1, 2.2, 2.3], which RL4CO can support
out of the box on multiple devices and operating systems.

37

Example Hydra Configuration
1 defaults: # override default configurations under configs/
2 - override /env: tsp.yaml
3 - override /model: am.yaml
4 - override /callbacks: default.yaml
5 - override /trainer: default.yaml
6 - override /logger: wandb.yaml
7

8 # Environment
9 env:

10 generator_params:
11 num_loc: 50
12

13 # RL Algorithm and policy (env passed automatically)
14 model:
15 policy: # override policy parameters to pass to the RL algo
16 _target_: rl4co.models.zoo.am.policy.AttentionModelPolicy
17 embed_dim: 128
18 num_heads: 8
19 num_encoder_layers: 3
20 feedforward_hidden: 128
21 env_name: "${env.name}" # automatically construct env embeddings
22 baseline: "rollout" # REINFORCE baseline
23 batch_size: 512
24 train_data_size: 1_280_000
25 optimizer_kwargs:
26 lr: 1e-4
27

28 # Optional override of checkpoint parameters
29 model_checkpoint:
30 dirpath: ${paths.output_dir}/checkpoints
31 filename: "epoch_{epoch:03d}"
32

33 # Trainer
34 trainer:
35 max_epochs: 100
36 gradient_clip_val: 1.0
37 max_epochs: 100
38 precision: "16-mixed" # allows for FlashAttention
39 strategy: DDPStrategy # efficient for multiple GPUs
40 matmul_precision: "medium" # speeds up calculation
41

42 # Logging
43 logger:
44 wandb:
45 project: "rl4co"
46 name: "am-tsp${env.generator_params.num_loc}"

Listing 1: Example example.yaml configuration for the AM from the AR routing experiments. Additional
parameters are modularized in the actual configs and moved to the other config folders (such as env/tsp.yaml
so that a single experiment config is not too cluttered. Running this configuration is simple: placed under
configs/experiments/, it can be called with python run.py experiment=example.

The number of epochs for all models is 100, except for AM-XL (500). We also employ learning1372

rate scheduling, in particular, MultiStepLR 18 with γ = 0.1 on epoch 80 and 95; for AM-XL, this1373

applies on epoch 480 and 495.1374

PPO for the AM We follow other hyperparameters for REINFORCE baselines. We set the num-1375

ber of mini-epochs to 2, mini-batch size to 512, clip range to 0.2, and entropy coefficient c2 = 0.01.1376

Interestingly, we found that normalizing the advantage as done in the Stable Baselines PPO2 imple-1377

18https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.MultiStepLR

38

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.MultiStepLR

mentation19 slightly hurt performance, so we set the normalize advantage parameter to False. We1378

suspect this is because the NCO solvers are trained on multiple problem instances, unlike the other1379

RL applications that aim to learn a policy for a single MDP.1380

Sample Efficiency Experiments We keep the same hyperparameters as the mind your baseline,1381

experiments except for the number of epochs and scheduling. We consider 5 independent runs1382

that match the number of samples per step (i.e., the batch size is exactly the same for all models1383

after considering techniques such as the multistart and symmetric baselines). For AM Rollout, we1384

employ half the batch size of other models since it requires double the number of evaluations due to1385

its baseline.1386

Search Methods Experiments For these experiments, we employ the same models trained in the1387

in-distribution benchmark on 50 nodes. For Active Search (AS), we run 200 iterations for each1388

instance and an augmentation size of 8. The Adam optimizer is used with a learning rate of 2.6 ×1389

10−4 and weight decay of 10−6. For Efficient Active Search, we benchmark EAS-Lay (with an1390

added layer during the single-head computation, PointerAttention in our code) with the original1391

hyperparameters proposed by Hottung et al. [50]. The learning rate is set to 0.0041 and weight1392

decay to 10−6. The search is restricted to 200 iterations with dihedral augmentation of 8 as well as1393

imitation learning weight λ = 0.013.1394

Testing is performed on 100 instances on both TSP and CVRP for N ∈ [200, 500, 1000], generated1395

with the usual random seed for testing 1234.1396

D.3.4 Generalization: Cross-Task and Cross-Distribution1397

In addition to training on uniformly distributed instances, as is standard for POMO [76], we further1398

train POMO [76] on a mixture of multiple distributions (i.e., the exemplar distributions defined1399

in [16]) and multiple VRP tasks (i.e., CVRP, OVRP, VRPL, VRPB, VRPTW, and OVRPTW, as1400

defined in [89, 157, 13]) with fixed problem size N = 50, termed as MDPOMO and MTPOMO,1401

respectively. Note that all the models in Table 4 undergo training across 10,000 epochs, each with1402

a batch size of 512 and 10,000 training instances. The other training setups are consistent with the1403

previous work [76]. The whole training time is within one day. During inference, we evaluate their1404

generalization performance on the benchmark datasets in CVRPLib [86] using greedy rollout with1405

8× instance augmentation and multiple start nodes following Kwon et al. [76].1406

D.3.5 Large-Scale Instances1407

The GLOP [152] models’ global policy are trained on random instances of CVRP1K and CVRP2K,1408

respectively. Both models are trained for 100 epochs, with each epoch comprising 1000 instances.1409

To accelerate the training process, random insertion is utilized as the sub-TSP solver.1410

For the experiment results presented in Table 5, we evaluate our implementation using the identical1411

instances and setup as those utilized in Ye et al. [152]. The AM revisers involved are directly adopted1412

from Ye et al. [152]. Table 13 reports the generalization performance of the CVRP2K model on 1001413

CVRP10K instances and 24 CVRP20K instances. These test instances are generated following the1414

procedure in Nazari et al. [106], with the capacities fixed to 1000.1415

D.3.6 Combining Construction and Improvement1416

To test the potential collaboration between constructive and improvement methods (in Appendix E.51417

and Section 5.3), we recorded the performance of improvement methods during inference with initial1418

solutions generated either randomly or by leveraging solutions generated greedily by constructive1419

methods. This was done for both TSP and PDP with a fixed problem size of N = 50. We used1420

a test set with 1,000 instances for both TSP and PDP and recorded the runtime for all constructive1421

19https://stable-baselines.readthedocs.io/en/master/modules/ppo2.html

39

https://stable-baselines.readthedocs.io/en/master/modules/ppo2.html

and improvement solvers based on an INTEL XEON GOLD 5317 CPU @ 3.00GHZ and one RTX1422

3090 GPU.1423

For the constructive models to bootstrap improvement, we used the POMO and HAM (i.e. AM with1424

rollout baseline, with HAM [82] encoder for construction PDP) directly from Appendix D.3.3. Note1425

that these models were trained under controlled settings and could see a further boost in performance1426

with further training. Moreover, while we used simple greedy evaluation, more complex evaluation1427

schemes may be used, such as combining symmetric augmentation, multistart, or advanced sampling1428

techniques as nucleus sampling.1429

For the improvement models, we used both DACT and NeuOpt (with K = 4) for TSP, and the N2S1430

model for PDP. Training for all models was conducted with 200 epochs and 20 batches per epoch,1431

with a batch size of 512 for TSP and 600 for PDP. The n-step and maximum improvement steps for1432

training were set to 4 and 200, respectively. Other hyperparameters such as learning rate, curriculum1433

learning scaler, and gradient norm clip were set as per their original papers.1434

D.4 Decoding Schemes1435

Due to the limited space in the main paper, we further elaborate on the setup of the decoding schemes1436

(or strategies in this section, shown in Fig. 16.1437

Greedy

Sampling Multistart

......

Augmentation

......

Figure 16: Inference methods we consider in RL4CO. These can also be combined together, such as greedy
multistart with augmentation.

D.4.1 Augmentations1438

In RL4CO, we consider as augmentations any transformation ψ that maps an instance x1439

into an instance x′ whose (optimal) solution should be the same or close to the original.1440

Table 9: Dihedral
transformations [76].

ψ(x, y)

(x, y) (y, x)
(x, 1-y) (y, 1-x)
(1-x, y) (1-y, x)

(1-x, 1-y) (1-y, 1-x)

Augmentations have been used in various domains, such as computer vision,1441

where, for example, labels are invariant to rotations. Similarly, in Euclidean1442

CO, one can apply the dihedral transformation of Table 9 to generate a1443

new instance whose solution is the same as the original one, composed of1444

4 rotations and 2 flips for a total of ×8 transformation (which is the default1445

used in POMO-based models as Kwon et al. [76], Liu et al. [89], Zhou et al.1446

[157]. As introduced in Kim et al. [69] , one may additionally use any angle1447

θ to perform a symmetric transformation as follows:1448

(
x′

y′

)
= ψ(x, y) =

(
x cos θ −y sin θ
x sin θ +y cos θ

)

where θ ∈ [0, 2π]. Interestingly, we found that, generally, the dihedral augmentation is worse in1449

terms of sample efficiency compared to randomly augmenting by sampling a θ value. We note that1450

other augmentations are possible, including dilation [7] (i.e., rescaling) and possibly new ones such1451

as jittering, which may have a broader application than Euclidean CO.1452

D.4.2 Sampling1453

In most NCO approaches, sampling is performed by simply increasing the evaluation budget but1454

without additional modifications that can be important for better performance. We include the fol-1455

lowing techniques in RL4CO: 1) Sampling with Softmax Temperature, 2) Top-k Sampling and 3)1456

Top-p Sampling, visualized in Fig. 17.1457

40

Action

Lo
gi

ts
Action

Pr
ob

Action

Pr
ob

Temperature

Action

Pr
ob

Action

<latexit sha1_base64="tk3LG33WSqXL4XGLy3jcLUX59CE=">AAAB83icdVDLSsNAFJ3UV62vqktdDBbBVZiU1HZZcOOygn1AE8pkOm2HTiZxHkIJ/Q0 3LhRx68+482+cphVU9MCFwzn3cu89UcqZ0gh9OIW19Y3NreJ2aWd3b/+gfHjUUYmRhLZJwhPZi7CinAna1kxz2kslxXHEaTeaXi387j2ViiXiVs9SGsZ4LNiIEaytFATKxAGndxC5jUG5gtwaQlW/DnPiIZQTv1H1oeeiHBWwQmtQfg+GCTExFZpwrFTfQ6kOMyw1I5zOS4FRNMVkise0b6nAMVVhlt88h+dWGcJRIm0JDXP1+0SGY6VmcWQ7Y6wn6re3EP/y+kaPGmHGRGo0FWS5aGQ41AlcBACHTFKi+cwSTCSzt0IywRITbWMq2RC+PoX/k07V9S7d2o1faZ6u4iiCE3AGLoAH6qAJrkELtAEBKXgAT+DZMc6j8+K8LlsLzmrmGPyA8/YJM/WRCg==</latexit>X
 0.8

Action

1

2

3 4
5

Softmax w/ temperature 2.0

Instance Softmax w/o temperature

Sorted Probs

Top-p Sampling

Top-k Sampling

Pr
ob

Pr
ob

<latexit sha1_base64="yir/KCREFZa9Nxn2SfJkWdx20Z0=">AAACIHicdVDLSgMxFM34rPU16tJNsAquhoyttu4KblxWsA9oxyGTZtrQzIMkI9RhPsWNv+LGhSK6068xbUdQqQcu93DOvST3eDFnUiH0YSwsLi2vrBbWiusbm1vb5s5uS0aJILRJIh6Jjocl5SykTcUUp51YUBx4nLa90cXEb99SIVkUXqtxTJ0AD0LmM4KVllyz2vMFJim9SWfkzmVZ2lM4yTLdZRK4bK7nmiVklc81ahBZFYSQjXKCytC20BQlkKPhmu+9fkSSgIaKcCxl10axclIsFCOcZsVeImmMyQgPaFfTEAdUOun0wAweaaUP/UjoChWcqj83UhxIOQ48PRlgNZR/vYk4z+smyq85KQvjRNGQzB7yEw5VBCdpwT4TlCg+1gQTwfRfIRliHYbSmRZ1CN+Xwv9J68Syz6zTq0qpfpjHUQD74AAcAxtUQR1cggZoAgLuwSN4Bi/Gg/FkvBpvs9EFI9/ZA79gfH4B1QSmbw==</latexit>

e
zi
⌧

P
i e

zi
⌧

<latexit sha1_base64="/DdPu0hJy8b83ZOnJA4CV3dnKn0=">AAACBnicdVDLSgMxFM34rPU16lKEYBVcDRlbte4KblxWsA/o1CGTZtrQzIMkI9RhVm78FTcuFHHrN7jzb0zbKajogQsn59xL7j1ezJlUCH0ac/MLi0vLhZXi6tr6xqa5td2UUSIIbZCIR6LtYUk5C2lDMcVpOxYUBx6nLW94MfZbt1RIFoXXahTTboD7IfMZwUpLrrnn+AKTlN6kdy7LstSRSeCy2dM1S8gqn2tUIbIqCCEb5QSVoW2hCUogR901P5xeRJKAhopwLGXHRrHqplgoRjjNik4iaYzJEPdpR9MQB1R208kZGTzUSg/6kdAVKjhRv0+kOJByFHi6M8BqIH97Y/Evr5Mov9pNWRgnioZk+pGfcKgiOM4E9pigRPGRJpgIpneFZIB1LkonV9QhzC6F/5PmsWWfWidXlVLtII+jAHbBPjgCNjgDNXAJ6qABCLgHj+AZvBgPxpPxarxNW+eMfGYH/IDx/gVsbJpP</latexit>

ezi

P
i ezi

Figure 17: Sampling techniques implemented in RL4CO.

Sampling with Softmax Temperature Sampling with softmax temperature is a technique used to1458

control the randomness of the sampling process. The temperature parameter τ is introduced to the1459

softmax function, which converts the logits z into a probability distribution:1460

pi =
exp(zi/τ)∑N
j=1 exp(zj/τ)

(35)

where pi is the probability of selecting the i-th action, zi is the corresponding logit, andN is the total1461

number of actions. A higher temperature τ > 1 makes the distribution more uniform, increasing1462

the chances of selecting less likely actions. Conversely, a lower temperature 0 < τ < 1 makes the1463

distribution sharper, favoring the most likely actions.1464

Top-k Sampling Top-k sampling is a method that restricts the sampling space to the k most likely1465

actions. Given the logits z, the top-k actions with the highest probabilities are selected, and the prob-1466

abilities of the remaining actions are set to zero. The probability distribution is then renormalized1467

over the selected actions:1468

pi =

{
exp(zi/τ)∑

j∈Tk
exp(zj/τ)

if i ∈ Tk
0 otherwise

(36)

where Tk is the set of indices corresponding to the top-k actions. Top-k sampling helps to eliminate1469

the possibility of generating low-probability actions, improving the quality and coherence of the1470

generated output. We note that, however, in CO problems, it may not be as straightforward as1471

in large language models to select the k parameter since neighborhoods and distributions are not1472

homogeneous.1473

Top-p Sampling Top-p sampling, also known as nucleus sampling, is an alternative to top-k sam-1474

pling that dynamically adjusts the number of actions considered for sampling based on a probability1475

threshold p [48]. The actions are sorted by their probabilities in descending order, and the cumu-1476

lative probability is calculated. The sampling space is then restricted to the smallest set of actions1477

whose cumulative probability exceeds the threshold p:1478

Tp =



i :

i∑

j=1

pj ≤ p



 (37)

where Tp is the set of indices corresponding to the actions included in the top-p sampling. The1479

probabilities of the actions in Tp are renormalized, while the probabilities of the remaining actions1480

are set to zero:1481

41

pi =

{
exp(zi/τ)∑

j∈Tp
exp(zj/τ)

if i ∈ Tp
0 otherwise

(38)

Top-p sampling provides a more dynamic way to control the diversity and quality of the generated1482

output compared to top-k sampling. In CO, this is also a more structured way of performing training1483

or evaluation since top-p sampling is agnostic of the number of nodes, unlike top-k sampling.1484

E Additional Experiments1485

E.1 Mind your Baseline: Further Insights1486

Benchmark Setup We focus on benchmarking the AR routing NCO solvers under controlled1487

settings, aiming to compare all benchmarked methods as closely as possible in terms of network1488

architectures and the number of training samples consumed.1489

Models We evaluate the following NCO solvers: 1) AM [74] with rollout baseline, 2) POMO [76]1490

with the shared baseline to train AM instead of the rollout baseline; we also use six MHA layers and1491

InstanceNorm instead of BatchNorm according to the original implementation, 3) Sym-NCO [69]1492

utilizes the symmetric baseline to train AM instead of the rollout baseline and the same encoder as1493

POMO, 4) AM-XL is an AM model that adopts POMO-style MHA encoder, and trained on the same1494

number of samples as POMO, with the goal of seeing whether training for longer, as done in POMO,1495

can significantly improve the results 5) A2C, i.e. AM trained with Advantage Actor-Critic (A2C),1496

6) AM-PPO trained via the Proximal Policy Optimization (PPO, Schulman et al. [119]) algorithm1497

and finally 7) Polynet [51] with shared baseline and setting K = n.1498

For fairness of comparison, we try to match the number of training steps to be the same and adjust1499

the batch size accordingly. Specifically, we train models for 100 epochs as in Kool et al. [74] using1500

the Adam optimizer [71] with an initial learning rate (LR) of 0.001 with a decay factor of 0.1 after1501

the 80th and 95th epochs20. We evaluate the trained solvers using the schemes shown in Fig. 16.1502

E.1.1 Main In-distribution Results1503

We first measure the performances of NCO solvers on the same dataset distribution on which they1504

are trained. We first observe that, counter to the commonly known trends that AM < POMO < Sym-1505

NCO, the trends can change to decoding schemes and targeting CO problems. Especially when1506

the solver decodes the solutions with Augmentation or Greedy Multistart + Augmentation, the per-1507

formance differences among the benchmarked solvers on TSP and CVRP become less significant.1508

Surprisingly, PolyNet performs well even in the greedy one-shot setting, despite its primary focus1509

on generating diverse solutions. For decoding schemes that generate multiple solutions, PolyNet1510

demonstrates strong performance across various problems. Particularly for decoding schemes with-1511

out multistarts, PolyNet benefits significantly from its inherent diversity mechanism1512

We note that the original implementation of POMO 21 is not directly applicable to OP, PCTSP, and1513

PDP. Adapting it to solve new problems is not straightforward due to the coupling between envi-1514

ronment and policy implementations. However, owing to the flexibility of RL4CO, we successfully1515

implemented POMO for OP and PCTSP. Our results indicate that POMO underperforms in OP and1516

PCTSP; unlike TSP, CVRP, and PDP, where all nodes need to be visited, OP and PCTSP are not con-1517

strained to visit all nodes. Due to such differences, POMO’s visiting all nodes strategy may not work1518

as an effective inductive bias. Further, we benchmark the NCO solvers for PDP, which was not origi-1519

nally supported natively by each of the benchmarked solvers. We apply the environment embeddings1520

and the Heterogeneous Attention Encoder from HAM [82] to the NCO models for encoding pickup1521

20We find that simple learning rate scheduling with MultiStepLinear can improve performance i.e., com-
pared to the original AM implementation.

21https://github.com/yd-kwon/POMO

42

https://github.com/yd-kwon/POMO

Table 10: In-distribution benchmark results for routing problems with 50 nodes. We report the gaps to the
best-known solutions of classical heuristics solvers.

Method TSP CVRP OP PCTSP PDP

Cost ↓ Gap Time Cost ↓ Gap Time Prize ↑ Gap Time Cost ↓ Gap Time Cost ↓ Gap Time

Classical Solvers

Gurobi 5.70 0.00% 2m − − − − − − − − − − − −
Concorde 5.70 0.00% 2m − − − − − − − − − − − −
HGS − − − 10.37 0.00% 10h − − − − − − − − −
Compass − − − − − − 16.17 0.00% 5m − − − − − −
LKH3 5.70 0.00% 5m 10.38 0.10% 12h − − − − − − 6.86 0.00% 1h30m
OR Tools 5.80 1.83% 5m − − − − − − 4.48 0.00% 5h 7.36 7.29% 2h

Greedy One Shot Evaluation

A2C 5.83 2.22% (<1s) 11.16 7.09% (<1s) 14.77 8.64% (<1s) 5.15 14.96% (<1s) 7.52 9.90% (<1s)
AM 5.78 1.41% (<1s) 10.95 5.30% (<1s) 15.46 4.40% (<1s) 4.59 2.46% (<1s) 7.51 9.88% (<1s)
POMO 5.75 0.89% (<1s) 10.80 3.99% (<1s) 13.86 14.26% (<1s) 5.00 11.61% (<1s) 7.59 10.64% (<1s)
Sym-NCO 5.72 0.47% (<1s) 10.87 4.61% (<1s) 15.67 3.09% (<1s) 4.52 2.12% (<1s) 7.39 7.73% (<1s)
AM-XL 5.73 0.54% (<1s) 10.84 4.31% (<1s) 15.69 2.98% (<1s) 4.53 2.44% (<1s) 7.31 6.56% (<1s)
AM-PPO 5.76 0.92% (<1s) 10.87 4.60% (<1s) 15.67 3.05% (<1s) 4.55 2.45% (<1s) 7.43 8.31% (<1s)
PolyNet 5.72 0.68% 2s 10.81 4.24% 2s 15.70 2.93% 2s 4.54 2.45% 2s 8.26 3.46% 2s

Sampling with width M = 1280

A2C 5.74 0.72% 40s 10.70 3.07% 1m24s 15.14 6.37% 48s 4.96 10.71% 57s 7.32 6.70% 1m15s
AM 5.72 0.40% 40s 10.60 2.22% 1m24s 15.90 1.68% 48s 4.52 0.99% 57s 7.25 5.69% 1m15s
POMO 5.71 0.18% 1m 10.54 1.64% 2m30s 14.62 9.56% 1m10s 4.82 7.59% 1m23s 7.31 6.56% 1m50s
Sym-NCO 5.70 0.14% 1m 10.58 2.03% 2m30s 16.02 0.93% 1m10s 4.52 0.82% 1m23s 7.17 4.52% 1m50s
AM-XL 5.71 0.17% 1m 10.57 1.91% 2m30s 15.97 1.25% 1m10s 4.52 0.88% 1m23s 7.15 4.23% 1m50s
AM-PPO 5.70 0.15% 40s 10.52 1.52% 1m24s 16.04 0.78% 48s 4.48 0.18% 57s 7.17 4.52% 1m15s
PolyNet 5.70 0.15% 1m20s 10.42 0.53% 2m40s 16.08 0.52% 1m15s 4.47 0.13% 2m15s 6.93 0.81% 2m10s

Greedy Multistart (N)

A2C 5.80 1.81% 2s 10.90 4.86% 6s 14.61 9.65% 4s 5.12 14.29% 5s 7.54 9.85% 4s
AM 5.77 1.21% 2s 10.73 3.39% 6s 15.71 2.84% 4s 4.56 1.89% 5s 7.46 8.75% 4s
POMO 5.71 0.29% 3s 10.58 2.04% 8s 13.95 13.71% 7s 4.98 11.16% 7s 7.46 8.75% 6s
Sym-NCO 5.72 0.36% 3s 10.71 3.17% 8s 15.88 1.79% 7s 4.55 1.59% 7s 7.38 7.58% 6s
AM-XL 5.72 0.42% 3s 10.68 2.88% 8s 15.85 1.95% 7s 4.56 1.79% 7s 7.25 5.69% 6s
AM-PPO 5.74 0.61% 2s 10.67 2.72% 6s 15.98 1.21% 4s 4.53 1.18% 5s 7.23 5.39% 4s
PolyNet 5.70 0.25% 3s 10.52 1.42% 18s 16.05 0.71% 3s 4.54 1.31% 10s 7.18 4.65% 5s

Greedy with Augmentation (1280)

A2C 5.71 0.18% 40s 10.63 2.49% 1m24s 14.89 7.91% 48s 5.15 14.96% 1m 7.03 2.46% 1m15s
AM 5.70 0.07% 40s 10.53 1.56% 1m24s 15.88 1.79% 48s 4.59 2.46% 1m 7.14 4.08% 1m15s
POMO 5.70 0.06% 1m 10.55 1.72% 2m30s 14.23 11.97% 1m15m 5.09 13.61% 1m42s 7.15 4.23% 1m45s
Sym-NCO 5.70 0.01% 1m 10.53 1.54% 2m30s 15.94 1.41% 1m15m 4.58 2.17% 1m42s 7.03 2.48% 1m45s
AM-XL 5.70 0.01% 1m 10.52 1.47% 2m30s 15.90 1.66% 1m15m 4.59 2.54% 1m42s 6.98 1.75% 1m45s
AM-PPO 5.70 0.15% 40s 10.52 1.52% 1m24s 16.01 0.84% 48s 4.48 0.18% 1m 7.00 2.04% 1m15s
PolyNet 5.70 0.17% 1m30s 10.47 0.92% 3m 16.05 0.72% 2m 4.47 0.10% 2m10s 6.94 1.20% 2m15s

Greedy Multistart with Augmentation (N × 16)

A2C 5.72 0.41% 32s 10.67 2.81% 1m 15.22 5.88% 30s 5.06 12.94% 35s 7.10 3.51% 50s
AM 5.71 0.21% 32s 10.55 1.73% 1m 16.05 0.76% 30s 4.54 1.28% 35s 7.10 3.50% 50s
POMO 5.70 0.05% 48s 10.48 1.11% 2m 15.05 6.94% 1m 4.92 9.81% 1m10s 7.12 3.79% 1m25s
Sym-NCO 5.70 0.03% 48s 10.54 1.63% 2m 16.09 0.51% 1m 4.53 1.17% 1m10s 7.01 2.19% 1m25s
AM-XL 5.70 0.04% 48s 10.53 1.50% 2m 16.08 0.57% 1m 4.54 1.25% 1m10s 7.00 2.04% 1m25s
AM-PPO 5.70 0.03% 32s 10.51 1.45% 1m 16.09 0.49% 30s 4.49 0.89% 35s 6.98 1.75% 50s
PolyNet 5.70 0.15% 1m 10.41 0.36% 2m16s 16.11 0.37% 1m24s 4.49 0.24% 1m35s 7.02 2.33% 1m50s

and delivery pairs, further emphasizing RL4CO’s flexibility. We observe that AM-XL, which em-1522

ploys the same RL algorithm as AM but features the encoder architecture of POMO and is trained1523

with an equivalent number of samples, yields performance comparable to NCO solvers using more1524

sophisticated baselines. This suggests that careful controls on architecture and the number of train-1525

ing samples are required when evaluating NCO solvers. We also re-implemented PointerNetworks1526

[139, 8], but we excluded them from the main table due to their poor performance, i.e., more than1527

4% optimality gap in TSP50.1528

Table 10 and Table 11 show detailed results for 50 and 20 nodes, respectively.1529

E.1.2 Decoding Schemes Comparison1530

During inference, investing more computational resources (i.e., sampling more), the trained NCO1531

solver can discover improved solutions. We examine the performance gains achieved with varying1532

numbers of samples. As shown in Fig. 18, the Augmentation decoding scheme achieves the Pareto1533

front with limited samples and, notably, generally outperforms other decoding schemes. We note1534

that while sampling with a light decoder can be more efficient in terms of speed than sampling, this1535

may not be true for heavy-decoder [93] or decoder-only models [37, 94, 112], where decoding via1536

greedy augmentations may help improve performance.1537

43

Table 11: In-distribution results for models trained on 20 nodes.

Method TSP CVRP OP PCTSP PDP

Cost ↓ Gap Time Cost ↓ Gap Time Prize ↑ Gap Time Cost ↓ Gap Time Cost ↓ Gap Time

Classical Solvers

Gurobi† 3.84 0.00% 7s − − − − − − − − − − − −
Concorde 3.84 0.00% 1m − − − 5.39 0.00% 16m 3.13 0.00% 2m − − −
HGS − − − 6.13 0.00% 4h − − − − − − − − −
Compass − − − − − − − − − − − − − − −
LKH3 3.84 0.00% 15s 6.14 0.16% 5h − − − − − − − − −
OR Tools 3.85 0.37% 1m − − − − − − 3.13 0.00% 5h 4.70 3.16% 1h
CPLEX − − − − − − − − − − − − 4.56 0.00% 7m23s

Greedy One Shot Evaluation

A2C 3.86 0.64% (<1s) 6.46 5.00% (<1s) 5.01 6.70% (<1s) 3.36 7.35% (<1s) 4.71 3.31% (<1s)
AM 3.84 0.19% (<1s) 6.39 3.92% (<1s) 5.20 3.17% (<1s) 3.17 1.28% (<1s) 4.82 5.70% (<1s)
POMO 3.84 0.18% (<1s) 6.33 3.00% (<1s) 4.69 12.69% (<1s) 3.41 8.95% (<1s) 4.85 6.36% (<1s)
Sym-NCO 3.84 0.05% (<1s) 6.30 2.58% (<1s) 5.30 1.37% (<1s) 3.15 0.64% (<1s) 4.70 3.07% (<1s)
AM-XL 3.84 0.07% (<1s) 6.31 2.81% (<1s) 5.25 2.23% (<1s) 3.17 1.26% (<1s) 4.71 3.29% (<1s)
PolyNet 3.84 0.10% (<1s) 6.40 4.44% (<1s) 5.26 2.28% (<1s) 3.18 1.98% (<1s) 4.69 2.92% (<1s)

Sampling with width M = 1280

A2C 3.84 0.15% 20s 6.26 2.08% 24s 5.12 4.66% 22s 3.28 4.79% 23s 4.64 1.76% 23s
AM 3.84 0.04% 20s 6.24 1.78% 24s 5.30 1.30% 22s 3.15 0.78% 23s 4.66 2.19% 23s
POMO 3.84 0.02% 36s 6.20 1.06% 40s 4.90 8.83% 37s 3.33 6.39% 39s 4.68 2.63% 39s
Sym-NCO 3.84 0.01% 36s 6.22 1.44% 40s 5.34 0.59% 37s 3.14 0.35% 39s 4.64 1.75% 39s
AM-XL 3.84 0.02% 36s 6.22 1.46% 40s 5.32 0.93% 37s 3.15 0.56% 39s 4.64 1.75% 39s
PolyNet 3.84 0.00% 47s 6.14 0.23% 1m15s 5.35 0.52% 37s 3.13 0.15% 1m15s 4.59 0.57% 1m36s

Greedy Multistart (N)

A2C 3.85 0.36% (<1s) 6.33 3.04% 3s 5.06 5.77% 2s 3.30 5.18% 2s 4.85 6.42% 2s
AM 3.84 0.12% (<1s) 6.28 2.27% 3s 5.24 2.42% 2s 3.16 0.95% 2s 4.67 2.41% 2s
POMO 3.84 0.05% (<1s) 6.21 1.27% 4s 4.76 11.32% 3s 3.35 7.03% 4s 4.66 2.19% 4s
Sym-NCO 3.84 0.03% (<1s) 6.22 1.48% 4s 5.32 0.87% 3s 3.15 0.62% 4s 4.69 2.85% 4s
AM-XL 3.84 0.05% (<1s) 6.22 1.38% 4s 5.29 1.49% 3s 3.15 0.64% 4s 4.65 1.97% 4s
PolyNet 3.84 0.01% 1s 6.17 0.71% 5s 5.34 0.58% 1s 3.15 0.76% 5s 4.81 5.43% 5s

Greedy with Augmentation (1280)

A2C 3.84 0.01% 20s 6.22 1.35% 24s 5.04 6.10% 22s 3.33 6.39% 23s 4.61 1.11% 23s
AM 3.84 0.00% 20s 6.20 1.07% 24s 5.25 2.25% 22s 3.16 0.96% 23s 4.63 1.54% 23s
POMO 3.84 0.00% 36s 6.18 0.84% 45s 4.85 9.76% 38s 3.37 7.55% 42s 4.62 1.32% 42s
Sym-NCO 3.84 0.00% 36s 6.17 0.71% 45s 5.33 0.77% 38s 3.15 0.63% 42s 4.61 0.95% 42s
AM-XL 3.84 0.00% 36s 6.17 0.68% 45s 5.30 1.30% 38s 3.15 0.68% 42s 4.61 0.96% 42s
PolyNet 3.84 0.00% 55s 6.16 0.48% 1m10s 5.35 0.50% 57s 3.13 0.16% 1m2s 4.59 0.58% 1m10s

Greedy Multistart with Augmentation (N × 16)

A2C 3.84 0.01% 9s 6.20 1.12% 48s 5.20 3.17% 32s 3.28 4.95% 25s 4.75 4.06% 23s
AM 3.84 0.00% 9s 6.18 0.78% 48s 5.34 0.56% 32s 3.14 0.32% 25s 4.63 1.52% 23s
POMO 3.84 0.00% 13s 6.16 0.50% 1m 5.09 5.29% 45s 3.35 6.95% 38s 4.61 1.10% 42s
Sym-NCO 3.84 0.00% 13s 6.17 0.61% 1m 5.35 0.39% 45s 3.14 0.24% 38s 4.60 0.89% 42s
AM-XL 3.84 0.00% 13s 6.16 0.44% 1m 5.35 0.46% 45s 3.14 0.28% 38s 4.60 0.87% 42s
PolyNet 3.84 0.00% 18s 6.14 0.16% 1m20s 5.37 0.31% 1m 3.13 0.12% 58s 4.61 1.03% 55s

Greedy

Augment

Sampling

Multistart

Multistart + Augment

Dihedral Augment (x8)

100 101 102 103

Number of Samples

0.0

0.5

1.0

G
ap

(%
)

AM

100 101 102 103

Number of Samples

POMO

100 101 102 103

Number of Samples

SymNCO

100 101 102 103

Number of Samples

1

2

3

4

5

G
ap

(%
)

AM

100 101 102 103

Number of Samples

POMO

100 101 102 103

Number of Samples

SymNCO

Figure 18: Pareto front of decoding schemes by the number of samples. Left: TSP50; right: CVRP50.

E.1.3 Sample Efficiency1538

We additionally evaluate the NCO solvers based on the number of training samples (i.e., the number1539

of reward evaluations). As shown in Fig. 19, we found that actor-critic methods (e.g., A2C and PPO)1540

can exhibit efficacy in scenarios with limited training samples, as demonstrated by the TSP50/1001541

results in Fig. 19. This observation suggests that NCO solvers with control over the number of1542

samples may exhibit a different trend in sample efficiency: if reward function evaluation is expen-1543

sive, REINFORCE baselines that include additional reward function evaluations such as Greedy1544

Rollout, POMO, and SymNCO may be sample-inefficient. While this is not the case for most CO1545

problems (for instance: in routing, it is inexpensive to calculate routes), in other areas as Electronic1546

Design Automation, where reward evaluation is resource-intensive due to the necessity of electrical1547

simulations, in which sample efficiency can become even more crucial.1548

44

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

4.0

4.2

4.4

C
os

t

TSP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

6.0

6.5

7.0

7.5

8.0
TSP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

10

12

14

TSP N = 100

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

7.0

7.5

8.0

C
os

t

CVRP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

12

14

16

18
CVRP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

17.5

20.0

22.5

25.0

27.5

30.0
CVRP N = 100

AM Rollout AM Critic POMO Sym-NCO AM PPO

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

4.0

4.2

4.4

C
os

t

TSP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

6.0

6.5

7.0

7.5

8.0
TSP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

10

12

14

TSP N = 100

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

7.0

7.5

8.0

C
os

t

CVRP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

12

14

16

18
CVRP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

17.5

20.0

22.5

25.0

27.5

30.0
CVRP N = 100

AM Rollout AM Critic POMO Sym-NCO AM PPO

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

4.0

4.2

4.4

C
os

t

TSP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

6.0

6.5

7.0

7.5

8.0
TSP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

10

12

14

TSP N = 100

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

7.0

7.5

8.0

C
os

t

CVRP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

12

14

16

18
CVRP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

17.5

20.0

22.5

25.0

27.5

30.0
CVRP N = 100

AM Rollout AM Critic POMO Sym-NCO AM PPO

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

4.0

4.2

4.4

C
os

t

TSP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

6.0

6.5

7.0

7.5

8.0
TSP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

10

12

14

TSP N = 100

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

7.0

7.5

8.0

C
os

t

CVRP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

12

14

16

18
CVRP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

17.5

20.0

22.5

25.0

27.5

30.0
CVRP N = 100

AM Rollout AM Critic POMO Sym-NCO AM PPO

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

4.0

4.2

4.4

C
os

t

TSP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

6.0

6.5

7.0

7.5

8.0
TSP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

10

12

14

TSP N = 100

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

7.0

7.5

8.0

C
os

t

CVRP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

12

14

16

18
CVRP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

17.5

20.0

22.5

25.0

27.5

30.0
CVRP N = 100

AM Rollout AM Critic POMO Sym-NCO AM PPOA2CAM Rollout POMO SymNCO AM-PPO

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

4.0

4.2

4.4

C
os

t

TSP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

6.0

6.5

7.0

7.5

8.0
TSP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

10

12

14

TSP N = 100

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

7.0

7.5

8.0

C
os

t

CVRP N = 20

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

12

14

16

18
CVRP N = 50

0.0 0.5 1.0 1.5 2.0

Num. of samples £106

17.5

20.0

22.5

25.0

27.5

30.0
CVRP N = 100

AM Rollout AM Critic POMO Sym-NCO AM PPO

Figure 19: Validation cost curves and number of training samples consumed. Models with greater performance
after full training may show worse convergence properties when the number of training samples is limited.

E.1.4 Out-of-distribution1549

In this section, we evaluate the out-of-distribution performance of the NCO solvers by measuring the1550

gap compared to the best-known solutions (BKS). The evaluation results are visualized in Fig. 20.1551

Contrary to the in-distribution results, we find that NCO solvers with sophisticated baselines (i.e.,1552

POMO and Sym-NCO) tend to exhibit worse generalization when the problem size changes, either1553

for solving smaller or larger instances. This can be seen as an indication of “overfitting” to the1554

training sizes. On the other hand, variants of AM show relatively better generalization results overall.1555

Besides, we also evaluate the model by sampling decoding strategy with different temperatures1556

as shown in Fig. 21, k values for Top-k as shown in Fig. 22, and p values for Top-p as shown in1557

Fig. 23. A higher temperature or a lower p value with Top-p sampling can improve the generalization1558

ability on large-scale problems, while Top-k sampling has limited contribution to generalization1559

cross problem sizes.1560

10 20 50 75 10
0

12
5

15
0

20
0

Problem Size

0

2

4

6

8

10

12

G
ap

(%
)

TSP

A2C
AM
POMO
SymNCO
AM-XL

10 20 50 75 10
0

12
5

15
0

20
0

Problem Size

2

4

6

8

10

12

14

16

18

20

G
ap

(%
)

CVRP

A2C
AM
POMO

SymNCO
AM-XL

Figure 20: Out-of-distribution generalization by greedy decoding for models with different reinforce baselines
trained on 50 nodes. Stronger performance in distribution does not always translate to out-of-distribution.

10 20 50 75 10
0

12
5

15
0

20
0

Problem Size

0

5

10

15

20

25

30

G
ap

(%
)

TSP

t = 0.1
t = 0.5
t = 1.0
t = 1.5
t = 2.0

10 20 50 75 10
0

12
5

15
0

20
0

Problem Size

0

5

10

15

20

25

30

G
ap

(%
)

CVRP

t = 0.1
t = 0.5
t = 1.0
t = 1.5
t = 2.0

Figure 21: Out-of-distribution generalization by sampling with different temperatures τ for POMO trained on
50 nodes.

45

10 20 50 75 10
0

12
5

15
0

20
0

Problem Size

0

5

10

15

20

G
ap

(%
)

TSP

k = 2
k = 4
k = 6
k = 8
k = 10

k = 20
k = 30
k = 50
k = 100
No Top-k

10 20 50 75 10
0

12
5

15
0

20
0

Problem Size

2.5

5.0

7.5

10.0

12.5

15.0

17.5

G
ap

(%
)

CVRP

k = 2
k = 4
k = 6
k = 8
k = 10

k = 20
k = 30
k = 50
k = 100
No Top-k

Figure 22: Out-of-distribution generalization by sampling with different Top-k for POMO trained on 50 nodes.

10 20 50 75 10
0

12
5

15
0

20
0

Problem Size

0

5

10

15

20

G
ap

(%
)

TSP

p = 0.5
p = 0.6
p = 0.7
p = 0.8
p = 0.9
p = 0.99
p = 0.995
No Top-p

10 20 50 75 10
0

12
5

15
0

20
0

Problem Size

2

4

6

8

10

12

14

16

18

G
ap

(%
)

CVRP

p = 0.5
p = 0.6
p = 0.7
p = 0.8

p = 0.9
p = 0.99
p = 0.995
No Top-p

Figure 23: Out-of-distribution generalization by sampling with different Top-p for POMO trained on 50 nodes.

E.1.5 Search Methods1561

Table 12: Search Methods results of models pre-trained on 50 nodes. Classic refers to Concorde [35] for TSP
and HGS [138, 144] for CVRP. OOM is "Out of Memory".

Type Metric TSP CVRP

POMO Sym-NCO POMO Sym-NCO
200 500 1000 200 500 1000 200 500 1000 200 500 1000

Classic Cost 10.17 16.54 23.13 10.72 16.54 23.13 27.95 63.45 120.47 27.95 63.45 120.47

Zero-shot
Cost 13.15 29.96 58.01 13.30 29.42 56.47 29.16 92.30 141.76 32.75 86.82 190.69
Gap[%] 29.30 81.14 150.80 24.07 77.87 144.14 4.33 45.47 17.67 17.17 36.83 58.29
Time[s] 2.52 11.87 96.30 2.70 13.19 104.91 1.94 15.03 250.71 2.93 15.86 150.69

AS
Cost 11.16 20.03 OOM 11.92 22.41 OOM 28.12 63.98 OOM 28.51 66.49 OOM
Gap[%] 4.13 21.12 OOM 11.21 35.48 OOM 0.60 0.83 OOM 2.00 4.79 OOM
Time[s] 7504 10070 OOM 7917 10020 OOM 8860 21305 OOM 9679 24087 OOM

EAS
Cost 11.10 20.94 35.36 11.65 22.80 38.77 28.10 64.74 125.54 29.25 70.15 140.97
Gap[%] 3.55 26.64 52.89 8.68 37.86 67.63 0.52 2.04 4.21 4.66 10.57 17.02
Time[s] 348 1562 13661 376 1589 14532 432 1972 20650 460 2051 17640

A way to adapt to distribution changes is using transductive RL, commonly known as (active) search1562

methods, which involve training (a part of) a pre-trained NCO solver to adapt to CO instances of1563

interest. We evaluate 1) Active Search (AS) [8] which finetunes a pre-trained model on the searched1564

instances by adapting all the policy parameters and 2) Efficient Active Search (EAS): from [50] which1565

finetunes a subset of parameters (i.e., embeddings or new layers) and adds an imitation learning loss1566

to improve convergence.1567

We apply AS and EAS to POMO and Sym-NCO pre-trained on TSP and CVRP with 50 nodes to1568

solve larger instances havingN ∈ [200, 500, 1000] nodes. As shown in Table 12, solvers with search1569

methods improve the solution quality. However, POMO generally shows better improvements over1570

46

Sym-NCO. This suggests once more that the “overfitting” of sophisticated baselines can perform1571

better in training distributions but eventually worse in different downstream tasks.1572

E.1.6 Additional Large-scale Results1573

We also show in Table 13 additional large-scale results with 10k+ nodes obtained with the hybrid1574

AR/NAR GLOP model [152]. Fig. 24 demonstrates a solution obtained through our implementation1575

of GLOP for CVRP35K. It represents the maximum scale of CVRP that RL4CO is capable of1576

solving within 24GB of graphics memory while preserving the performance.1577

Table 13: Performance on large-scale CVRP instances with ten thousands of nodes.

CVRP10K CVRP20K
Obj. Time Obj. Time

HGS [138] 108.1 4.01h 182.7 6.03h
Random Insertion 187.9 0.16s 330.4 0.61s

GLOP-G (Insertion) 127.0 2.42s 208.3 10.9s
GLOP-G (AM) 119.6 4.68s 199.6 14.8s
GLOP-G (LKH) 111.4 5.06s 191.4 17.9s

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
GLOP-G (LKH) — CVRP35K capacity=2000 — veh num=89 cost=180.743 time=46.39s

Figure 24: A visualization of the solution generated by GLOP on CVRP35K.

47

Table 14: Benchmarking results of ACO method in TSP with 200, 500, 1000 nodes. The reported values are
obtained by averaging over 128 test instances. The time is the average computation time for solving a single
instance.

Method TSP200 TSP500 TSP1000

Cost Gap(%) Time(s) Cost Gap(%) Time(s) Cost Gap(%) Time(s)

Concorde [35] 10.72 0.00 0.9 16.55 0.00 10.7 23.12 0.00 108.3

ACO 10.88 1.52 1.0 17.23 4.11 4.0 24.42 5.65 19.8
DeepACO 10.80 0.79 1.0 16.87 1.95 4.3 23.82 3.03 20.7
GFACS 10.75 0.32 1.0 16.80 1.56 4.3 23.78 2.87 20.7

Table 15: Benchmarking results of ACO methods with different τ values in TSP with 500 nodes. The reported
values are the average cost of 128 test instances.

Method τ = 0.05 τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 1.0 τ = 1.5 τ = 2.0

ACO 17.05 16.95 17.03 17.11 17.19 17.23 17.26 17.26
DeepACO 17.00 16.97 16.92 16.84 16.85 16.87 16.88 16.89
GFACS 16.92 16.90 16.86 16.80 16.80 16.80 16.81 16.82

E.2 Learning Heuristics for Ant Colony Optimization1578

E.2.1 Experiment Settings1579

We adhered to the hyperparameters specified in the original papers for DeepACO [150] and1580

GFACS [70] for GFlowNets training. We conducted two distinct benchmarks for ACO methods.1581

The first benchmark evaluated the ability to solve the Traveling Salesman Problem (TSP) at differ-1582

ent scales: 200, 500, and 1000. We use the test instances provided by DeepACO22. The second1583

benchmark assessed inference capability at various temperature values of τ in TSP with 500 nodes.1584

The temperature τ is a hyperparameter for the heatmap distribution of the heuristic matrix in ACO,1585

where a low τ emphasizes exploitation and a high τ emphasizes exploration. For both experiments,1586

the optimality gaps are calculated with respect to the average cost of solutions obtained using Con-1587

corde [35].1588

E.2.2 Results1589

TSP Benchmark Table 14 shows the results for the first benchmark. In this benchmark, we ob-1590

served that GFACS outperforms other baselines, and DeepACO surpasses ACO. These results are1591

consistent with their respective claims [150, 70], providing evidence that our benchmark is suffi-1592

ciently valid. Notably, our algorithm also performed slightly faster than the original implementation,1593

likely due to the batchified environment of RL4CO.1594

Performance Comparison for Different Heatmap Temperatures (τ) Table 15 shows the re-1595

sults for the second benchmark. This benchmark compared inference performance across different1596

heatmap temperatures (τ). We observed notable performance variation with changes in τ . This1597

highlights the importance of inference and sampling strategies even after deep network training is1598

completed. Additionally, GFACS produced more consistent results with different τ values. This1599

provides empirical evidence of the robustness of GFACS, which is due to its ability to model a sam-1600

pler capable of generating diverse and high-reward solutions. The modularization of RL4CO allows1601

for a focused study on inference capabilities, enabling future researchers to contribute to this aspect1602

using the RL4CO pipeline.1603

22https://github.com/henry-yeh/DeepACO

48

https://github.com/henry-yeh/DeepACO

E.3 Learning to Schedule1604

Compared to routing problems, scheduling problems have not been extensively studied by the NCO1605

community. On the one hand side, NCO methods for scheduling are harder to benchmark due to1606

the absence of well-performing heuristics like the LKH algorithm for the TSP. On the other hand,1607

scheduling problems involve more complex graph representations like disjunctive graphs [153], bi-1608

partite graphs [77], or heterogeneous graphs [125], making it harder to encode the problem. With1609

RL4CO, we aim to mitigate these entry barriers for NCO researchers by providing established solu-1610

tion methods along with the environments. Further, by being modular by design, RL4CO allows for1611

quick evaluation of different learning algorithms and network architectures, which can already lead1612

to substantial improvements of the solution quality, as demonstrated in the example of the FJSSP in1613

Table 2. Lastly, by providing benchmark instances like Taillard [129] and easy ways of initializing1614

the environments with external benchmark files, we facilitate the comparison of models with exist-1615

ing methods. The following chapter describes established DRL models for scheduling problems as1616

well as their performance on synthetic and benchmark datasets.1617

E.3.1 JSSP1618

Models To solve the JSSP using DRL methods, we implement the L2D model described in Ap-1619

pendix C.2.7 in RL4CO. To train the encoder-decoder policy, we use the same Proximal Policy1620

Optimization (PPO) algorithm as Zhang et al. [153]. In contrast to most other work in the NCO1621

domain, L2D uses a (dense) stepwise reward function rather than a sparse episodic reward, which is1622

observed only after a complete solution is obtained. This reward determines the change in the lower1623

bound of the makespan given the partial schedule. Due to the dense nature of the reward, the PPO1624

algorithm for the scheduling problems evaluates actions on a stepwise basis, whereas environments1625

with an episodic reward are evaluated based on a full rollout. We compare these methods and discuss1626

the different implementations in Appendix E.3.4.1627

Further, we demonstrate RL4CO’s ability to effortlessly implement a state-of-the-art solver for JSSP1628

instances by exchanging the GCN encoder used by Zhang et al. [153] with the MatNet encoder [77]1629

described in Appendix C.2.11. Furthermore, the greedy decoding scheme of Zhang et al. [153] is1630

replaced by N = 100 random samples, of which the best is selected.1631

Reproduction and Improvement of Original Results We demonstrate RL4CO’s capability of1632

learning dispatching rules for the JSSP by training and validating the L2D model of Zhang et al.1633

[153] and our version of L2D with the MatNet encoder on synthetic data. We report the perfor-1634

mance achieved with RL4CO together with the baselines the authors of the original papers used, as1635

well as the solutions obtained via the CP-Sat solver Google OR-Tools. The baselines are a set of1636

selected PDRs that have a high practical relevance, namely Most Work Remaining (MWKR) and1637

Most Operations Remaining (MOR).1638

Table 16: Comparison of RL4CO with L2D [153] and other baselines on the JSSP. For OR-Tools, the fraction
of instances solved optimally is reported in parentheses.

Size Metric OR-Tools PDRs L2D RL4CO

MWKR MOR [153] GCN MatNet (×128)

6× 6
Obj. 487.75 (100%) 656.96 630.19 574.09 569.53 515.11
Gap - 34.6% 29.2% 17.7% 16.8% 5.6%

10× 10
Obj. 808.32 (100%) 1151.41 1101.08 988.58 972.35 865.78
Gap - 42.6% 36.5% 22.3% 20.3% 7.1%

15× 15
Obj. 1187.06 (99%) 1812.13 1693.33 1504.79 1492.94 1318.25
Gap - 52.6% 42.6% 26.7% 25.7% 11.0%

20× 20
Obj. 1555.79 (4%) 2469.19 2263.68 2007.76 1992.36 1847.33
Gap - 58.6% 45.5% 29.0% 28.1% 18.7%

49

The results are listed in Table 16. RL4CO’s implementation of L2D manages to outperform the1639

original implementation on all instance types, even when using the same model architecture, learning1640

algorithm, and hyperparameters. The reason is that RL4CO uses an improved implementation of the1641

environment. In the implementation of Zhang et al. [153] the state of the environment does not1642

contain a time dimension. Instead, the environment schedules the selected operation at the earliest1643

feasible start time, given the current schedule. Here, we use the environment proposed by Tassel1644

et al. [132], where the environment transitions through distinct time steps t = 0, 1, ...T . In this case,1645

the start time of a selected operation is set to the time step at which it was selected, leading to a more1646

natural form of credit assignment.1647

Using the MatNet encoder instead of the GCN and employing a decoding scheme based on multiple1648

random rollouts further reduces the makespan by a large margin. One instances of size 6 × 6, the1649

gap to the optimal solutions was reduced by 11 percentage points to 5.6%, which corresponds to a1650

third of the gap realized with the GCN encoder.1651

Taillard Benchmark and out-of-distribution performance With RL4CO, we also provide the1652

possibility to test models against established benchmarks. For the JSSP, a well-recognized bench-1653

mark is that of Taillard [129], which is also used by Zhang et al. [153] to validate their model. In1654

Table 17, we report the results of RL4CO on these instances along with the results obtained by1655

Zhang et al. [153] as well as the MOR and MWKR heuristics. We trained our MatNet models on1656

JSSP instances up to size 20×20. For larger Taillard instances, we report the out-of-distribution per-1657

formance to demonstrate the model’s generalization ability. Similar to the synthetic test instances,1658

our RL4CO implementation paired with the MatNet encoder manages to outperform the original1659

L2D by large margins on all instances of the Taillard benchmark dataset, even when evaluating it on1660

out-of-distribution instances.1661

Table 17: Results on the Taillard [129] benchmark instances. BKS refers to the best known solutions and %
opt. specifies the rate of instances with optimal solutions. Values marked with a † indicate out-of-distribution
performance of the model trained on 20× 20.

Size Metric BKS PDRs L2D RL4CO

MWKR MOR [153] MatNet (×128)

15× 15
Obj. 1230.06 (100%) 1927.5 1782.3 1547.50 1404.30
Gap - 56.7% 45.0% 26.0% 14.2%

20× 15
Obj. 1363.22 (90%) 2190.7 2015.8 1774.7 1570.70
Gap - 60.7% 47.7% 30.0% 15.2%

20× 20
Obj. 1617.60 (30%) 2518.6 2309.9 2128.1 1842.90
Gap - 55.7% 42.8% 31.6% 13.9%

30× 15
Obj. 1787.68 (70%) 2728.0 2601.3 2378.8 2121.19†

Gap - 52.6% 45.6% 33.0% 18.6%

30× 20
Obj. 1948.32 (0%) 3193.3 2888.1 2603.9 2357.90†

Gap - 63.9% 48.2% 33.6% 21.0%

E.3.2 FJSSP1662

Model To solve the FJSSP using DRL methods, we implement the HGNN model described in1663

Appendix C.2.10 in RL4CO and train it with the same PPO algorithm as L2D. Besides HGNN we1664

also implement a second model which exchanges the encoder of HGNN with the MatNet encoder.1665

Reproduction and Improvement of Original Results We compare the results obtained via1666

RL4CO with those reported by Song et al. [125] and the baseline used by them. Also, Song et al.1667

[125] use MWKR and MOR to benchmark their model as well as the OR-Tools solver. The results,1668

which are obtained on a test set comprising of 100 randomly generated instances, are listed below1669

in Table 18.1670

50

Similar to the JSSP, the HGNN implemented in RL4CO achieves better results than the original1671

implementation, although both implementations use the same definition of the environment. How-1672

ever, in RL4CO, we use instance normalization [135] on the input variables as well as between1673

consecutive HGNN layers, which we found to drastically stabilize the training process.1674

Again, we were able to enhance the quality of the solution further by simply exchanging the encoder1675

with MatNet. Especially on the larger instances, the increased model complexity translates into1676

much better model performance, with the solutions even surpassing OR-Tools on 20× 10 instances.1677

Table 18: Comparison of RL4CO and HGNN [125] on the FJSSP. For OR-Tools, the fraction of instances
solved optimally is reported in parentheses. Both RL4CO and [125] make use of random-rollouts for decoding.

Size Metric OR-Tools PDRs HGNN RL4CO (×128)

MWKR MOR [125] (×128) HGNN MatNet

10× 5
Obj. 96.59 (15%) 115.29 116.69 105.61 102.49 99.02
Gap - 19.4% 20.9% 9.4% 6.1% 2.5%

20× 5
Obj. 188.45 (0%) 216.98 217.17 207.50 199.47 192.05
Gap - 15.2% 15.3% 10.1% 5.8% 1.9%

15× 10
Obj. 145.42 (5%) 169.18 173.40 160.36 155.34 151.93
Gap - 16.3% 19.3% 10.3% 6.8% 4.5%

20× 10
Obj. 197.24 (0%) 220.85 221.86 214.87 207.52 192.00
Gap - 11.9% 12.53% 9.0% 5.2% -2.7%

Out-of-distribution In this section, we evaluate the out-of-distribution performance of the DRL1678

models trained with RL4CO on FJSSP 20 × 10 instances, by evaluating them on smaller (20 × 51679

& 15 × 10) and larger (30 × 10 & 40 × 10) instances. The results in Table 19 indicate that both1680

HGNN and MatNet manage to generalize well to problems of different sizes. Despite being trained1681

on smaller instances, the HGNN manages to close the performance gap when evaluated on larger1682

instances, with gaps being as small as 3.7% for FJSSP 40 × 10 instances. And on FJSSP 20 × 51683

instances, the average makespan increases by only 1.56 (0.8%) when using the model trained on1684

FJSSP 20 × 10 instead of 20 × 5 instances. Again, the MatNet model shows superior perfor-1685

mance compared to the other baselines and surpasses even the results obtained by OR-Tools on the1686

larger instances. The within-distribution performance of MatNet, therefore, also translates to out-of-1687

distribution instances, indicating that the complexity of the model results in a better generalization1688

ability.1689

Table 19: Generalization performance of a policy trained on a 20 × 10 FJSSP instances on smaller and larger
instances. We use 100 test instances per instance size. Gaps are reported with respect to the results of OR-Tools

Size Metric OR-Tools PDRs HGNN RL4CO (×128)

MWKR MOR [125] (×128) HGNN MatNet

20× 5
Obj. 188.45 (0%) 216.98 217.17 207.50 201.03 193.61
Gap - 15.2% 15.3% 10.1% 6.7% 2.7%

15× 10
Obj. 145.42 (5%) 169.18 173.40 160.36 162.41 150.59
Gap - 16.3% 19.3% 10.3% 11.7% 3.5%

30 × 10 Obj. 294.10 (0%) 319.89 320.18 312.20 309.10 286.16
Gap - 8.8% 8.9% 6.1% 5.1% -2.7%

40 × 10 Obj. 397.36 (0%) 425.70 425.19 415.14 412.05 381.19
Gap - 7.1% 7.0% 4.4% 3.7% -4.1%

E.3.3 FFSP1690

MatNet To solve the FFSP using DRL, RL4CO implements the policy network described by1691

Kwon et al. [77]. It uses separate policy networks for each stage of the FFSP. Each of the stage1692

51

networks employs the MatNet encoder described in Appendix C.2.11, which generates embeddings1693

for jobs and machines using the processing times of the job-machine pairs of the respective stage.1694

The decoder of the attention model [74] then utilizes the machine embeddings of the respective1695

stage as query and the job embeddings as keys and values to compute the probability distribution1696

over jobs.1697

Results We use the same three instance types described by Kwon et al. [77] to evaluate our im-1698

plementations of the FFSP environment and the policy network. The instances only differ in the1699

number of jobs, which are set to 20, 50, and 100. We assume that there are S = 3 stages, and each1700

stage has M = 4 machines. In the kth stage, the processing time of the job j on the machine m is1701

given by pjmk. Therefore, an instance of the problem is defined by three matrices (P1, P2, and P3),1702

specifying the processing time for each job-machine combination in that stage. We report the results1703

obtained by RL4CO and compare them to those obtained by Kwon et al. [77] in Table 20. Other1704

benchmarks used are the exact solver CPLEX (for which results can only be obtained for FFSP201705

instances), the Shortest Job First (SJF) dispatching rule, as well as the evolutionary algorithms Par-1706

ticle Swarm Optimization (PSO), and Genetic Algorithm (GA). One can see that, using RL4CO, we1707

are able to reproduce the results from the original paper.1708

Table 20: Comparison of RL4CO with the results reported in [77]. Gaps are reported with respect to the best
known results.

Instance Matric CPLEX (600s) SJF GA PSO [77] RL4CO

FFSP20 Obj. 36.6 31.3 30.6 29.1 27.3 27.2
Gap 34.5% 15.0% 12.5% 6.9% 0.3% 0.0%

FFSP50 Obj. - 57.0 56.4 55.1 51.5 51.6
Gap - 10.7% 9.5% 7.0% 0.0% 0.2%

FFSP100 Obj. - 99.3 98.7 97.3 91.5 91.3
Gap - 8.8% 8.1% 6.6% 0.2% 0.0%

E.3.4 Dense and Episodic Rewards1709

We additionally compare dense and episodic rewards for the TSP and FJSSP environments, with1710

similar training settings as in other experiments, except for the different reward functions.1711

Here, we compare the performance of the HGNN [125] in solving the FJSSP and AM [74] in solving1712

the TSP when trained using a stepwise vs. an episodic reward. The results in Table 21 show that1713

evaluating the FJSSP in a stepwise manner and stepwise re-encoding the current state significantly1714

outperforms a policy based on a single, episodic reward. This is reasonable since the state of the1715

FJSSP has many dynamic elements, and a policy that relies on a single encoder step may not fully1716

grasp the problem dynamics. On the other hand, stepwise rewards for the TSP (AM model trained1717

with POMO with the settings as Kwon et al. [76]) do not work well, and interestingly, performance1718

approaches roughly that of the nearest insertion algorithms. Different CO problems react to the1719

same learning setup, which again underpins the importance of a unified framework where different1720

algorithms are implemented and are easily exchangeable.1721

Table 21: Comparison of dense (i.e. stepwise) and episodic rewards for the TSP and the FJSSP

Reward TSP FJSSP

20 50 100 10× 5 20× 5 15× 10

Dense 4.51 7.05 9.80 102.49 199.47 155.34
Episodic 3.83 5.81 7.82 110.65 204.88 182.90

52

E.4 Electronic Design Automation: Learning to Place Decaps1722

Setup In this section, we benchmark models on the mDPP from Appendix B.3.2. We benchmark1723

3 variants of online DevFormer (DF), namely DF(PG,Critic): REINFORCE (where PG stands for1724

Policy Gradients, an “alias” of the REINFORCE algorithm) with Critic baseline, DF(PG,Rollout):1725

REINFORCE with Rollout baseline as well as PPO. All experiments are run with the same hyper-1726

parameters as the other experiments except for the batch size set to 64, the maximum number of1727

samples set to 10, 000, and a total of only 10 epochs due to the nature of the benchmark sample1728

efficiency.1729

E.4.1 Main Results1730

Table 22 shows the main numerical results for the task when RS, GA, and DF models are trained for1731

placing 20 decaps. While RS and GA need to take online shots to solve the problems (we restricted1732

the number to 100), DF models can successfully predict in a zero-shot manner and outperform the1733

classical approaches. Interestingly, the vanilla critic-based method performed the worst, while our1734

implementation of PPO almost matched the rollout policy gradients (PG) baseline; since extensive1735

hyperparameter tuning was not performed, we expect PPO could outperform the rollout baseline1736

given it requires fewer samples. Fig. 25 shows example renderings of the solved environment.1737

Table 22: Performance of different methods on the mDPP benchmark

Method # Shots Score ↑
maxsum maxmin

Online Test Time Search

Random Search 100 11.55 10.63
Genetic Algorithm 100 11.93 11.07

RL Pretraining & Zero Shot Inference

DF-(PG,Critic) 0 10.89± 0.63 9.51± 0.68
DF-(PPO) 0 12.16± 0.03 11.17± 0.11
DF-(PG,Rollout) 0 12.21± 0.01 11.26± 0.03

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

available keepout probe decap

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

available keepout probe decap

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

available keepout probe decap

Figure 25: Renders of the environment with maxmin objective solved by DF-(PG,Rollout). The model suc-
cessfully learned one main heuristic for DPP problems, which is that the optimal placement of decaps (blue) is
generally close to probing ports (red).

E.4.2 Generalization to Different Number of Components1738

In hardware design, the number of components is one major contribution to cost; ideally, one would1739

want to use the least number of components possible with the best performance. In the DPP, in-1740

creasing the number of decaps generally improves the performance at a greater cost, hence Pareto-1741

efficient models are essential to identify. Fig. 26 shows the performance of DF models trained on1742

53

20 decaps against the baselines. DF models PPO and PG-rollout can successfully generalize and are1743

also Pareto-efficient with fewer decaps, important in practice for cost and material saving.1744

12 14 16 18 20 22 24 26 28

Number of Used Decaps

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

P
er

fo
rm

an
ce

mDPP with Maxsum Objective

RS

GA

DF(PG,Critic)

DF(PPO)

DF(PG,Rollout)

12 14 16 18 20 22 24 26 28

Number of Used Decaps

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

P
er

fo
rm

an
ce

mDPP with Maxmin Objective

RS

GA

DF(PG,Critic)

DF(PPO)

DF(PG,Rollout)

Figure 26: Performance vs number of used decaps for mDPP with maxsum objective [Left] and maxmin objec-
tive [Right].

E.5 Learning to Improve1745

In this section, we first show the efficiency of RL4CO when reproducing the improvement methods1746

on the TSP and PDP with 50 nodes and discuss the potential collaboration of constructive methods1747

with improvement methods for better inference performance.1748

E.5.1 Main results1749

As shown in Table 23, refactoring and implementing the three improvement methods—DACT [96]1750

(TSP50), N2S [97] (PDP50), and NeuOpt [98] (PDP50)—using RL4CO consistently results in better1751

efficiency compared to the original implementations. Specifically, training and testing times (T =1752

1, 000) are faster, and peak memory usage is lower. This advancement can be attributed to RL4CO’s1753

streamlined design, which uses a single tensor dictionary variable to store all state information, and1754

the incorporation of efficient libraries like PyTorch Lightning and TorchRL. These enhancements1755

demonstrate RL4CO’s superior efficiency and ease of implementation.1756

Table 23: Comparison of time and memory usage for DACT [96] (TSP50), N2S [97] (PDP50), and NeuOpt [98]
(PDP50) between the original implementation and the RL4CO implementation.

T_train (one epoch) T_test (1k,1k) Memory

DACT-Origin 16m 38s 8069MB
DACT-RL4CO 10m 26s 7135MB

N2S-Origin 26m 41s 13453MB
N2S-RL4CO 17m 33s 12489MB

NeuOpt-Origin 14m 37s 7273MB
NeuOpt-RL4CO 10m 31s 6313MB

E.5.2 Discussion1757

As shown in Fig. 27, bootstrapping improvement with constructive methods can greatly improve1758

the performance, especially in terms of the Primal Integral (PI, Appendix D.1.2). While in TSP1759

bootstrapping is consistently better than simply improving with default solutions (i.e. lower final gap1760

to BKS as well as PI), we note that in PDP with N2S, improving starting from a random initialization1761

can yield better performance in terms of gap. However, the PI reveals that while N2S from random1762

54

0 50 100 150 200

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

G
ap

(%
)

TSP50

POMO (sampling)
DACT (from random init)
DACT (from POMO init)
NeuOpt (from random init)
NeuOpt (from POMO init)

0 50 100 150 200

Time (s)

1

2

3

4

5

6

7

8

G
ap

(%
)

PDP50

HAM (sampling)
N2S (from random init)
N2S (from HAM init)

Figure 27: Bootstrapping improvement with constructive methods for TSP50 and PDP50.

init achieves a value of 5.580, N2S from HAM construction initialization achieves a much better1763

2.234, indicating a much better early convergence speed and Pareto front.1764

We additionally offer some clues on how to improve such performance. Firstly, we simply initialized1765

from a greedy solution, while more complex inference strategies may offer a significant boost. Fur-1766

thermore, the trained model as per the setting in Appendix D.3.3 could be further trained and obtain1767

better performance. Importantly, we believe that end-to-end construction & improvement, in which1768

both a constructive and improvement method are trained together, could ultimately outperform a1769

separate training and achieve the best of both worlds.1770

E.6 Graph Problems: Facility Location Problem (FLP) and Maximum Coverage Problem1771

(MCP)1772

Here, we present the experimental results and the corresponding discussions on the two CO problems1773

on graphs: the Facility Location Problem (FLP; see Appendix B.4.1) and the Maximum Coverage1774

Problem (MCP; see Appendix B.4.2).1775

E.6.1 Experimental settings1776

Baseline methods We consider two simple baselines: uniform random (UR) and deterministic1777

greedy (DG), where UR chooses k locations uniformly at random and DG chooses k locations one1778

by one in a greedy manner. We also apply two MIP solvers, Gurobi [44] and SCIP [14], to obtain1779

the optimal solutions.1780

Benchmark methods We benchmark with the attention model (AM) with different embedding1781

models (i.e., encoders) and different RL baselines. For FLP, the considered embedding models are:1782

the multilayer perception (MLP), the graph convolutional network (GCN) [72], and the graph atten-1783

tion network [137, 24]. For MCP, since the problem instances are formulated on bipartite graphs, the1784

considered embedding models are: the multilayer perception (MLP), the GraphSAGE model [45]1785

(in short “SAGE”), and the generalized GCN model [81] (in short “GEN”). The considered RL1786

baselines are: Rollout, Mean, Exponential, and Critic. All the models are trained in 100 epochs.1787

The learning rate is 1e − 5 for FLP and 1e − 4 for MCP. In each epoch, 100, 000 training data are1788

used with batch size 1, 000. For the decoding strategies, we consider sampling (with 64 independent1789

samples) and greedy. For sampling (and UR), we report both the “best” performance among the 641790

independent samples and the “mean” (i.e., average) performance over the 64 independent samples.1791

Test-time active search We apply three variants of active search at test time: the original active1792

search (AS) proposed by Bello et al. [8], efficient active search (EAS) proposed by Hottung et al.1793

[50] with two variants: EAS-Emb that finetunes embeddings and EAS-Lay that finetunes new layers.1794

We run all the active search variants for 100 iterations.1795

55

Table 24: Performance of different methods on the facility location problem (FLP) benchmark. For the perfor-
mance, the smaller the better.

Encoder RL Baseline Sample (Best) Sample (Mean) Greedy
Active Search

AS EAS-Emb EAS-Lay

MLP

Rollout 10.4895 11.0056 10.9980 10.3004 10.2997 10.2997
(Gap) (2.19%) (7.23%) (7.16%) (0.35%) (0.34%) (0.34%)
Mean 10.5635 11.1614 10.9350 10.2995 10.3008 10.3008
(Gap) (2.91%) (8.75%) (6.54%) (0.34%) (0.35%) (0.35%)

Exponential 10.5726 11.1848 10.9589 10.3054 10.3051 10.3051
(Gap) (3.00%) (8.98%) (6.78%) (0.40%) (0.39%) (0.39%)
Critic 10.5617 11.1401 10.9439 10.2987 10.2994 10.2994
(Gap) (2.90%) (8.55%) (6.63%) (0.33%) (0.34%) (0.34%)

GCN

Rollout 10.4232 10.6404 10.6094 10.2955 10.2956 10.2958
(Gap) (1.54%) (3.66%) (3.36%) (0.30%) (0.30%) (0.30%)
Mean 10.4321 10.8095 10.6076 10.2807 10.2830 10.2830
(Gap) (1.63%) (5.31%) (3.34%) (0.15%) (0.18%) (0.18%)

Exponential 10.4729 10.9573 10.7257 10.2837 10.2859 10.2859
(Gap) (2.02%) (6.75%) (4.49%) (0.18%) (0.20%) (0.20%)
Critic 10.7086 11.4549 11.0139 10.2859 10.2891 10.2891
(Gap) (3.82%) (0.54%) (6.01%) (0.20%) (0.23%) (0.23%)

GAT

Rollout 10.4685 10.9202 10.8916 10.2956 10.2956 10.2957
(Gap) (1.99%) (6.40%) (6.12%) (0.30%) (0.30%) (0.30%)
Mean 10.6641 11.3499 11.0133 10.2865 10.2899 10.2898
(Gap) (3.90%) (0.59%) (7.31%) (0.21%) (0.24%) (0.24%)

Exponential 10.6487 11.3504 10.9869 10.2864 10.2881 10.2880
(Gap) (3.75%) (0.60%) (7.05%) (0.21%) (0.22%) (0.22%)
Critic 10.6566 11.3440 10.8813 10.2859 10.2888 10.2888
(Gap) (4.33%) (1.62%) (7.31%) (0.20%) (0.23%) (0.23%)

Uniform Random (Best) 12.4788
(Gap) (21.62%)

Uniform Random (Mean) 15.6327
(Gap) (52.40%)

Deterministic Greedy 10.9831
(Gap) (7.02%)

GUROBI/SCIP (Optimum) 10.2650
(Gap) (0.00%)

E.6.2 Benchmark Results1796

Main benchmark Table 24 shows the main numerical results when the methods are trained and1797

tested to choose k = 10 locations on instances with n = 100 locations. Table 25 shows the main1798

numerical results when the methods are trained and tested to choose k = 10 sets on instances with1799

n = 100 sets and m = 200 items in total. Each item has a random weight between 1 and 10, and1800

the number of items in each set is randomly sampled between 5 and 15. The reported results are1801

averaged over 1, 000 randomly generated test instances. We also report the average gap between the1802

performance for each setting and the optimum by solvers as described in Appendix D.1.1.1803

Here we use absolute values since we minimize the total distance for FLP while maximizing the1804

total weights for MCP. When using absolute values, it is consistent that smaller gaps correspond to1805

better performance. The performance of RL methods with sampling is consistently better than the1806

two baselines, uniform random (UR) and deterministic greedy (DG), showing their effectiveness on1807

those two problems.1808

Effect of the encoder Overall, the performance of different encoders is similar. For FLP, we can1809

observe GCN’s marginal superiority (except when we use Critic as the RL baseline). For MCP, the1810

best encoders for different RL baselines are different, but MLP’s performance is the overall best.1811

56

Table 25: Performance of different methods on the maximum coverage problem (MCP) benchmark. For the
performance, the larger the better.

Encoder RL Baseline Sample (Best) Sample (Mean) Greedy
Active Search

AS EAS-Emb EAS-Lay

MLP

Rollout 682.4741 662.4359 665.1740 689.6200 689.6070 689.6070
(Gap) (0.96%) (3.31%) (3.05%) (0.09%) (0.09%) (0.09%)
Mean 682.4011 664.7105 668.7470 682.0610 689.5900 689.5900
(Gap) (1.06%) (3.96%) (3.56%) (1.18%) (0.09%) (0.09%)

Exponential 683.0300 665.1467 666.6640 671.3130 689.5870 689.5870
(Gap) (1.09%) (3.99%) (3.64%) (9.68%) (0.09%) (0.09%)
Critic 683.1511 666.9047 668.6411 687.8240 689.3510 689.3510
(Gap) (1.43%) (5.40%) (4.92%) (0.35%) (0.13%) (0.13%)

SAGE

Rollout 681.8690 664.1233 665.9901 689.4810 689.5020 689.4930
(Gap) (1.14%) (3.71%) (3.44%) (0.11%) (0.11%) (0.11%)
Mean 682.1360 669.2791 670.4091 666.0360 689.5990 689.5890
(Gap) (1.06%) (3.63%) (3.05%) (10.44%) (0.09%) (0.09%)

Exponential 680.3970 653.0383 656.3170 675.2220 689.5990 689.5980
(Gap) (1.06%) (3.95%) (3.46%) (2.18%) (0.09%) (0.09%)
Critic 676.9190 645.9108 649.6940 647.9050 688.4500 688.4650
(Gap) (1.94%) (6.43%) (5.89%) (6.12%) (0.26%) (0.26%)

GEN

Rollout 680.2640 648.2318 656.3710 689.4430 689.4660 689.4660
(Gap) (1.10%) (2.96%) (2.80%) (0.12%) (0.11%) (0.11%)
Mean 682.1960 662.1896 664.6721 681.3950 689.5670 689.5670
(Gap) (0.97%) (3.56%) (3.34%) (1.28%) (0.10%) (0.10%)

Exponential 682.4290 662.5012 665.8010 689.4060 689.5650 689.5650
(Gap) (1.07%) (3.70%) (3.18%) (0.12%) (0.10%) (0.10%)
Critic 682.3510 664.1604 667.7340 689.6170 689.3940 689.3940
(Gap) (1.45%) (6.08%) (4.91%) (0.09%) (0.12%) (0.12%)

Uniform Random (Best) 527.9360
(Gap) (-23.50%)

Uniform Random (Mean) 432.7287
(Gap) (-37.30%)

Deterministic Greedy 680.2050
(Gap) (-1.46%)

GUROBI/SCIP (Optimum) 690.2350
(Gap) (0.00%)

Effect of the RL baseline For FLP, for the four considered RL baselines (Rollout, Mean, Expo-1812

nential, Critic), Rollout is consistently better than the other three. For MCP, the differences in the1813

performance of different RL baselines are not significant.1814

Effect of active search Active search significantly improves performance in almost all cases. For1815

FLP, interestingly, Rollout achieves the best overall performance without active search, but Rollout1816

underforms in many cases with test-time active search. Notably, the performance of the original1817

active search (AS) is less stable than the two variants of efficient active search (EAS), especially for1818

MCP. In our understanding, AS was originally designed for routing problems and uses multi-start1819

sampling with distinct initial action (i.e., the first location/set to choose). Such a strategy is useful1820

for routing problems due to symmetry but is less useful for problems without symmetry, such as1821

FLP and MCP.1822

Test-time sampling techniques We also consider other test-time sampling techniques: top-p sam-1823

pling [48] and different sampling temperatures. Top-p sampling discards actions with low probabil-1824

ities, and top-p sampling with lower p values discards more low-probability actions. For sampling1825

temperatures, higher temperatures give more uniform sampling. The considered p values are: 0.5,1826

0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1.0. The sampling temperatures considered are 0.01, 0.03, 0.1, 0.3,1827

0.5, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5, and 2.0. Fig. 28 show the heatmaps for each combination of1828

encoder and RL baseline, for FLP and MCP. In each subplot, the x-axis represents the value of p1829

in top-p sampling, and the y-axis represents the sampling temperature. For each combination, the1830

57

MLP GCN GAT

Rollout

Mean

Exponential

Critic

MLP SAGE GEN

Rollout

Mean

Exponential

Critic

Figure 28: Performance of sampling with different p values for top-p sampling and different sampling temper-
atures. Top: FLP; Bottom: MCP. For each combination of encoder and RL baseline, the best performance is
marked with a star.

58

Table 26: Performance of different methods on the facility location problem (FLP) out-of-distribution instances.
For the performance, the smaller the better.

Encoder RL Baseline Sample (Best) Sample (Mean) Greedy
Active Search

AS EAS-Emb EAS-Lay

MLP

Rollout 14.7612 15.2979 15.2709 14.4160 14.4181 14.4181
(Gap) (3.85%) (7.63%) (7.44%) (1.42%) (1.43%) (1.43%)
Mean 15.0045 15.7343 15.3075 14.5315 14.5331 14.5331
(Gap) (5.56%) (10.70%) (7.70%) (2.23%) (2.24%) (2.24%)

Exponential 15.0022 15.7144 15.3131 14.5274 14.5266 14.5266
(Gap) (5.54%) (10.56%) (7.74%) (2.20%) (2.19%) (2.19%)
Critic 14.9670 15.6631 15.2781 14.5147 14.5132 14.5132
(Gap) (5.30%) (10.20%) (7.49%) (2.11%) (2.10%) (2.10%)

GCN

Rollout 14.9564 15.4230 15.3610 14.6254 14.6239 14.6248
(Gap) (5.22%) (8.51%) (8.07%) (2.89%) (2.88%) (2.89%)
Mean 15.1380 15.8310 15.3713 14.6554 14.6572 14.6574
(Gap) (6.50%) (11.38%) (8.14%) (3.10%) (3.11%) (3.12%)

Exponential 15.2197 15.9598 15.4441 14.6961 14.6963 14.6973
(Gap) (7.08%) (12.29%) (8.66%) (3.39%) (3.39%) (3.40%)
Critic 15.1754 15.9835 15.2815 14.6579 14.6634 14.6642
(Gap) (6.53%) (12.00%) (8.23%) (3.12%) (3.16%) (3.16%)

GAT

Rollout 14.7503 15.2808 15.2593 14.4142 14.4150 14.4143
(Gap) (3.77%) (7.51%) (7.36%) (1.40%) (1.41%) (1.40%)
Mean 15.1147 15.9092 15.2895 14.5944 14.5986 14.5946
(Gap) (6.34%) (11.93%) (7.57%) (2.67%) (2.70%) (2.67%)

Exponential 15.1639 15.9886 15.2945 14.5991 14.6004 14.6011
(Gap) (6.68%) (12.49%) (7.60%) (2.70%) (2.71%) (2.72%)
Critic 15.1428 15.9191 15.3835 14.6053 14.6111 14.6111
(Gap) (6.76%) (12.46%) (7.51%) (2.75%) (2.79%) (2.79%)

Uniform Random (Best) 18.3215
(Gap) (28.92%)

Uniform Random (Mean) 21.7044
(Gap) (52.74%)

Deterministic Greedy 15.3090
(Gap) (7.71%)

GUROBI/SCIP (Optimum) 14.2148
(Gap) (0.00%)

best performance is marked with a red star. For FLP, the best performance is usually achieved with1831

a proper (i.e., neither too high nor too low) level of randomness. As the p value of top-p sampling1832

increases, the best sampling temperature decreases. Recall that both increasing the p value and in-1833

creasing the sampling temperature would increase the randomness in sampling. Overall, compared1834

to other RL baselines, Rollout needs a higher level of randomness to perform best. For MCP, the1835

best performance is usually achieved without top-p sampling and with a high sampling temperature,1836

i.e., without high randomness in the sampling space.1837

E.6.3 Out-of-distribution1838

Results on out-of-distribution instances Table 26 shows the main numerical results when the1839

methods are trained to choose k = 10 locations on instances with n = 100 locations, but tested to1840

choose k′ = 20 locations on instances with n′ = 200 locations. Table 27 shows the main numerical1841

results when the methods are trained to choose k = 10 sets on instances with n = 100 sets and1842

m = 200 items in total and tested to choose k′ = 20 sets on instances with n′ = 200 sets and1843

m′ = 400 items in total. Each item has a random weight between 1 and 10, and the number of1844

items in each set is randomly sampled between 5 and 15. The reported results are averaged over1845

1, 000 randomly generated test instances. We also report the average gap for each setting. Overall,1846

the performance of RL methods generalizes well to out-of-distribution instances, being significantly1847

higher than both Uniform Random and Deterministic Greedy with enough sampling.1848

59

Table 27: Performance of different methods on the maximum coverage problem (MCP) out-of-distribution
instances. For the performance, the larger the better.

Encoder RL Baseline Sample (Best) Sample (Mean) Greedy
Active Search

AS EAS-Emb EAS-Lay

MLP

Rollout 1356.8970 1299.8690 1307.5250 1385.3340 1385.3280 1385.3280
(Gap) (-1.83%) (-5.48%) (-5.03%) (-0.32%) (-0.33%) (-0.33%)
Mean 1360.7710 1306.4015 1312.6290 1319.8180 1383.3580 1383.3580
(Gap) (-2.34%) (-6.45%) (-5.89%) (-5.04%) (-0.47%) (-0.47%)

Exponential 1360.7830 1306.3337 1312.7070 1088.0180 1383.9670 1383.9670
(Gap) (-2.49%) (-6.64%) (-6.23%) (-21.71%) (-0.42%) (-0.42%)
Critic 1363.9190 1313.2830 1319.5280 1353.9080 1377.3780 1377.3780
(Gap) (-3.29%) (-7.83%) (-7.33%) (-2.59%) (-0.90%) (-0.90%)

SAGE

Rollout 1353.9790 1297.5763 1303.7120 1382.2220 1382.1140 1382.1140
(Gap) (-2.55%) (-6.61%) (-6.16%) (-0.55%) (-0.56%) (-0.56%)
Mean 1366.0050 1320.5641 1325.5570 1121.7650 1384.3780 1384.3650
(Gap) (-2.06%) (-5.98%) (-5.53%) (-19.30%) (-0.39%) (-0.40%)

Exponential 1344.1420 1281.0377 1288.0360 1288.2830 1383.6030 1383.5500
(Gap) (-2.30%) (-6.38%) (-5.73%) (-7.31%) (-0.45%) (-0.45%)
Critic 1331.1100 1266.6130 1276.0670 1092.0550 1367.4660 1367.4690
(Gap) (-4.23%) (-8.87%) (-8.19%) (-21.42%) (-1.61%) (-1.61%)

GEN

Rollout 1334.2700 1269.0966 1284.4550 1385.6540 1385.5750 1385.5750
(Gap) (-1.68%) (-4.96%) (-4.60%) (-0.30%) (-0.31%) (-0.31%)
Mean 1354.8450 1297.2153 1302.8560 1305.4070 1384.3080 1384.2980
(Gap) (-2.06%) (-5.98%) (-5.52%) (-6.08%) (-0.40%) (-0.40%)

Exponential 1357.4750 1300.7056 1309.8040 1376.1300 1384.3780 1384.3900
(Gap) (-2.11%) (-6.18%) (-5.45%) (-0.99%) (-0.39%) (-0.39%)
Critic 1360.0420 1303.4360 1313.6640 1366.2960 1374.8630 1374.8370
(Gap) (-4.00%) (-8.68%) (-7.58%) (-1.69%) (-1.08%) (-1.08%)

Uniform Random (Best) 1003.3390
(Gap) (-27.80%)

Uniform Random (Mean) 866.3536
(Gap) (-37.66%)

Deterministic Greedy 1367.2240
(Gap) (-1.63%)

GUROBI/SCIP (Optimum) 1389.8450
(Gap) (0.00%)

Effect of the encoder For FLP, unlike the main benchmark, the superiority of GCN no longer1849

exists for out-of-distribution instances. For MCP, the best encoders for different RL baselines are1850

still different, and the performance of MLP is the best.1851

Effect of the RL baseline For FLP, again, Rollout is overall better than the other three. For MCP,1852

the best RL baselines for different encoders are different, and Mean and Critic are overall good1853

choices.1854

Effect of active search Again, active search clearly improves performance in almost all cases.1855

For FLP, unlike the main benchmark, for out-of-distribution instances, Rollout overall performs best1856

with and without active search. Still, the performance of the original active search (AS) is less1857

stable than the two variants of efficient active search (EAS). With active search (especially EAS),1858

the performance of RL methods is consistently better than that of Deterministic Greedy and is close1859

to the optimum.1860

Test-time sampling techniques For out-of-distribution instances, we also consider top-p sampling1861

and different sampling temperatures as the main benchmark. The considered p values are: 0.5, 0.6,1862

0.7, 0.8, 0.9, 0.95, 0.99, 1.0. The sampling temperatures considered are 0.01, 0.03, 0.1, 0.3, 0.5,1863

0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5, and 2.0. Fig. 29 show the heatmaps for each combination of encoder1864

and RL baseline, for FLP and MCP. In each subplot, the x-axis represents the value of p in top-1865

p sampling, and the y-axis represents the sampling temperature. For each combination, the best1866

performance is marked with a red star. For both FLP and MCP, the best performance is usually1867

60

MLP GCN GAT

Rollout

Mean

Exponential

Critic

MLP SAGE GEN

Rollout

Mean

Exponential

Critic

Figure 29: Performance of sampling on out-of-distribution instances with different p values for top-p sampling
and different sampling temperatures. Top: FLP; Bottom: MCP. For each combination of encoder and RL
baseline, the best performance is marked with a star.

61

achieved with a proper (i.e., neither too high nor too low) level of randomness. As the p value of1868

top-p sampling increases, the best sampling temperature decreases. Recall that both increasing the1869

p value and increasing the sampling temperature would increase the randomness in sampling.1870

E.7 Efficient Software Routines1871

E.7.1 Mixed-Precision Training1872

RL4CO supports multiple device types as well as floating point precisions by leveraging PyTorch1873

Lightning [39].1874

Table 28: Running time and memory usage of the AM model trained using FP32 and FP16 mixed precision
(FP16-mix), evaluated over 5 epochs with a training size of 10,000 in the CVPR20, CVPR50, and CVPR100.

Problem Precision Running time [s] Memory usage [GiB]

CVRP20 FP32 6.33± 0.26 1.41± 0.04
FP16-mix 5.89± 0.07 0.84± 0.01

CVRP50 FP32 13.58± 0.12 4.79± 0.40
FP16-mix 11.68± 0.30 2.30± 0.25

CVRP100 FP32 35.09± 0.71 13.47± 0.63
FP16-mix 25.11± 0.66 8.14± 0.82

As Table 28 shows mixed-precision training can successfully reduce computational costs both in1875

terms of runtime and especially with memory usage.1876

E.7.2 FlashAttention1877

Given that the Attention operator is used on several occasions, especially in autoregressive models,1878

there is a need to support fast and efficient software routines that can compute this ubiquitous op-1879

eration. In RL4CO, we natively support FlashAttention [34, 33] from both PyTorch 2.0+ and the1880

original FlashAttention repository 23, to which we also made some minor contributions when we1881

found bugs.1882

0 2000 4000 6000 8000 10000

Problem size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
im

e
[s

]

£10°1

Attention

FlashAttention 1
FlashAttention 2

0 2000 4000 6000 8000 10000

Problem size

0

2

4

6

8

T
im

e
[s

]

£10°2

Attention

FlashAttention 1
FlashAttention 2

(a) (b)

Figure 30: Running time of the graph attention encoder from the Attention Model, equipped with a standard
attention layer, FlashAttention1, and FlashAttention2, across different problem sizes for both (a) the TSP and
(b) the CVRP environments.

As shown in Fig. 30, different implementations can make a difference, especially with large problem1883

sizes. It should be noted that while more scalable, FlashAttention at the moment is restricted to no or1884

causal masks only. Therefore, usage in the masked attention decoding scheme is not possible at the1885

moment, although it could be even more impactful due to the auto-regressive nature of our encoder-1886

decoder scheme. Recent works as Pagliardini et al. [107] may be useful in extending FlashAttention1887

23Available at https://github.com/Dao-AILab/flash-attention.

62

https://github.com/Dao-AILab/flash-attention

to other masking patterns. We note that masking should, in principle, be even faster than un-masked1888

attention, given that operations can be skipped in a per-block manner.1889

E.7.3 Efficient Memory Handling in Environments1890

When dealing with RL problems, there is usually a tradeoff between memory and speed. This1891

happens because environments are parallelized using multiple processes or threads, the policy net-1892

work is replicated to each environment, or observations incoming from each environment need1893

to be gathered, sent to the policy network, and then the output action scattered back to the1894

representative environment. In the first case, network duplication causes large memory con-1895

sumption; in the second case, communication between processes slows down. In RL4CO, we1896

solve the problem by using batched environments, i.e., every environment is responsible not1897

for a single instance of a problem but a batch of instances at the same time. By doing so,1898

the policy can live in the same process of the environment, in the same device, and receive1899

and send batched data without any communication overhead or additional memory consumption.1900

Table 29: Comparison of training time in seconds for
one epoch with RL4CO and TorchRL step method.

Configuration Step method

Environment Nodes RL4CO TorchRL

TSP
50 46.3 49.6
100 102.9 108.6
200 284.9 302.2

CVRP
50 72.9 73.4
100 147.3 154.3
200 371.7 406.4

To further improve performances, we rewrite1901

a core component of the TorchRL environ-1902

ment, namely the step method of the TorchRL1903

base environment. The original step method1904

performs some checks that, while useful for1905

generic environments, can be omitted for1906

RL4CO ones. It also duplicates the infor-1907

mation in the output TensorDict by return-1908

ing both the previous and the new state. In1909

RL4CO, the previous state is always redun-1910

dant, hence our step method does not keep it,1911

reducing the memory consumption. We can see1912

in Table 29 that using RL4CO step method has a great benefit in terms of speed, especially for1913

high-dimensional environments. The results are collected for the TSP and CVRP environment dur-1914

ing one epoch of training for a dataset of size 100000. The table shows the difference in train-1915

ing time and peak allocated memory for the training when the environment uses the TorchRL1916

step method and the RL4CO step method. The peak allocated memory is computed using the1917

torch.cuda.max_memory_allocated method from PyTorch, and experiments are run on a Tesla1918

V100 DGX 32GB.1919

E.8 Towards Foundation Models1920

Motivation Although learning to solve VRPs has gained significant attention, previous methods1921

are only structured and trained independently on a specific problem, making them less generic and1922

practical. Inspired by the recent success of foundation models in the language and vision domains,1923

some works started to build foundation models for VRPs [89, 157, 13], aiming to solve a wide spec-1924

trum of problem variants using a single model. The main idea is to train a (large) model on diverse1925

VRPs, which can be represented by a unified template. Typically, VRPs share several common at-1926

tributes. For example, CVRP and VRPTW share the capacity attribute while only differing in the1927

time window attribute. Therefore, a simple template could be a union set of attributes that exist in1928

all VRP variants. By training on diverse VRP variants leveraging this unified representation, the1929

foundation VRP model has the potential to efficiently and effectively solve any variant, making it a1930

favorable choice versus traditional solvers (e.g., OR-Tools [111]) in the future.1931

E.8.1 Experimental Setting1932

For traditional solvers, we use HGS-PyVRP [144], an open-source VRP solver based on the state-of-1933

the-art HGS-CVRP [138], and Google’s OR-Tools [111], an open-source solver based on constraint1934

programming for complex optimization problems, to solve all VRP variants considered in this study.1935

Both baseline methods solve each instance on a single CPU core with a time limit of 10 and 201936

63

Table 30: Performance on 1,000 test instances. * represents 0.000%, with which the gaps are computed.

Method
N = 50 N = 100

Method
N = 50 N = 100

Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time
C

V
R

P
HGS-PyVRP 10.287 * 4.6m 15.543 * 9.2m

V
R

PT
W

HGS-PyVRP 16.032 * 4.6m 25.433 * 9.2m
OR-Tools 10.523 2.294% 4.6m 16.361 5.263% 9.2m OR-Tools 16.124 0.574% 4.6m 25.923 1.927% 9.2m
MTPOMO 10.408 1.176% 2s 15.809 1.711% 10s MTPOMO 16.396 2.270% 2s 26.391 3.767% 11s
MVMoE 10.397 1.069% 3s 15.782 1.538% 13s MVMoE 16.394 2.258% 3s 26.357 3.633% 14s
MVMoE-L 10.404 1.137% 3s 15.790 1.589% 12s MVMoE-L 16.393 2.252% 3s 26.359 3.641% 13s

O
V

R
P

HGS-PyVRP 6.494 * 4.6m 9.730 * 9.2m

V
R

PL

HGS-PyVRP 10.328 * 4.6m 15.637 * 9.2m
OR-Tools 6.555 0.939% 4.6m 10.081 3.607% 9.2m OR-Tools 10.570 2.343% 4.6m 16.466 5.302% 9.2m
MTPOMO 6.712 3.357% 2s 10.241 5.252% 10s MTPOMO 10.454 1.220% 2s 15.921 1.816% 12s
MVMoE 6.696 3.111% 3s 10.213 4.964% 13s MVMoE 10.442 1.104% 3s 15.886 1.592% 13s
MVMoE-L 6.704 3.234% 2s 10.215 4.985% 12s MVMoE-L 10.450 1.181% 2s 15.898 1.669% 10s

V
R

PB

HGS-PyVRP 9.688 * 4.6m 14.386 * 9.2m

O
V

R
PT

W

HGS-PyVRP 10.485 * 4.6m 16.900 * 9.2m
OR-Tools 9.829 1.455% 4.6m 15.010 4.338% 9.2m OR-Tools 10.497 0.114% 4.6m 17.023 0.728% 9.2m
MTPOMO 9.975 2.962% 2s 15.014 4.365% 10s MTPOMO 10.664 1.707% 2s 17.426 3.112% 11s
MVMoE 9.954 2.746% 3s 14.962 4.004% 13s MVMoE 10.665 1.717% 3s 17.421 3.083% 15s
MVMoE-L 9.963 2.839% 2s 14.976 4.101% 11s MVMoE-L 10.665 1.717% 2s 17.411 3.024% 14s

O
V

R
PB

HGS-PyVRP 6.897 * 4.6m 10.304 * 9.2m

O
V

R
PB

L

HGS-PyVRP 6.904 * 4.6m 10.310 * 9.2m
OR-Tools 6.940 0.623% 4.6m 10.611 2.979% 9.2m OR-Tools 6.949 0.652% 4.6m 10.613 2.939% 9.2m
MTPOMO 7.392 7.177% 2s 11.787 14.392% 10s MTPOMO 7.400 7.184% 2s 11.786 14.316% 10s
MVMoE 7.566 9.700% 3s 11.873 15.227% 13s MVMoE 7.577 9.748% 3s 11.875 15.179% 13s
MVMoE-L 7.388 7.119% 2s 11.806 14.577% 12s MVMoE-L 7.391 7.054% 2s 11.814 14.588% 12s

O
V

R
PB

LT
W

HGS-PyVRP 11.597 * 4.6m 19.005 * 9.2m
O

V
R

PB
T

W
HGS-PyVRP 11.590 * 4.6m 19.167 * 9.2m

OR-Tools 11.612 0.129% 4.6m 19.198 1.016% 9.2m OR-Tools 11.610 0.173% 4.6m 19.314 0.767% 9.2m
MTPOMO 11.986 3.354% 2s 20.048 5.488% 11s MTPOMO 11.980 3.365% 2s 20.209 5.436% 11s
MVMoE 11.949 3.305% 3s 20.092 5.720% 15s MVMoE 11.957 3.167% 3s 20.254 5.671% 15s
MVMoE-L 11.961 3.139% 3s 20.033 5.409% 14s MVMoE-L 11.951 3.115% 2s 20.173 5.249% 14s

O
V

R
PL

HGS-PyVRP 6.510 * 4.6m 9.709 * 9.2m

O
V

R
PL

T
W

HGS-PyVRP 10.455 * 4.6m 16.962 * 9.2m
OR-Tools 6.571 0.937% 4.6m 10.047 3.481% 9.2m OR-Tools 10.465 0.096% 4.6m 17.100 0.814% 9.2m
MTPOMO 6.732 3.410% 2s 10.216 5.222% 10s MTPOMO 10.625 1.626% 2s 17.486 3.089% 11s
MVMoE 6.713 3.118% 3s 10.187 4.923% 13s MVMoE 10.631 1.683% 3s 17.483 3.072% 15s
MVMoE-L 6.725 3.303% 2s 10.185 4.903% 12s MVMoE-L 10.635 1.722% 3s 17.474 3.019% 14s

V
R

PB
L

HGS-PyVRP 9.688 * 4.6m 14.373 * 9.2m

V
R

PB
LT

W

HGS-PyVRP 18.361 * 4.6m 29.026 * 9.2m
OR-Tools 9.820 1.363% 4.6m 15.084 4.947% 9.2m OR-Tools 18.422 0.332% 4.6m 29.830 2.770% 9.2m
MTPOMO 9.994 3.159% 2s 15.033 4.592% 10s MTPOMO 19.028 3.633% 2s 31.062 7.014% 11s
MVMoE 9.971 2.921% 3s 14.979 4.286% 13s MVMoE 18.967 3.300% 3s 31.114 7.194% 15s
MVMoE-L 9.977 2.983% 2s 14.990 4.293% 11s MVMoE-L 18.998 3.469% 3s 31.032 6.911% 13s

V
R

PB
T

W

HGS-PyVRP 18.167 * 4.6m 29.000 * 9.2m

V
R

PL
T

W

HGS-PyVRP 15.951 * 4.6m 25.678 * 9.2m
OR-Tools 18.374 1.139% 4.6m 29.964 3.324% 9.2m OR-Tools 16.036 0.533% 4.6m 26.156 1.862% 9.2m
MTPOMO 18.995 4.558% 2s 31.184 7.531% 11s MTPOMO 16.310 2.251% 2s 26.650 3.785% 11s
MVMoE 18.934 4.222% 3s 31.223 7.666% 15s MVMoE 16.315 2.282% 3s 26.635 3.727% 14s
MVMoE-L 18.970 4.420% 2s 31.138 7.372% 14s MVMoE-L 16.311 2.257% 3s 26.637 3.735% 13s

seconds for instances with 50 and 100 nodes, respectively. We parallelize traditional solvers across1937

16 CPU cores as in [74]. For neural solvers, we mostly follow the training setups from previous1938

works [89, 157, 13]. In specific, the model is trained over 300 epochs, with each epoch containing1939

100,000 instances generated on the fly. The Adam optimizer is used with a learning rate of 3e − 4,1940

a weight decay of 1e − 6, and a batch size of 256. The learning rate decays by 10 at 270 and 2951941

epochs. Note that different from Liu et al. [89], Zhou et al. [157], we allow various problem variants1942

to be trained in each batch training following Berto et al. [13]. We consider 16 VRP variants as1943

shown in Table 7, including the constraints of capacity, time window, backhaul, open route, and1944

duration limit. The training variants include CVRP, OVRP, VRPL, VRPB, VRPTW, and OVRPTW.1945

During inference, we use greedy rollout with x8 instance augmentation following Kwon et al. [76].1946

We report the average results (i.e., objective values and gaps) over the test dataset that contains 1,0001947

instances, and the total time to solve the entire test dataset. The gaps are computed with respect to1948

the results of HGS-PyVRP. All neural solvers are implemented using RL4CO.1949

64

0 5 10 15 20 25 30
Step

16.3

16.2

16.1

16.0

15.9

15.8

Ob
j.

CVRP

MTPOMO
MVMoE
MVMoE-L

0 5 10 15 20 25 30
Step

11.0
10.9
10.8
10.7
10.6
10.5
10.4
10.3
10.2

Ob
j.

OVRP

MTPOMO
MVMoE
MVMoE-L

0 5 10 15 20 25 30
Step

15.6

15.5

15.4

15.3

15.2

15.1

15.0

Ob
j.

VRPB

MTPOMO
MVMoE
MVMoE-L

0 5 10 15 20 25 30
Step

16.5

16.4

16.3

16.2

16.1

16.0

15.9

Ob
j.

VRPL

MTPOMO
MVMoE
MVMoE-L

0 5 10 15 20 25 30
Step

27.2

27.0

26.8

26.6

26.4

Ob
j.

VRPTW

MTPOMO
MVMoE
MVMoE-L

0 5 10 15 20 25 30
Step

18.1

18.0

17.9

17.8

17.7

17.6

17.5

17.4

Ob
j.

OVRPTW

MTPOMO
MVMoE
MVMoE-L

Figure 31: The validation curves of foundation models on N = 100.

E.8.2 Empirical Results1950

We show the comprehensive evaluation results and validation curves in Table 30 and Fig. 31, re-1951

spectively. The conclusions are consistent with previous studies [89, 157, 13] that 1) the foundation1952

VRP solvers exhibit remarkable zero-shot generalization performance, even only trained on several1953

VRPs with simple constraints; 2) conditional computation (e.g., mixture-of-experts [57, 121]) can1954

greatly enhance the model capacity without a proportional increase in computation. In Table 31,1955

we further show the performance on CVRPLIB [86], which is a real-world benchmark dataset in-1956

cluding instances with diverse distributions. We empirically observe that training on multiple VRPs1957

can significantly improve the out-of-distribution generalization performance of neural VRP solvers,1958

demonstrating the great promise of developing foundation models in VRPs.1959

E.8.3 Discussion1960

Foundation models, a class of large-scale deep learning models pre-trained on extensive datasets1961

of diverse tasks, have recently revolutionized the fields of language and vision domains. They can1962

generate text, translate languages, summarize content, and more, all without task-specific training.1963

This versatility makes them incredibly useful across various applications, from chatbots to academic1964

research. Aiming for a more powerful and general solver, recent studies explore the possibility of1965

pretraining a large model on a huge amount of optimization tasks. The long-term goal is to develop1966

a foundation model for VRPs (or more broadly COPs), which can efficiently solve any problem1967

variant, comparably or better to the conventional solvers with respect to the solution quality and1968

inference speed. Despite the recent advancements of foundation VRP models [89, 157, 13], there are1969

many challenges that need to be addressed by the NCO community, including but not limited to: 1)1970

scaling: current autoregressive-based models are challenging to scale to the parameter levels of large1971

language models (e.g., billions of parameters) due to the expensive training cost. RL-based training1972

is data inefficient and converges slowly, whereas SL-based training requires a significant amount1973

of optimal solutions, which are non-trivial to obtain for NP-hard problems. They also fail to be1974

efficiently trained on large-scale instances; 2) performance: the empirical results are still far short of1975

traditional solvers (e.g., OR-Tools). They may also suffer from generalization and robustness issues;1976

3) generality: the current problem formulation or template cannot solve novel problem variants in a1977

zero-shot manner; 4) interpretability: the decision-making of foundation models is hard to explain.1978

65

Table 31: Results on CVRPLib datasets with diverse distributions and sizes. All models are only trained on the
uniformly distributed data with the size N = 100.

Benchmark Size N Ins. Num. POMO-CVRP MTPOMO MVMoE MVMoE-L
Obj. Gap Obj. Gap Obj. Gap Obj. Gap

Set A 31-79 27 1088.5 4.9% 1084.2 4.3% 1081.0 3.8% 1085.4 4.4%
Set B 30-77 23 1013.9 5.5% 1010.3 5.0% 1003.5 4.0% 1001.2 4.0%
Set F 44-134 3 796.0 12.7% 812.7 16.3% 819.0 13.8% 799.0 14.1%
Set M 100-199 5 1157.4 6.3% 1179.4 8.6% 1181.8 8.8% 1151.4 6.0%
Set P 15-100 23 643.9 14.7% 621.8 8.4% 616.1 5.9% 619.8 6.9%
Set X 100-1000 100 77199.6 21.1% 71153.8 11.7% 72798.7 15.0% 72446.1 13.9%

Moreover, there is another line of research leveraging the existing large language models (LLMs) to1979

generate solutions [149, 91, 55] or algorithms [117, 90, 151], yielding impressive results when in-1980

tegrated with problem-specific heuristics or general meta-heuristics. Some studies employ LLMs to1981

investigate the interpretability of solvers [66], automate problem formulation or simplify the use of1982

domain-specific tools [146, 2, 142] through text prompts. However, their performance is highly de-1983

pendent on the utilized LLMs, and their outputs may be extremely sensitive to the designed prompts.1984

We view both as promising directions towards foundation models in combinatorial optimization. We1985

call the attention from both the machine learning (ML) and operations research (OR) communities to1986

advance the development of impactful foundational models and learning methods that are scalable,1987

robust, generalizable, and interpretable across various optimization tasks in future work.1988

E.9 Generalization of Training on Multiple Distributions and Multiple Tasks1989

Recent neural methods mostly train and test neural networks on the same task with instances of1990

the same distribution and size, and hence suffer from inferior generalization performance. Some1991

attempts have been made to alleviate the generalization issue, focusing on either distribution [16,1992

59, 147] or size [122]. More aligned to the diverse distribution and size settings in the benchmark1993

dataset TSPLib and CVRPLib, Manchanda et al. [100] and Zhou et al. [156] consider generalization1994

across both distribution and size in VRPs.1995

However, these generalization methods adopt extra model architectures and training paradigms, re-1996

sulting in additional computational burdens. As a more efficient alternative, we observe that diversi-1997

fied training datasets significantly improve generalization performance. Specifically, as indicated in1998

the prior works, training on mixed distributions [16] and mixed VRP variants [89, 157, 13] boosts1999

the generalization capability. RL4CO, detailed in Appendix B.1.6, supports multiple VRP vari-2000

ants and the generation of diverse coordinate distributions, enabling straightforward experimental2001

setups. The implementation specifics are outlined in Appendix D.3.4. Evaluation results on the2002

CVRPLib [86], summarized in Table 4 and fully detailed in Table 32, demonstrate that training2003

across multiple distributions (i.e., MDPOMO) achieves better generalization on datasets of similar2004

size to the training set, whereas training across multiple VRP tasks (i.e., MTPOMO) exhibits supe-2005

rior generalization across larger and more diverse distributions. This indicates that different VRP2006

variants share foundational knowledge, and learning from this diversity enhances generalization be-2007

yond conventional training on a single distribution, size, and task. These key findings highlight the2008

necessity of developing foundational models across diverse combinatorial optimization domains.2009

66

Table 32: Full Results on CVRPLIB instances with models trained on N = 50. Greedy multi-start decoding is
used.

Instance BKS
POMO MTPOMO MDPOMO

Instance BKS
POMO MTPOMO MDPOMO

Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap
A-n32-k5 784 821 4.72% 831 5.99% 817 4.21% X-n125-k30 55539 58759 5.80% 58560 5.44% 59924 7.90%
A-n33-k5 661 683 3.33% 689 4.24% 685 3.63% X-n129-k18 28940 30611 5.77% 30437 5.17% 30516 5.45%
A-n33-k6 742 759 2.29% 745 0.40% 750 1.08% X-n134-k13 10916 11805 8.14% 12043 10.32% 11771 7.83%
A-n34-k5 778 791 1.67% 791 1.67% 791 1.67% X-n139-k10 13590 14562 7.15% 14993 10.32% 15328 12.79%
A-n36-k5 799 831 4.01% 803 0.50% 812 1.63% X-n143-k7 15700 17293 10.15% 17337 10.43% 17062 8.68%
A-n37-k5 669 712 6.43% 699 4.48% 673 0.60% X-n148-k46 43448 47711 9.81% 46442 6.89% 49444 13.80%
A-n37-k6 949 995 4.85% 998 5.16% 999 5.27% X-n153-k22 21220 24506 15.49% 23928 12.76% 24562 15.75%
A-n38-k5 730 753 3.15% 749 2.60% 774 6.03% X-n157-k13 16876 18702 10.82% 18201 7.85% 18560 9.98%
A-n39-k5 822 835 1.58% 842 2.43% 842 2.43% X-n162-k11 14138 15678 10.89% 15615 10.45% 16257 14.99%
A-n39-k6 831 838 0.84% 844 1.56% 842 1.32% X-n167-k10 20557 22331 8.63% 23083 12.29% 22839 11.10%
A-n44-k6 937 962 2.67% 959 2.35% 958 2.24% X-n172-k51 45607 50471 10.67% 48799 7.00% 50689 11.14%
A-n45-k6 944 984 4.24% 981 3.92% 965 2.22% X-n176-k26 47812 54316 13.60% 53773 12.47% 53197 11.26%
A-n45-k7 1146 1166 1.75% 1163 1.48% 1162 1.40% X-n181-k23 25569 27331 6.89% 27571 7.83% 27572 7.83%
A-n46-k7 914 924 1.09% 945 3.39% 938 2.63% X-n186-k15 24145 26981 11.75% 27157 12.47% 27011 11.87%
A-n48-k7 1073 1108 3.26% 1121 4.47% 1102 2.70% X-n190-k8 16980 19414 14.33% 19955 17.52% 18355 8.10%
A-n53-k7 1010 1040 2.97% 1080 6.93% 1047 3.66% X-n195-k51 44225 50357 13.87% 47675 7.80% 49878 12.78%
A-n54-k7 1167 1192 2.14% 1191 2.06% 1181 1.20% X-n200-k36 58578 66149 12.92% 62862 7.31% 62466 6.64%
A-n55-k9 1073 1095 2.05% 1124 4.75% 1123 4.66% X-n204-k19 19565 22013 12.51% 22297 13.96% 23018 17.65%
A-n60-k9 1354 1388 2.51% 1398 3.25% 1389 2.58% X-n209-k16 30656 33810 10.29% 33745 10.08% 34060 11.10%
A-n61-k9 1034 1059 2.42% 1090 5.42% 1051 1.64% X-n214-k11 10856 13108 20.74% 13005 19.80% 12586 15.94%
A-n62-k8 1288 1343 4.27% 1329 3.18% 1364 5.90% X-n219-k73 117595 133173 13.25% 125415 6.65% 126942 7.95%
A-n63-k9 1616 1660 2.72% 1660 2.72% 1654 2.35% X-n223-k34 40437 44173 9.24% 44066 8.97% 44609 10.32%
A-n63-k10 1314 1349 2.66% 1342 2.13% 1347 2.51% X-n228-k23 25742 30685 19.20% 29896 16.14% 29593 14.96%
A-n64-k9 1401 1432 2.21% 1438 2.64% 1441 2.86% X-n233-k16 19230 22082 14.83% 22602 17.54% 23553 22.48%
A-n65-k9 1174 1231 4.86% 1234 5.11% 1239 5.54% X-n237-k14 27042 31000 14.64% 31880 17.89% 31617 16.92%
A-n69-k9 1159 1224 5.61% 1207 4.14% 1205 3.97% X-n242-k48 82751 89900 8.64% 87933 6.26% 90125 8.91%
A-n80-k10 1763 1839 4.31% 1825 3.52% 1840 4.37% X-n247-k50 37274 41688 11.84% 42340 13.59% 43318 16.22%
B-n31-k5 672 688 2.38% 705 4.91% 694 3.27% X-n251-k28 38684 43430 12.27% 42379 9.55% 42721 10.44%
B-n34-k5 788 798 1.27% 802 1.78% 803 1.90% X-n256-k16 18839 23449 24.47% 21559 14.44% 25704 36.44%
B-n35-k5 955 979 2.51% 975 2.09% 976 2.20% X-n261-k13 26558 30384 14.41% 31345 18.02% 30630 15.33%
B-n38-k6 805 830 3.11% 817 1.49% 834 3.60% X-n266-k58 75478 83838 11.08% 83806 11.03% 91188 20.81%
B-n39-k5 549 561 2.19% 561 2.19% 557 1.46% X-n270-k35 35291 40274 14.12% 39378 11.58% 41661 18.05%
B-n41-k6 829 849 2.41% 850 2.53% 848 2.29% X-n275-k28 21245 25909 21.95% 25718 21.05% 26474 24.61%
B-n43-k6 742 762 2.70% 756 1.89% 770 3.77% X-n280-k17 33503 37659 12.40% 39309 17.33% 38119 13.78%
B-n44-k7 909 942 3.63% 940 3.41% 934 2.75% X-n284-k15 20226 25024 23.72% 24791 22.57% 23504 16.21%
B-n45-k5 751 772 2.80% 775 3.20% 771 2.66% X-n289-k60 95151 106073 11.48% 104253 9.57% 107238 12.70%
B-n45-k6 678 736 8.55% 745 9.88% 736 8.55% X-n294-k50 47161 54318 15.18% 53458 13.35% 54899 16.41%
B-n50-k7 741 767 3.51% 765 3.24% 753 1.62% X-n298-k31 34231 40064 17.04% 39609 15.71% 41296 20.64%
B-n50-k8 1312 1347 2.67% 1330 1.37% 1328 1.22% X-n303-k21 21736 26078 19.98% 25228 16.07% 25380 16.76%
B-n52-k7 747 762 2.01% 762 2.01% 763 2.14% X-n308-k13 25859 30557 18.17% 31927 23.47% 31625 22.30%
B-n56-k7 707 740 4.67% 744 5.23% 734 3.82% X-n313-k71 94043 106936 13.71% 101767 8.21% 116306 23.67%
B-n57-k7 1153 1153 0.00% 1175 1.91% 1162 0.78% X-n317-k53 78355 96382 23.01% 84483 7.82% 106138 35.46%
B-n57-k9 1598 1651 3.32% 1645 2.94% 1644 2.88% X-n322-k28 29834 35987 20.62% 35503 19.00% 37562 25.90%
B-n63-k10 1496 1537 2.74% 1589 6.22% 1572 5.08% X-n327-k20 27532 33039 20.00% 33478 21.60% 34083 23.79%
B-n64-k9 861 937 8.83% 931 8.13% 923 7.20% X-n331-k15 31102 36123 16.14% 37292 19.90% 37114 19.33%
B-n66-k9 1316 1353 2.81% 1374 4.41% 1350 2.58% X-n336-k84 139111 153850 10.60% 150341 8.07% 158211 13.73%
B-n67-k10 1032 1070 3.68% 1115 8.04% 1065 3.20% X-n344-k43 42050 48339 14.96% 48035 14.23% 49217 17.04%
B-n68-k9 1272 1337 5.11% 1339 5.27% 1343 5.58% X-n351-k40 25896 30923 19.41% 30498 17.77% 30965 19.57%
B-n78-k10 1221 1306 6.96% 1311 7.37% 1307 7.04% X-n359-k29 51505 58300 13.19% 59810 16.12% 59431 15.39%
E-n22-k4 375 421 12.27% 427 13.87% 433 15.47% X-n367-k17 22814 30083 31.86% 28335 24.20% 27747 21.62%
E-n23-k3 569 621 9.14% 574 0.88% 578 1.58% X-n376-k94 147713 162451 9.98% 160107 8.39% 173422 17.40%
E-n33-k4 835 844 1.08% 845 1.20% 858 2.75% X-n384-k52 65928 76341 15.79% 76040 15.34% 77891 18.15%
E-n51-k5 521 534 2.50% 555 6.53% 546 4.80% X-n393-k38 38260 45226 18.21% 44953 17.49% 47317 23.67%
E-n76-k7 682 708 3.81% 721 5.72% 721 5.72% X-n401-k29 66154 73618 11.28% 76247 15.26% 73121 10.53%
E-n76-k8 735 775 5.44% 770 4.76% 777 5.71% X-n411-k19 19712 26432 34.09% 25671 30.23% 25525 29.49%
E-n76-k10 830 876 5.54% 863 3.98% 868 4.58% X-n420-k130 107798 123789 14.83% 119818 11.15% 128982 19.65%
E-n76-k14 1021 1051 2.94% 1070 4.80% 1058 3.62% X-n429-k61 65449 75236 14.95% 76115 16.30% 78711 20.26%
E-n101-k8 815 876 7.48% 879 7.85% 887 8.83% X-n439-k37 36391 44326 21.80% 43772 20.28% 47436 30.35%

E-n101-k14 1067 1137 6.56% 1150 7.78% 1138 6.65% X-n449-k29 55233 63887 15.67% 67416 22.06% 66168 19.80%
F-n45-k4 724 753 4.01% 747 3.18% 729 0.69% X-n459-k26 24139 32530 34.76% 31774 31.63% 31437 30.23%
F-n72-k4 237 272 14.77% 270 13.92% 268 13.08% X-n469-k138 221824 267934 20.79% 248139 11.86% 260902 17.62%
F-n135-k7 1162 1415 21.77% 1385 19.19% 1478 27.19% X-n480-k70 89449 100833 12.73% 103101 15.26% 103785 16.03%

M-n101-k10 820 974 18.78% 908 10.73% 905 10.37% X-n491-k59 66483 78531 18.12% 78999 18.83% 80703 21.39%
M-n121-k7 1034 1242 20.12% 1181 14.22% 1204 16.44% X-n502-k39 69226 79183 14.38% 77585 12.07% 78419 13.28%

M-n151-k12 1015 1143 12.61% 1116 9.95% 1164 14.68% X-n513-k21 24201 34479 42.47% 32744 35.30% 39592 63.60%
M-n200-k16 1274 1468 15.23% 1464 14.91% 1521 19.39% X-n524-k153 154593 179926 16.39% 174390 12.81% 193416 25.11%
M-n200-k17 1275 1468 15.14% 1473 15.53% 1521 19.29% X-n536-k96 94846 112396 18.50% 111393 17.45% 111191 17.23%

P-n16-k8 450 536 19.11% 455 1.11% 452 0.44% X-n548-k50 86700 106722 23.09% 109595 26.41% 114193 31.71%
P-n19-k2 212 238 12.26% 221 4.25% 221 4.25% X-n561-k42 42717 53160 24.45% 54559 27.72% 64356 50.66%
P-n20-k2 216 244 12.96% 221 2.31% 221 2.31% X-n573-k30 50673 63498 25.31% 61820 22.00% 57024 12.53%
P-n21-k2 211 241 14.22% 231 9.48% 242 14.69% X-n586-k159 190316 222036 16.67% 214162 12.53% 236527 24.28%
P-n22-k2 216 227 5.09% 219 1.39% 248 14.81% X-n599-k92 108451 127051 17.15% 131764 21.50% 132380 22.06%
P-n22-k8 603 767 27.20% 597 -1.00% 671 11.28% X-n613-k62 59535 74314 24.82% 76519 28.53% 82989 39.40%
P-n23-k8 529 550 3.97% 545 3.02% 543 2.65% X-n627-k43 62164 74305 19.53% 76288 22.72% 77838 25.21%
P-n40-k5 458 469 2.40% 463 1.09% 474 3.49% X-n641-k35 63682 75524 18.60% 79364 24.63% 78067 22.59%
P-n45-k5 510 518 1.57% 525 2.94% 519 1.76% X-n655-k131 106780 121331 13.63% 123635 15.78% 286735 168.53%
P-n50-k7 554 577 4.15% 576 3.97% 563 1.62% X-n670-k130 146332 178277 21.83% 175430 19.88% 197324 34.85%
P-n50-k8 631 648 2.69% 651 3.17% 653 3.49% X-n685-k75 68205 85840 25.86% 86689 27.10% 92401 35.48%
P-n50-k10 696 729 4.74% 726 4.31% 725 4.17% X-n701-k44 81923 96856 18.23% 101554 23.96% 99307 21.22%
P-n51-k10 741 756 2.02% 774 4.45% 771 4.05% X-n716-k35 43373 54951 26.69% 55906 28.90% 57471 32.50%
P-n55-k7 568 586 3.17% 590 3.87% 588 3.52% X-n733-k159 136187 163853 20.31% 159532 17.14% 202275 48.53%
P-n55-k10 694 707 1.87% 714 2.88% 710 2.31% X-n749-k98 77269 94552 22.37% 92530 19.75% 101096 30.84%
P-n60-k10 744 769 3.36% 769 3.36% 762 2.42% X-n766-k71 114417 136873 19.63% 140820 23.08% 149744 30.88%
P-n60-k15 968 991 2.38% 1003 3.62% 1016 4.96% X-n783-k48 72386 90822 25.47% 94551 30.62% 96054 32.70%
P-n65-k10 792 808 2.02% 820 3.54% 812 2.53% X-n801-k40 73305 91023 24.17% 94591 29.04% 102682 40.08%
P-n70-k10 827 866 4.72% 876 5.93% 864 4.47% X-n819-k171 158121 184644 16.77% 182548 15.45% 417753 164.20%
P-n76-k4 593 639 7.76% 645 8.77% 649 9.44% X-n837-k142 193737 224297 15.77% 231397 19.44% 285547 47.39%
P-n76-k5 627 680 8.45% 673 7.34% 662 5.58% X-n856-k95 88965 106823 20.07% 112092 26.00% 128899 44.89%
P-n101-k4 681 751 10.28% 746 9.54% 773 13.51% X-n876-k59 99299 122331 23.19% 123350 24.22% 117776 18.61%

X-n101-k25 27591 29873 8.27% 29574 7.19% 30455 10.38% X-n895-k37 53860 72775 35.12% 77568 44.02% 86211 60.06%
X-n106-k14 26362 27868 5.71% 27583 4.63% 26996 2.40% X-n916-k207 329179 378802 15.07% 375026 13.93% 429299 30.42%
X-n110-k13 14971 15970 6.67% 16196 8.18% 16348 9.20% X-n936-k151 132715 167857 26.48% 172305 29.83% 175681 32.37%
X-n115-k10 12747 14190 11.32% 14323 12.36% 13533 6.17% X-n957-k87 85465 111777 30.79% 121909 42.64% 116564 36.39%
X-n120-k6 13332 14381 7.87% 14078 5.60% 14157 6.19% X-n979-k58 118976 146052 22.76% 142602 19.86% 145171 22.02%

67

F Supplementary Material References2010

We repeat the references here for reader convenience since PDF files (main paper / supplementary)2011

are separate upon submission. This section also adds Supplementary-only ones.2012

References2013

[1] L. Accorsi, A. Lodi, and D. Vigo. Guidelines for the computational testing of machine learn-2014

ing approaches to vehicle routing problems. Operations Research Letters, 50(2):229–234,2015

2022.2016

[2] A. AhmadiTeshnizi, W. Gao, and M. Udell. OptiMUS: Scalable optimization modeling with2017

(MI)LP solvers and large language models. In International Conference on Machine Learn-2018

ing, 2024.2019

[3] S. Ahn, Y. Seo, and J. Shin. Learning what to defer for maximum independent sets. In2020

International Conference on Machine Learning, pages 134–144. PMLR, 2020.2021

[4] K. Ali, W. Alsalih, and H. Hassanein. Set-cover approximation algorithms for load-aware2022

readers placement in RFID networks. In 2011 IEEE international conference on communica-2023

tions (ICC), pages 1–6. IEEE, 2011.2024

[5] B. Balaji, J. Bell-Masterson, E. Bilgin, A. Damianou, P. M. Garcia, A. Jain, R. Luo, A. Mag-2025

giar, B. Narayanaswamy, and C. Ye. Orl: Reinforcement learning benchmarks for online2026

stochastic optimization problems. arXiv preprint arXiv:1911.10641, 2019.2027

[6] E. Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636, 1989.2028

[7] A. Bdeir, J. K. Falkner, and L. Schmidt-Thieme. Attention, filling in the gaps for generaliza-2029

tion in routing problems. In Joint European Conference on Machine Learning and Knowledge2030

Discovery in Databases, pages 505–520. Springer, 2022.2031

[8] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial optimization2032

with reinforcement learning, 2017.2033

[9] E. Bengio, M. Jain, M. Korablyov, D. Precup, and Y. Bengio. Flow network based genera-2034

tive models for non-iterative diverse candidate generation. Advances in Neural Information2035

Processing Systems, 34:27381–27394, 2021.2036

[10] Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: a2037

methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,2038

2021.2039

[11] Y. Bengio, S. Lahlou, T. Deleu, E. J. Hu, M. Tiwari, and E. Bengio. Gflownet foundations.2040

Journal of Machine Learning Research, 24(210):1–55, 2023.2041

[12] T. Berthold. Measuring the impact of primal heuristics. Operations Research Letters, 41(6):2042

611–614, 2013.2043

[13] F. Berto, C. Hua, N. G. Zepeda, A. Hottung, N. Wouda, L. Lan, K. Tierney, and J. Park.2044

RouteFinder: Towards foundation models for vehicle routing problems, 2024. GitHub repos-2045

itory: https://github.com/ai4co/routefinder.2046

[14] K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van Doornmalen,2047

L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, et al. The SCIP optimization suite 8.0. arXiv2048

2112.08872, 2021.2049

[15] M. Bettini, A. Prorok, and V. Moens. Benchmarl: Benchmarking multi-agent reinforcement2050

learning. arXiv preprint arXiv:2312.01472, 2023.2051

68

https://github.com/ai4co/routefinder

[16] J. Bi, Y. Ma, J. Wang, Z. Cao, J. Chen, Y. Sun, and Y. M. Chee. Learning generalizable models2052

for vehicle routing problems via knowledge distillation. Advances in Neural Information2053

Processing Systems, 35:31226–31238, 2022.2054

[17] D. Biagioni, C. E. Tripp, S. Clark, D. Duplyakin, J. Law, and P. C. S. John. graphenv: a2055

python library for reinforcement learning on graph search spaces. Journal of Open Source2056

Software, 7(77):4621, 2022.2057

[18] L. Bodin. Routing and scheduling of vehicles and crews. Computer & Operations Research,2058

10(2):69–211, 1983.2059

[19] C. Bonnet, D. Luo, D. Byrne, S. Surana, S. Abramowitz, P. Duckworth, V. Coyette, L. I.2060

Midgley, E. Tegegn, T. Kalloniatis, O. Mahjoub, M. Macfarlane, A. P. Smit, N. Grinsztajn,2061

R. Boige, C. N. Waters, M. A. Mimouni, U. A. M. Sob, R. de Kock, S. Singh, D. Furelos-2062

Blanco, V. Le, A. Pretorius, and A. Laterre. Jumanji: a diverse suite of scalable reinforce-2063

ment learning environments in jax. In International Conference on Learning Representations,2064

2024.2065

[20] A. Bou, M. Bettini, S. Dittert, V. Kumar, S. Sodhani, X. Yang, G. D. Fabritiis, and V. Moens.2066

TorchRL: A data-driven decision-making library for pytorch. In International conference on2067

learning representations, 2024.2068

[21] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,2069

A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable trans-2070

formations of Python+NumPy programs, 2018. URL http://github.com/google/jax.2071

[22] P. Brandimarte. Routing and scheduling in a flexible job shop by tabu search. Annals of2072

Operations research, 41(3):157–183, 1993.2073

[23] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.2074

Openai gym. arXiv preprint arXiv:1606.01540, 2016.2075

[24] S. Brody, U. Alon, and E. Yahav. How attentive are graph attention networks? In Interna-2076

tional Conference on Learning Representations, 2019.2077

[25] F. Bu, H. Jo, S. Y. Lee, S. Ahn, and K. Shin. Tackling prevalent conditions in unsupervised2078

combinatorial optimization: Cardinality, minimum, covering, and more. In International2079

Conference on Machine Learning, 2024.2080

[26] B. Çatay. Ant colony optimization and its application to the vehicle routing problem with2081

pickups and deliveries. In Natural intelligence for scheduling, Planning and packing prob-2082

lems, pages 219–244. Springer, 2009.2083

[27] F. Chalumeau, S. Surana, C. Bonnet, N. Grinsztajn, A. Pretorius, A. Laterre, and T. Barrett.2084

Combinatorial optimization with policy adaptation using latent space search. Advances in2085

Neural Information Processing Systems, 36, 2024.2086

[28] I.-M. Chao, B. L. Golden, and E. A. Wasil. A fast and effective heuristic for the orienteering2087

problem. European journal of operational research, 88(3):475–489, 1996.2088

[29] J. Chen, Z. Zhang, Z. Cao, Y. Wu, Y. Ma, T. Ye, and J. Wang. Neural multi-objective combina-2089

torial optimization with diversity enhancement. Advances in Neural Information Processing2090

Systems, 36, 2024.2091

[30] X. Chen and Y. Tian. Learning to perform local rewriting for combinatorial optimization. In2092

Advances in Neural Information Processing Systems, 2019.2093

[31] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization2094

algorithms over graphs. In Advances in Neural Information Processing Systems, volume 30,2095

2017.2096

69

http://github.com/google/jax

[32] S. Dalton et al. Accelerating reinforcement learning through gpu atari emulation. Advances2097

in Neural Information Processing Systems, 33:19773–19782, 2020.2098

[33] T. Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning.2099

arXiv preprint arXiv:2307.08691, 2023.2100

[34] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-efficient2101

exact attention with io-awareness. Advances in Neural Information Processing Systems, 35:2102

16344–16359, 2022.2103

[35] V. C. David Applegate, Robert Bixby and W. Cook. Concorde TSP solver, 2023. URL2104

https://www.math.uwaterloo.ca/tsp/concorde/index.html.2105

[36] M. Dorigo and T. Stützle. Ant colony optimization: overview and recent advances. Springer,2106

2019.2107

[37] D. Drakulic, S. Michel, F. Mai, A. Sors, and J.-M. Andreoli. BQ-NCO: Bisimulation quoti-2108

enting for generalizable neural combinatorial optimization. Advances in Neural Information2109

Processing Systems, 2023.2110

[38] Z. Drezner and H. W. Hamacher. Facility location: applications and theory. Springer Science2111

& Business Media, 2004.2112

[39] W. Falcon and The PyTorch Lightning team. PyTorch Lightning, 3 2019. URL https:2113

//github.com/Lightning-AI/lightning.2114

[40] J. K. Falkner and L. Schmidt-Thieme. Learning to solve vehicle routing problems with time2115

windows through joint attention. arXiv preprint arXiv:2006.09100, 2020.2116

[41] M. Fischetti, J. J. S. Gonzalez, and P. Toth. Solving the orienteering problem through branch-2117

and-cut. INFORMS Journal on Computing, 10(2):133–148, 1998.2118

[42] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax - a2119

differentiable physics engine for large scale rigid body simulation, 2021. URL http://2120

github.com/google/brax.2121

[43] N. Grinsztajn, D. Furelos-Blanco, S. Surana, C. Bonnet, and T. Barrett. Winner takes it2122

all: Training performant rl populations for combinatorial optimization. Advances in Neural2123

Information Processing Systems, 36:48485–48509, 2023.2124

[44] L. Gurobi Optimization. Gurobi optimizer reference manual, 2021. URL http://www.2125

gurobi.com.2126

[45] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs.2127

Advances in neural information processing systems, 30, 2017.2128

[46] K. Helsgaun. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained trav-2129

eling salesman and vehicle routing problems. Roskilde: Roskilde University, 12 2017. doi:2130

10.13140/RG.2.2.25569.40807.2131

[47] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):2132

1735–1780, 1997.2133

[48] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural text degen-2134

eration. arXiv preprint arXiv:1904.09751, 2019.2135

[49] A. Hottung, B. Bhandari, and K. Tierney. Learning a latent search space for routing problems2136

using variational autoencoders. In International Conference on Learning Representations,2137

2020.2138

70

https://www.math.uwaterloo.ca/tsp/concorde/index.html
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
http://github.com/google/brax
http://github.com/google/brax
http://github.com/google/brax
http://www.gurobi.com
http://www.gurobi.com
http://www.gurobi.com

[50] A. Hottung, Y.-D. Kwon, and K. Tierney. Efficient active search for combinatorial optimiza-2139

tion problems. International conference on learning representations, 2022.2140

[51] A. Hottung, M. Mahajan, and K. Tierney. PolyNet: Learning diverse solution strategies for2141

neural combinatorial optimization. arXiv preprint arXiv:2402.14048, 2024.2142

[52] Y. Hou, H. Ye, Y. Zhang, S. Xu, and G. Song. Routeplacer: An end-to-end routability-aware2143

placer with graph neural network. In Proceedings of the 30th ACM SIGKDD Conference on2144

Knowledge Discovery and Data Mining, 2024.2145

[53] C. D. Hubbs, H. D. Perez, O. Sarwar, N. V. Sahinidis, I. E. Grossmann, and J. M. Wassick.2146

OR-Gym: A reinforcement learning library for operations research problems. arXiv preprint2147

arXiv:2008.06319, 2020.2148

[54] J. Hwang, J. S. Pak, D. Yoon, H. Lee, J. Jeong, Y. Heo, and I. Kim. Enhancing on-die pdn2149

for optimal use of package pdn with decoupling capacitor. In 2021 IEEE 71st Electronic2150

Components and Technology Conference (ECTC), pages 1825–1830, 2021. doi: 10.1109/2151

ECTC32696.2021.00288.2152

[55] Z. Iklassov, Y. Du, F. Akimov, and M. Takac. Self-guiding exploration for combinatorial2153

problems. arXiv preprint arXiv:2405.17950, 2024.2154

[56] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reduc-2155

ing internal covariate shift. In International conference on machine learning, pages 448–456.2156

pmlr, 2015.2157

[57] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts.2158

Neural computation, 3(1):79–87, 1991.2159

[58] A. D. Jesus, A. Liefooghe, B. Derbel, and L. Paquete. Algorithm selection of anytime algo-2160

rithms. In Proceedings of the 2020 genetic and evolutionary computation conference, pages2161

850–858, 2020.2162

[59] Y. Jiang, Y. Wu, Z. Cao, and J. Zhang. Learning to solve routing problems via distributionally2163

robust optimization. In 36th AAAI Conference on Artificial Intelligence, 2022.2164

[60] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural2165

computation, 6(2):181–214, 1994.2166

[61] C. K. Joshi, T. Laurent, and X. Bresson. An efficient graph convolutional network technique2167

for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.2168

[62] J. Juang, L. Zhang, Z. Kiguradze, B. Pu, S. Jin, and C. Hwang. A modified genetic algorithm2169

for the selection of decoupling capacitors in pdn design. In 2021 IEEE International Joint2170

EMC/SI/PI and EMC Europe Symposium, pages 712–717, 2021. doi: 10.1109/EMC/SI/PI/2171

EMCEurope52599.2021.9559292.2172

[63] B. Kalantari, A. V. Hill, and S. R. Arora. An algorithm for the traveling salesman problem2173

with pickup and delivery customers. European Journal of Operational Research, 22(3):377–2174

386, 1985.2175

[64] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization2176

algorithms over graphs. Advances in neural information processing systems, 30, 2017.2177

[65] S. Khuller, A. Moss, and J. S. Naor. The budgeted maximum coverage problem. Information2178

processing letters, 70(1):39–45, 1999.2179

[66] D. Kikuta, H. Ikeuchi, K. Tajiri, and Y. Nakano. RouteExplainer: An explanation framework2180

for vehicle routing problem. In Pacific-Asia Conference on Knowledge Discovery and Data2181

Mining, pages 30–42. Springer, 2024.2182

71

[67] H. Kim, M. Kim, F. Berto, J. Kim, and J. Park. DevFormer: A symmetric transformer for2183

context-aware device placement. International Conference on Machine Learning, 2023.2184

[68] M. Kim, J. Park, and J. Kim. Learning collaborative policies to solve NP-hard routing prob-2185

lems. In Advances in Neural Information Processing Systems, 2021.2186

[69] M. Kim, J. Park, and J. Park. Sym-NCO: Leveraging symmetricity for neural combinatorial2187

optimization. Advances in Neural Information Processing Systems, 2022.2188

[70] M. Kim, S. Choi, J. Son, H. Kim, J. Park, and Y. Bengio. Ant colony sampling with2189

GFlowNets for combinatorial optimization. arXiv preprint arXiv:2403.07041, 2024.2190

[71] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint2191

arXiv:1412.6980, 2014.2192

[72] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.2193

In International Conference on Learning Representations, 2017.2194

[73] V. Konda and J. Tsitsiklis. Actor-critic algorithms. Advances in neural information processing2195

systems, 12, 1999.2196

[74] W. Kool, H. Van Hoof, and M. Welling. Attention, learn to solve routing problems! Interna-2197

tional Conference on Learning Representations, 2019.2198

[75] W. Kool, H. Van Hoof, and M. Welling. Stochastic beams and where to find them: The2199

gumbel-top-k trick for sampling sequences without replacement. In International Conference2200

on Machine Learning, pages 3499–3508. PMLR, 2019.2201

[76] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min. POMO: Policy optimization2202

with multiple optima for reinforcement learning. Advances in Neural Information Processing2203

Systems, 33:21188–21198, 2020.2204

[77] Y.-D. Kwon, J. Choo, I. Yoon, M. Park, D. Park, and Y. Gwon. Matrix encoding networks for2205

neural combinatorial optimization. Advances in Neural Information Processing Systems, 34:2206

5138–5149, 2021.2207

[78] G. Laporte and S. Martello. The selective travelling salesman problem. Discrete applied2208

mathematics, 26(2-3):193–207, 1990.2209

[79] E. Lawler, J. Lenstra, A. R. Kan, and D. Shmoys. The traveling salesman problem: A guided2210

tour of combinatorial optimization. The Journal of the Operational Research Society, 37(5):2211

535, 1986.2212

[80] F. Li, B. Golden, and E. Wasil. The open vehicle routing problem: Algorithms, large-scale test2213

problems, and computational results. Computers & Operations Research, 34(10):2918–2930,2214

2007. ISSN 0305-0548. doi: https://doi.org/10.1016/j.cor.2005.11.018.2215

[81] G. Li, C. Xiong, A. Thabet, and B. Ghanem. Deepergcn: All you need to train deeper gcns.2216

arXiv preprint arXiv:2006.07739, 2020.2217

[82] J. Li, L. Xin, Z. Cao, A. Lim, W. Song, and J. Zhang. Heterogeneous attentions for solv-2218

ing pickup and delivery problem via deep reinforcement learning. IEEE Transactions on2219

Intelligent Transportation Systems, 23(3):2306–2315, 2021.2220

[83] J. Li, Y. Ma, Z. Cao, Y. Wu, W. Song, J. Zhang, and Y. M. Chee. Learning feature embedding2221

refiner for solving vehicle routing problems. IEEE Transactions on Neural Network and2222

Learning Systems, 2023.2223

[84] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke, J. Smith, B. Vaughan,2224

P. Damania, et al. Pytorch distributed: Experiences on accelerating data parallel training.2225

arXiv preprint arXiv:2006.15704, 2020.2226

72

[85] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, J. Gonzalez, K. Goldberg, and I. Sto-2227

ica. Ray rllib: A composable and scalable reinforcement learning library. arXiv preprint2228

arXiv:1712.09381, 85, 2017.2229

[86] I. Lima, E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, A. Subramanian, R. W,2230

D. Oliveira, and E. Queiroga. CVRPLIB: Capacitated vehicle routing problem library, 2014.2231

URL http://vrp.galgos.inf.puc-rio.br/index.php/en/. Last checked on October2232

6, 2024.2233

[87] X. Lin, Z. Yang, and Q. Zhang. Pareto set learning for neural multi-objective combinatorial2234

optimization. arXiv preprint arXiv:2203.15386, 2022.2235

[88] J. T. Linderoth, A. Lodi, et al. Milp software. Wiley encyclopedia of operations research and2236

management science, 5:3239–3248, 2010.2237

[89] F. Liu, X. Lin, Q. Zhang, X. Tong, and M. Yuan. Multi-task learning for routing problem2238

with cross-problem zero-shot generalization. In Proceedings of the 30th ACM SIGKDD Con-2239

ference on Knowledge Discovery and Data Mining, 2024.2240

[90] F. Liu, X. Tong, M. Yuan, X. Lin, F. Luo, Z. Wang, Z. Lu, and Q. Zhang. Evolution of2241

heuristics: Towards efficient automatic algorithm design using large language model. In2242

International Conference on Machine Learning, 2024.2243

[91] S. Liu, C. Chen, X. Qu, K. Tang, and Y.-S. Ong. Large language models as evolutionary2244

optimizers. arXiv preprint arXiv:2310.19046, 2023.2245

[92] R. Lotfi, A. Mostafaeipour, N. Mardani, and S. Mardani. Investigation of wind farm location2246

planning by considering budget constraints. International Journal of Sustainable Energy, 372247

(8):799–817, 2018.2248

[93] F. Luo, X. Lin, F. Liu, Q. Zhang, and Z. Wang. Neural combinatorial optimization with heavy2249

decoder: Toward large scale generalization. Advances in Neural Information Processing2250

Systems, 36, 2024.2251

[94] F. Luo, X. Lin, Z. Wang, T. Xialiang, M. Yuan, and Q. Zhang. Self-improved learning for2252

scalable neural combinatorial optimization. arXiv preprint arXiv:2403.19561, 2024.2253

[95] L. Luttmann and L. Xie. Neural combinatorial optimization on heterogeneous graphs: An2254

application to the picker routing problem in mixed-shelves warehouses. In Proceedings of2255

the International Conference on Automated Planning and Scheduling, volume 34, pages 351–2256

359, 2024.2257

[96] Y. Ma, J. Li, Z. Cao, W. Song, L. Zhang, Z. Chen, and J. Tang. Learning to iteratively solve2258

routing problems with dual-aspect collaborative transformer. Advances in Neural Information2259

Processing Systems, 34, 2021.2260

[97] Y. Ma, J. Li, Z. Cao, W. Song, H. Guo, Y. Gong, and Y. M. Chee. Efficient neural neighbor-2261

hood search for pickup and delivery problems. arXiv preprint arXiv:2204.11399, 2022.2262

[98] Y. Ma, Z. Cao, and Y. M. Chee. Learning to search feasible and infeasible regions of routing2263

problems with flexible neural k-opt. Advances in Neural Information Processing Systems, 36,2264

2024.2265

[99] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller,2266

N. Rudin, A. Allshire, A. Handa, and G. State. I: High performance GPU-based physics2267

simulation for robot learning, 2021.2268

[100] S. Manchanda, S. Michel, D. Drakulic, and J.-M. Andreoli. On the generalization of neural2269

combinatorial optimization heuristics. In Machine Learning and Knowledge Discovery in2270

Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23,2271

2022, Proceedings, Part V, pages 426–442. Springer, 2023.2272

73

http://vrp.galgos.inf.puc-rio.br/index.php/en/

[101] V. Marianov, D. Serra, et al. Location problems in the public sector. Facility location:2273

Applications and theory, 1:119–150, 2002.2274

[102] Y. Min, Y. Bai, and C. P. Gomes. Unsupervised learning for solving the travelling salesman2275

problem. In Neural Information Processing Systems, 2023.2276

[103] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,2277

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-2278

forcement learning. nature, 518(7540):529–533, 2015.2279

[104] V. Moens. TensorDict: your PyTorch universal data carrier, 2023. URL https://github.2280

com/pytorch-labs/tensordict.2281

[105] A. T. Murray, K. Kim, J. W. Davis, R. Machiraju, and R. Parent. Coverage optimization to2282

support security monitoring. Computers, Environment and Urban Systems, 31(2):133–147,2283

2007.2284

[106] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác. Reinforcement learning for solving the2285

vehicle routing problem. Advances in neural information processing systems, 31, 2018.2286

[107] M. Pagliardini, D. Paliotta, M. Jaggi, and F. Fleuret. Faster causal attention over large se-2287

quences through sparse flash attention. arXiv preprint arXiv:2306.01160, 2023.2288

[108] H. Park, H. Kim, H. Kim, J. Park, S. Choi, J. Kim, K. Son, H. Suh, T. Kim, J. Ahn, et al. Ver-2289

satile genetic algorithm-bayesian optimization (ga-bo) bi-level optimization for decoupling2290

capacitor placement. In 2023 IEEE 32nd Conference on Electrical Performance of Electronic2291

Packaging and Systems (EPEPS), pages 1–3. IEEE, 2023.2292

[109] J. Park, C. Kwon, and J. Park. Learn to solve the min-max multiple traveling salesmen2293

problem with reinforcement learning. In Proceedings of the 2023 International Conference2294

on Autonomous Agents and Multiagent Systems, pages 878–886, 2023.2295

[110] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,2296

N. Gimelshein, L. Antiga, et al. PyTorch: An imperative style, high-performance deep learn-2297

ing library. Advances in neural information processing systems, 32, 2019.2298

[111] L. Perron and V. Furnon. OR-Tools, 2023. URL https://developers.google.com/2299

optimization/.2300

[112] J. Pirnay and D. G. Grimm. Self-improvement for neural combinatorial optimization: Sample2301

without replacement, but improvement. arXiv preprint arXiv:2403.15180, 2024.2302

[113] A. Prouvost, J. Dumouchelle, L. Scavuzzo, M. Gasse, D. Chételat, and A. Lodi. Ecole:2303

A gym-like library for machine learning in combinatorial optimization solvers. In Learning2304

Meets Combinatorial Algorithms at NeurIPS2020, 2020. URL https://openreview.net/2305

forum?id=IVc9hqgibyB.2306

[114] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-2307

baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning2308

Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.2309

[115] G. K. Rand. Sequencing and scheduling: An introduction to the mathematics of the job-2310

shop. Journal of the Operational Research Society, 33:862, 1982. URL https://api.2311

semanticscholar.org/CorpusID:62592932.2312

[116] G. Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 3(4):2313

376–384, 1991.2314

74

https://github.com/pytorch-labs/tensordict
https://github.com/pytorch-labs/tensordict
https://github.com/pytorch-labs/tensordict
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB
http://jmlr.org/papers/v22/20-1364.html
https://api.semanticscholar.org/CorpusID:62592932
https://api.semanticscholar.org/CorpusID:62592932
https://api.semanticscholar.org/CorpusID:62592932

[117] B. Romera-Paredes, M. Barekatain, A. Novikov, M. Balog, M. P. Kumar, E. Dupont, F. J.2315

Ruiz, J. S. Ellenberg, P. Wang, O. Fawzi, et al. Mathematical discoveries from program2316

search with large language models. Nature, 625(7995):468–475, 2024.2317

[118] M. W. Savelsbergh and M. Sol. The general pickup and delivery problem. Transportation2318

science, 29(1):17–29, 1995.2319

[119] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimiza-2320

tion algorithms. arXiv preprint arXiv:1707.06347, 2017.2321

[120] W. Shan, Q. Yan, C. Chen, M. Zhang, B. Yao, and X. Fu. Optimization of competitive facility2322

location for chain stores. Annals of Operations research, 273:187–205, 2019.2323

[121] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean. Outra-2324

geously large neural networks: The sparsely-gated mixture-of-experts layer. In International2325

Conference on Learning Representations, 2017.2326

[122] J. Son, M. Kim, H. Kim, and J. Park. Meta-SAGE: Scale meta-learning scheduled adap-2327

tation with guided exploration for mitigating scale shift on combinatorial optimization. In2328

Proceedings of the 40th International Conference on Machine Learning, volume 202, pages2329

32194–32210. PMLR, 2023.2330

[123] J. Son, M. Kim, S. Choi, H. Kim, and J. Park. Equity-Transformer: Solving NP-hard min-2331

max routing problems as sequential generation with equity context. In Proceedings of the2332

AAAI Conference on Artificial Intelligence, volume 38, pages 20265–20273, 2024.2333

[124] J. Song, Y. Yue, B. Dilkina, et al. A general large neighborhood search framework for solving2334

integer linear programs. Advances in Neural Information Processing Systems, 33:20012–2335

20023, 2020.2336

[125] W. Song, X. Chen, Q. Li, and Z. Cao. Flexible job-shop scheduling via graph neural network2337

and deep reinforcement learning. IEEE Transactions on Industrial Informatics, 19(2):1600–2338

1610, 2022.2339

[126] L. Sun, W. Huang, P. S. Yu, and W. Chen. Multi-round influence maximization. In Pro-2340

ceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data2341

mining, pages 2249–2258, 2018.2342

[127] Z. Sun and Y. Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial optimiza-2343

tion. In Advances in Neural Information Processing Systems, volume 36, pages 3706–3731,2344

2023.2345

[128] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for rein-2346

forcement learning with function approximation. Advances in neural information processing2347

systems, 12, 1999.2348

[129] E. Taillard. Benchmarks for basic scheduling problems. european journal of operational2349

research, 64(2):278–285, 1993.2350

[130] H. Tang, F. Berto, Z. Ma, C. Hua, K. Ahn, and J. Park. Himap: Learning heuristics-informed2351

policies for large-scale multi-agent pathfinding. arXiv preprint arXiv:2402.15546, 2024.2352

[131] H. Tang, F. Berto, and J. Park. Ensembling prioritized hybrid policies for multi-agent2353

pathfinding. arXiv preprint arXiv:2403.07559, 2024.2354

[132] P. Tassel, M. Gebser, and K. Schekotihin. A reinforcement learning environment for job-shop2355

scheduling. arXiv preprint arXiv:2104.03760, 2021.2356

[133] D. Thyssens, T. Dernedde, J. K. Falkner, and L. Schmidt-Thieme. Routing arena: A bench-2357

mark suite for neural routing solvers. arXiv preprint arXiv:2310.04140, 2023.2358

75

[134] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,2359

N. Goyal, E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models.2360

arXiv preprint arXiv:2302.13971, 2023.2361

[135] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normalization: The missing ingredient2362

for fast stylization. arXiv preprint arXiv:1607.08022, 2016.2363

[136] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and2364

I. Polosukhin. Attention is all you need. Advances in neural information processing systems,2365

30, 2017.2366

[137] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, et al. Graph attention2367

networks. stat, 1050(20):10–48550, 2017.2368

[138] T. Vidal. Hybrid genetic search for the CVRP: Open-source implementation and SWAP*2369

neighborhood. Computers & Operations Research, 140:105643, 2022.2370

[139] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Advances in Neural Information2371

Processing Systems, volume 28, pages 2692–2700, 2015.2372

[140] C. P. Wan, T. Li, and J. M. Wang. RLOR: A flexible framework of deep reinforcement2373

learning for operation research. arXiv preprint arXiv:2303.13117, 2023.2374

[141] R. Wang, L. Shen, Y. Chen, X. Yang, D. Tao, and J. Yan. Towards one-shot neural combi-2375

natorial solvers: Theoretical and empirical notes on the cardinality-constrained case. In The2376

Eleventh International Conference on Learning Representations, 2022.2377

[142] S. Wasserkrug, L. Boussioux, D. d. Hertog, F. Mirzazadeh, I. Birbil, J. Kurtz, and D. Maragno.2378

From large language models and optimization to decision optimization CoPilot: A research2379

manifesto. arXiv preprint arXiv:2402.16269, 2024.2380

[143] J. Weng, H. Chen, D. Yan, K. You, A. Duburcq, M. Zhang, Y. Su, H. Su, and J. Zhu. Tianshou:2381

A highly modularized deep reinforcement learning library. Journal of Machine Learning2382

Research, 23(267):1–6, 2022.2383

[144] N. A. Wouda, L. Lan, and W. Kool. PyVRP: A high-performance vrp solver package. IN-2384

FORMS Journal on Computing, 2024.2385

[145] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim. Learning improvement heuristics for solving2386

routing problems. IEEE transactions on neural networks and learning systems, 33(9):5057–2387

5069, 2021.2388

[146] Z. Xiao, D. Zhang, Y. Wu, L. Xu, Y. J. Wang, X. Han, X. Fu, T. Zhong, J. Zeng, M. Song,2389

and G. Chen. Chain-of-experts: When LLMs meet complex operations research problems. In2390

International Conference on Learning Representations, 2024.2391

[147] L. Xin, W. Song, Z. Cao, and J. Zhang. Generative adversarial training for neural combinato-2392

rial optimization models, 2022. URL https://openreview.net/forum?id=9vsRT9mc7U.2393

[148] O. Yadan. Hydra - a framework for elegantly configuring complex applications. Github,2394

2019. URL https://github.com/facebookresearch/hydra.2395

[149] C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, and X. Chen. Large language models as2396

optimizers. In International Conference on Learning Representations, 2024.2397

[150] H. Ye, J. Wang, Z. Cao, H. Liang, and Y. Li. DeepACO: Neural-enhanced ant systems for2398

combinatorial optimization. arXiv preprint arXiv:2309.14032, 2023.2399

[151] H. Ye, J. Wang, Z. Cao, F. Berto, C. Hua, H. Kim, J. Park, and G. Song. Large language2400

models as hyper-heuristics for combinatorial optimization. arXiv preprint arXiv:2402.01145,2401

2024.2402

76

https://openreview.net/forum?id=9vsRT9mc7U
https://github.com/facebookresearch/hydra

[152] H. Ye, J. Wang, H. Liang, Z. Cao, Y. Li, and F. Li. GLOP: Learning global partition and2403

local construction for solving large-scale routing problems in real-time. In Proceedings of the2404

AAAI Conference on Artificial Intelligence, volume 38, pages 20284–20292, 2024.2405

[153] C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and X. Chi. Learning to dispatch for job shop2406

scheduling via deep reinforcement learning. Advances in Neural Information Processing2407

Systems, 33:1621–1632, 2020.2408

[154] D. Zhang, H. Dai, N. Malkin, A. C. Courville, Y. Bengio, and L. Pan. Let the flows tell:2409

Solving graph combinatorial problems with gflownets. In A. Oh, T. Naumann, A. Globerson,2410

K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing2411

Systems, volume 36, pages 11952–11969. Curran Associates, Inc., 2023.2412

[155] Z. Zheng, S. Yao, Z. Wang, X. Tong, M. Yuan, and K. Tang. Dpn: Decoupling parti-2413

tion and navigation for neural solvers of min-max vehicle routing problems. arXiv preprint2414

arXiv:2405.17272, 2024.2415

[156] J. Zhou, Y. Wu, W. Song, Z. Cao, and J. Zhang. Towards omni-generalizable neural methods2416

for vehicle routing problems. In International Conference on Machine Learning, 2023.2417

[157] J. Zhou, Z. Cao, Y. Wu, W. Song, Y. Ma, J. Zhang, and C. Xu. MVMoE: Multi-task vehicle2418

routing solver with mixture-of-experts. In International Conference on Machine Learning,2419

2024.2420

2421

77

	
	RL4CO Library: Additional Material
	Why Choosing the RL4CO Library?
	On the Choice of the Software
	Licenses

	Environments
	Routing
	Traveling Salesman Problem (TSP)
	Capacitated Vehicle Routing Problem (CVRP)
	Orienteering Problem (OP)
	Prize Collecting TSP (PCTSP)
	Pickup and Delivery Problem (PDP)
	Multi-Task VRP (MTVRP)

	Scheduling
	Job Shop Scheduling Problem (JSSP)
	Flexible Job Shop Scheduling Problem (FJSSP)
	Flexible Flow Shop Problem (FFSP)

	Electronic Design Automation
	Decap Placement Problem (DPP)
	Multi-Port Decap Placement Problem (mDPP)

	Graph
	Facility Location Problem (FLP)
	Maximum Coverage Problem (MCP)

	Additional Environments and Beyond

	Baselines
	General-purpose RL Algorithms
	REINFORCE
	Advantage Actor-Critic (A2C)
	Proximal Policy Optimization (PPO)

	Constructive Autoregressive (AR)
	Attention Model (AM)
	Ptr-Net
	POMO
	SymNCO
	PolyNet
	HAM
	MTPOMO
	MVMoE
	L2D
	HGNN
	MatNet
	DevFormer

	Constructive Non-Autoregressive (NAR)
	DeepACO
	GFACS
	GLOP

	Improvement methods
	DACT
	N2S
	NeuOpt

	Active Search Methods
	Active Search (AS)
	Efficient Active Search (EAS)

	Benchmarking Setup
	Metrics
	Gap to BKS
	Primal Integral
	Runtime Measurement

	Hardware & Software
	Hardware
	Software

	Hyperparameters
	Common Hyperparameters
	Changing Policy Components
	Mind Your Baseline
	Generalization: Cross-Task and Cross-Distribution
	Large-Scale Instances
	Combining Construction and Improvement

	Decoding Schemes
	Augmentations
	Sampling

	Additional Experiments
	Mind your Baseline: Further Insights
	Main In-distribution Results
	Decoding Schemes Comparison
	Sample Efficiency
	Out-of-distribution
	Search Methods
	Additional Large-scale Results

	Learning Heuristics for Ant Colony Optimization
	Experiment Settings
	Results

	Learning to Schedule
	JSSP
	FJSSP
	FFSP
	Dense and Episodic Rewards

	Electronic Design Automation: Learning to Place Decaps
	Main Results
	Generalization to Different Number of Components

	Learning to Improve
	Main results
	Discussion

	Graph Problems: Facility Location Problem (FLP) and Maximum Coverage Problem (MCP)
	Experimental settings
	Benchmark Results
	Out-of-distribution

	Efficient Software Routines
	Mixed-Precision Training
	FlashAttention
	Efficient Memory Handling in Environments

	Towards Foundation Models
	Experimental Setting
	Empirical Results
	Discussion

	Generalization of Training on Multiple Distributions and Multiple Tasks

	Supplementary Material References

