Appendix

A Conclusions and Limitations

In this work we extended the matrix-smoothness-aware sparsification strategy of [Safaryan et al.
[2021]] to arbitrary unbiased compression schemes. This significantly broadens the use of smoothness
matrices in communication efficient distributed methods.

A.1 Generalization and quantization

It is worth to mention that our results generalize those of Safaryan et al.|[2021]] in a tight manner. That
is, we recover the same convergence guarantees as a special case. Indeed, if compression operators
C; are diagonal sketches C; generated independently from others and via arbitrary samplings, then

L, = L(C;L,)

inf {£ >0: E[||Ciz — z||},] < L|jz[* YV € R?}

= inf{£>0:2"E[(C; —I)L;(C; —)]z < L|z|]* V2 € R?}
Amax (E[(Ci —I)L;(C; —1)))

Amax (E [C;L;C;] — L)

= Amax(PioL; — L)

= Amax(PioLy),

with the same probability matrices P, and f’i defined in [Safaryan et al.,|2021].

Further, we designed two novel quantization schemes (see Definitions [3and[d)) capable of properly
utilizing matrix smoothness information of local loss functions in distributed optimization. We
showed that the proposed quantization schemes can significantly outperform the key baselines both
in theory and practice.

A.2 Technical contributions

‘We make two main technical contributions.

First, we introduce the quantity £(C,L) that properly captures non-linear interaction between
the compressor C and the smoothness matrix L. Due to the linearity of the sparsification (i.e.,
C(xz) = Cux), in previous work (Safaryan et al., 2021) it is easy to separate the sparsifier from the
compressed gradient and combine it with the smoothness matrix:

IL2C(LY2 f(2))]? = Vf(2) "L (CLC)LI 2V (),

where CLC shows a linear interaction between C and L. Once we came up with the proper notion
of £(C, L) (we had other approaches before we found the "right" one), the proofs of Theorems 1 and
2 followed standard steps. Note that £(C, L) recovers the previous quantity when the compressor is
specialized to a sparsifier (see Sec A.1). This contribution may seem simple from hindsight, but it is
not.

Our second technical contribution is the introduction of two non-linear compressors that provably
benefit from smoothness matrices. Specifically, we formulate and analytically solve 4 intermediate
optimization problems (11), (14), (16), (18) to find out the best parameter setting for each quantization
scheme based on the smoothness information. In fact, sections 4 and 5 outline the technical difficulties
we managed to overcome in order to get min(n, d) speedup factors in each case. Our key contribution
is the proposal of these two modified quantization schemes. We adapt methods DCGD+ and DIANA+
to showcase the potential of our quantization strategies in reducing communication complexity.
We chose DCGD as it is the simplest gradient type method with communication compression, and
DIANA as it is the variance-reduced version of DCGD. Of course, one can apply our quantization
techniques to other distributed methods and gain similar improvements (see Sec A.2). However, we
are not attempting to (and can’t) be exhaustive in this direction as there are many methods in the
literature employing communication compression.

15

A.3 Limitations and possible workarounds
Next, we discuss main limitations of our work.

* Note while in this paper we redesigned only two methods, DCGD+ and DIANA+, the
modifications we suggest are not limited to these two methods and can be applied to other
distributed methods. In particular, with a similar proof technique, ADIANA+ method
of [Safaryan et al.| [2021]] introduced with sparsification can also be extended to arbitrary
unbiased compression operator using the new notion of £(C, L).

* The computation or estimation of the smoothness matrix L, requires addiotional prepro-
cessing. For generalized linear models (GLM) (e.g., linear/logistic regression, SVM with
smooth hinge loss) the matrix L; can be written in closed form using the local dataset (see
Lemma 1 of [Safaryan et al.| 2021]]). For example,

for logistic regression, where {A;,,: m = 1,...,m;} is the local data of device 7. Beyond
GLMs, L; can be difficult to compute. Note that we do not claim that the proposed method
would be practical for high-dimensional deep learning problems - but perhaps this will be
overcome in future research. One possibility is to treat L;’s as hyper-parameters and learn
some rough approximations of the smoothness matrices from the first order information
obtained by running a gradient type method. This can be done initially as a preprocessing
step, after which the matrices are considered “learned”, and then our compression can be
built and used.

* The server is required to store d X d matrices Lz/ * for all nodes i € [n] and multiply
them by sparse updates C¥(L!/*V f,(z*)) in each iteration. Moreover, each node i is

required to store only its smoothness matrix L{/? and perform multiplication L! 7>V f; (z*)
in each iterate. Hence, our methods are practical when either dimension d is not too big or
smoothness matrices L; are of special structure (e.g., diagonal, low-rank).

* We did not analyze the compression of the smoothness matrix before communication as it is

transferred only once before the training begins. Besides, we showed in our experiments
that the overhead in communication cost is negligible when the number of iterations is large
(the transmitted megabytes do not start from 0 in our plots).
However, in practice, compressing the matrix L is a good idea. One option for that is to
initially estimate a diagonal smoothness matrix that is as easy to communicate (still only
once) as one full precision gradient. Another option is to directly apply compression to
the matrix L so that the compressed matrix is an over-approximation. For example, let
L= Zi:l Aruu) be the eigendecomposition of L, where)y is the k'™ largest eigenvalue
corresponding to eigenvector ug. Then

T

r d
L= Newpu) + > Mg = (A = Aegr) wpuyg + A L
k=1 k=r+1 k=1

The latter over-approximation (which serves as a smoothness matrix for f) can be transferred
with 7d + 1 floats where r can be chosen small.

* For the sake of presentation, we analyzed both DCGD+ and DIANA+ when exact local
gradients, V f;, can be computed by all nodes in each iteration. However, we believe that it
is possible to extend the analysis to stochastic local gradient oracles. Current tools handling
stochastic gradients can be easily applied to our matrix-smoothness-aware compression
techniques.

* In our distributed methods we only compress uplink communication from nodes to the
server, which is typically more bandwidth limited than downlink communication from the
server to nodes. We believe that techniques that ensure compressed communication in both
directions can be applied in our setting, too.

* We developed all our theory for strongly convex objectives. Extending the theory to convex
and non-convex problems in a tight manner seems to be more challenging.

16

B Additional Experiments

In this section we provide additional experiments to highlight effectiveness of our approach.

B.1 Setup

We run the experiments with several datasets listed in Table 2| from the LibSVM repository [Chang
and Lin| 2011]] on the ¢5-regularized logistic regression problem described below:

n

1 1 & T Ay o
min — ;fz(w% where fy(z) = — glog(l +exp(=bi A7) + Sl
where z € R, A € R4, b;; € {—1,1} are the feature and label of [-th data point on the i-th
worker, where the features of each A; ; are rescaled into [—1, 1]. The data points are sorted based
on their norms before allocating to local workers to ensure that the data split is heterogeneous. The
experiments are performed on a workstation with Intel(R) Xeon(R) Gold 6246 CPU @ 3.30GHz
cores. The gather and broadcast operations for the communications between master and workers
are implemented based on the MPI4PY library [Dalcin et al.|[2005] and each CPU core is treated as a
local worker. We set A = 1073 for all datasets. For each dataset, we run each algorithm multiples
times with 5 random seeds for each worker.

Table 2: Information of the experiments on ¢5-regularized logistic regression.

Dataset #Instances N Dimension d #Workers n #Instances/worker m

german 1,000 24 4 250
svmguide3 1,243 21 4 310
covtype 581,012 54 6 145,253
splice 1,000 60 6 166
w8a 49,749 300 8 6,218
a%a 22,696 123 8 2,837

To implement Elias encoding and decoding, we utilize the EliasOmega libraryﬂ We compare the
relative errors of different algorithms with respect to 3 measures: the number of iterations, the
transmitted megabytes and wall-clock time. To be specific, the measured wall-clock time includes
1) the time of computation on each local worker in one iteration (e.g., local gradient computation,
matrix multiplication, etc.); 2) the time of Elias coding and decoding; 3) the time of communication
(gather and broadcast). It is worth noting that DCGD+ and DIANA+ require extra cost to transmit

L;/ * beforehand. Moreover, when coupled with varying number of quantization levels, they also
need to transmit h;,; before the start of training. These overheads are taken into consideration in our
experimental results.

B.2 Comparison to standard quantization techniques

First, we compare DCGD+/DIANA+ with the block quantization technique (block quant+) de-
scribed in Section] to DCGD [Khirirat et al. 2018]/DIANA [Mishchenko et al.l 2019] with the
standard quantization technique (quant) in [[Alistarh et al., 2017]). As shown in Figure[6| DCGD+
(block quant+) and DIANA+ (block quant+) outperform DCGD (quant) and DIANA (quant)
when d is larger. This is understandable because the extra cost on communication B norms becomes
neglectable when the dimension is relatively high given the number of blocks, where splitting the
whole parameters into blocks makes more sense.

*https://gist.github.com/robertofraile/483003

17

https://gist.github.com/robertofraile/483003

300

y=0.3z + 120

v 250
£
5 200
et
2150
E 0 i Wt
c 100
©
= 50

20 40 60 80 100

[l

Figure 3: Experiment to verify the Assumption~ We randomly generate 1000 quantization step
vectors h € R5Y, each component of & is h; = |h;| and h; is independently sampled from N (0, 1).

For each h, we randomly generate multiple sparse vectors to quantize x, which is sampled from
Poisson distribution with A = {1, 10,100} and density {0.25,0.5,0.75,1.0}.

Next, we compare DCGD+/DIANA+ with our second quantization technique (quant+) that has
varying number of quantization steps per coordinate to DCGD (quant) and DIANA (quant). Figure[7]
demonstrates that DCGD+ (quant+) and DIANA+ (quant+) lead to significant improvement.

B.3 Ablation study of DIANA+ (block quant+) and DIANA+ (quant+)

As mentioned by |Alistarh et al.[[2017]], combining DCGD and block quantization can improve its
iteration complexity at the cost of transmitting extra 325 bits per iteration, which might also lead
to better total communication complexity. Thus, the advantage of DIANA+ (block quant+) over
DIANA (quant) may come from either splitting the features into blocks or exploiting the smoothness
matrix. To further demistefy the improvement of DIANA+ (block quant+) , we compare the results
of DIANA+ (block quant+), DIANA+ (block quant), DIANA (block quant) and DIANA
(quant) in Figure[5] The difference between block quant and block-quant+ is that the former
one uses the same number of quantization levels for different blocks while the latter one uses varying
numbers. It can be seen from Figure [5] that DIANA+ (block-quant+) consistently outperforms
other methods because it optimally exploits the block structure and the smoothness matrix.

We also demonstrate that how DIANA+ perform with varying or fixed number of levels. As seen in
Figure[6] the varying number of levels are beneficial on most of the datasets.

B.4 Comparison to matrix-smoothness-aware sparsification

Moreover, we also compare the performance of three smoothness-aware compression techniques
—block quantization (block quant+) of Sectiond] varying-step quantization (quant+) of Section 3|
and smoothness-aware sparsification strategy (rand-7+) of [Safaryan et al. [2021]]. All three compres-
sion techniques are shown to outperform the standard compression strategies by at most O(n) times
in theory. For the sparsification, we use the optimal probabilities and the sampling size T = d/n as
suggested in Section 5.3 of [Safaryan et al., 2021]]. The empirical results in Figure [§]illustrate that the
varying-step quantization technique (quant+) is always better than the smoothness-aware sparsifica-
tion [Safaryan et al.,|[2021]], in terms of both communication cost and wall-clock time. Our block
quantization technique also beats sparsification when the dimension of the model is relatively high.

B.5 Numerical verification of Assumption

We provide a numerical experiment to verify Assumption that Hh’l || and the communicated bits

are positively correlated. Figure|3|shows that the communicated bits and Hh’l H are indeed positively
correlated.

18

splice, n=6

~@- DCGD (quant)
~®- DIANA (quant)

10 ¢ DCGD+ (block quant+)
—*— DIANA+ (block quant+)

0 5000 10000 15000
Iterations

german, n=4

—~- DCGD (quant)
1018 | % DIANA (quany

= DCGD+ (block quant+)
—#— DIANA+ (block quant+)

0 5000 10000 15000
Iterations

covtype, n=6

-4~ DCGD (quant)
~®- DIANA (quant)

1023 5 DCGD+ (block quant+)
—*— DIANA (block quant+)

0 5000 10000 15000
Iterations

svmguide3, n=4

8- DCGD (quant)
~®- DIANA (quant)

=% DCGD+ (block quant+)
—#— DIANA+ (block quant+)

0 5000 10000 15000
Iterations

a9%a, n=8

8- DCGD (quant)

10,9 ~®- DIANA (quant)
=~ DCGD+ (block quant+)
—#— DIANA+ (block quant+)
0 5000 10000 15000
Iterations
w8a, n=8
10°

—4— DCGD (quant)
~®- DIANA (quant)

10716 =% DCGD+ (block quant+)
—#— DIANA+ (block quant+)

0 5000 10000 15000
Iterations

1073

10

1023

1073

1015

1016

splice, n=6

~4- DCGD (quant)
~®- DIANA (quant)
== DCGD+ (block quant+)
—#— DIANA+ (block quant+)

10 10°
Transmitted Megabytes

german, n=4

~4- DCGD (quant)
~®— DIANA (quant)
== DCGD+ (block quant+)
—#— DIANA+ (block quant+)

102 10
Transmitted Megabytes

covtype, n=6

4~ DCGD (quant)
~®- DIANA (quant)
== DCGD+ (block quant+)
—#— DIANA+ (block quant+)

102 10 10°

Transmitted Megabytes

svmguide3, n=4

~4— DCGD (quant)
~®— DIANA (quant)
= DCGD+ (block quant+)
—— DIANA+ (block quant+)

102 10
Transmitted Megabytes

a%a, n=8

- DCGD (quant)
~- DIANA (quant)
=& DCGD+ (block quant+)
—#— DIANA+ (block quant+)

107 10°
Transmitted Megabytes

w8a, n=8

—4— DCGD (quant)
~®— DIANA (quant)
— DCGD+ (block quant+)
—*— DIANA+ (block quant+)

10 10°
Transmitted Megabytes

10°

10°

10*

splice, n=6

9~ DCGD (quant)
~®- DIANA (quant)
== DCGD+ (block quant+)
—#— DIANA+ (block quant+)

103 102 10 10° 10!
Time (seconds)

german, n=4

~- DCGD (quant)
~®- DIANA (quant)
= DCGD+ (block quant+)
—#— DIANA+ (block quant+)

1073 10t 10t
Time (seconds)

covtype, n=6

- DCGD (quant)
~®- DIANA (quant)
== DCGD+ (block quant+)
—#— DIANA+ (block quant+)

102 10° 102
Time (seconds)

svmguide3, n=4

—~— DCGD (quant)
~&— DIANA (quant)
== DCGD+ (block quant+)
—*— DIANA+ (block quant+)

103 107 10t
Time (seconds)

a9, n=8

-~ DCGD (quant)
~®- DIANA (quant)
= DCGD+ (block quant+)
—#— DIANA+ (block quant+)

102 10 10° 10!
Time (seconds)

w8a, n=8

—~— DCGD (quant)
~®— DIANA (quant)
== DCGD+ (block quant+)
—#— DIANA+ (block quant+)

102 10t 10° 10t
Time (seconds)

Figure 4: Comparison of DCGD+ (block quant+) and DIANA+ (block quant+) with DCGD

(quant) and DIANA (quant).

19

Il
o

splice, n

~&~ DIANA (block quant)
10 ~e~ DIANA+ (block quant)
=% DIANA+ (block quant+)

0 5000 10000 15000
Iterations

german, n=4

&~ DIANA (block quant)
~®- DIANA+ (block quant)
= DIANA+ (block quant+)

1018
0 5000 10000 15000
Iterations
covtype, n=6
1073
- 108
7|10
=12 q018

~#- DIANA (block quant)
1023 ~e~ DIANA* (block quant)
== DIANA+ (block quant+)

0 5000 10000 15000
Iterations

svmguide3, n=4

~#~ DIANA (block quant)
~®- DIANA+ (block quant)
== DIANA+ (block quant+)

107]5
0 5000 10000 15000
Iterations
a%a, n=8
10°

&~ DIANA (block quant)
~@- DIANA+ (block quant)
=~ DIANA+ (block quant+)

10
0 5000 10000 15000
Iterations
w8a, n=8
10°

~4— DIANA (block quant)
1016 &~ DIANA+ (block quant)
= DIANA+ (block quant+)

0 5000 10000 15000
Iterations

1073

1015

splice, n=6

~@— DIANA (block quant)
~&~ DIANA+ (block quant)
== DIANA+ (block quant+)

10" 10°
Transmitted Megabytes

german, n=4

~8- DIANA (block quant)
~@®— DIANA+ (block quant)
= DIANA+ (block quant+)

102 107 10°
Transmitted Megabytes

covtype, n=6

~4- DIANA (block quant)
~&~ DIANA+ (block quant)
== DIANA+ (block quant+)

10 10°
Transmitted Megabytes

svmguide3, n=4

@~ DIANA (block quant)

~8— DIANA+ (block quant)

=~ DIANA+ (block quant+)

102 107 10°
Transmitted Megabytes

a9, n=8

@~ DIANA (block quant)
~®- DIANA+ (block quant)
=4 DIANA+ (block quant+)

107 10° 10!
Transmitted Megabytes

w8a, n=8

~@— DIANA (block quant)
~&— DIANA+ (block quant)
== DIANA+ (block quant+)

10° 10t
Transmitted Megabytes

splice, n=6

~@~ DIANA (block quant)
10 ' ~e- DIANA+ (block quant)
% DIANA+ (block quant+)
1073 102 10 10° 10t
Time (seconds)

german, n=4

18 ~4~ DIANA (block quant)
10 ~&— DIANA+ (block quant)
6 DIANA+ (block quant+)
1073 10 10t
Time (seconds)

covtype, n=6

~#— DIANA (block quant)
~&~ DIANA+ (block quant)
= DIANA+ (block quant+)
102 10° 102
Time (seconds)

svmguide3, n=4

15 | —@= DIANA (block quant)
10 ~@~ DIANA+ (block quant)
= DIANA+ (block quant+)
103 107 10t
Time (seconds)

a%a, n=8

~@~ DIANA (block quant)
~®~ DIANA+ (block quant)
= DIANA+ (block quant+)
102 10t 10° 10!
Time (seconds)

w8a, n=8

~4— DIANA (block quant)
~&— DIANA+ (block quant)
= DIANA+ (block quant+)

102 10t 10° 10t
Time (seconds)

Figure 5: Comparison of DIANA+ (block quant+), DIANA+ (block quant), DIANA (block

quant) and DIANA (quant).

20

1073

10°®

“1013

108

1023

1010

splice, n=6

- DIANA (quant)
~®- DCGD (quant)

= DCGD+ (quant+)
—#— DIANA+ (quant+)

0

0

0

0

0

D N

- DIANA (quant)
~®- DCGD (quant)
= DCGD+ (quant+)
—*— DIANA+ (quant+)

0

5000

german, n=4

—~— DIANA (quant)
~®- DCGD (quant)
= DCGD+ (quant+)
—— DIANA+ (quant+)

5000

covtype, n=6

- DIANA (quant)
~®- DCGD (quant)
— DCGD+ (quant+)
—*— DIANA+ (quant+)

5000

svmguide3, n=4

~@— DIANA (quant)
~®- DCGD (quant)
== DCGD+ (quant+)
—— DIANA+ (quant+)

5000

8~ DIANA (quant)
~®- DCGD (quant)
= DCGD+ (quant+)
—*— DIANA+ (quant+)

5000

10000
Iterations

10000
Iterations

10000
Iterations

10000
Iterations

a%a, n=8

10000
Iterations

w8a, n=8

15000

15000

15000

15000

15000

5000

10000
Iterations

15000

splice, n=6 splice, n=6

~&- DIANA (quant)
~®- DCGD (quant)

- DIANA (quant)
~&- DCGD (quant)

10 e DCoD+ (quant+) 10° | S pCoD+ (quant+)
—#— DIANA+ (quant+) —#— DIANA+ (quant+)
10t 10° 102 102 100 10° 10!
Transmitted Megabytes Time (seconds)
erman, n=4 erman, n=4
10! J 10! J

&~ DIANA (quant) ~@— DIANA (quant)

2 ~@— DCGD (quant) 2 ~®- DCGD (quant)
1023 S pCeD+ (quant+) 102® S DCGD+ (quant+)
—#— DIANA+ (quant+) —#— DIANA+ (quant+)
102 10 10° 102 10' 10° 10*
Transmitted Megabytes Time (seconds)
covtype, n=6 covtype, n=6

1073

10

0 1013

1018 -~ DIANA (quant) 10718 -~ DIANA (quant)
~®- DCGD (quant) ~®- DCGD (quant)
10723 =< DCGD+ (quant+) 1023 =% DCGD+ (quant+)
~#— DIANA+ (quant+) —#— DIANA+ (quant+)
102 10 10° 102 10° 102
Transmitted Megabytes Time (seconds)
svmguide3, n=4 svmguide3, n=4

DIANA (quant)
DCGD (quant)
DCGD+ (quant+)
DIANA+ (quant+)

—#— DIANA (quant)
~®- DCGD (quant)
1020 | > DCGD+ (quant+)
—#— DIANA+ (quant+)

1072 10 1073 10 10t
Transmitted Megabytes Time (seconds)
a%, n=8 a9a, n=8

4~ DIANA (quant) ~@— DIANA (quant)
~®- DCGD (quant) ~®- DCGD (quant)
101 S DCGD+ (quant+) 10 - 5« DCGD+ (quant+)
—#— DIANA+ (quant+) —#— DIANA+ (quant+)
101 10° 102 101 10° 10t
Transmitted Megabytes Time (seconds)
w8a, n=8 w8a, n=8
102
10
“|% 1010
ST 107 e DianA (quant) - DIANA (quant)
-~ DCGD (quant) ~#- DCGD (quant)
1018 | 5 DCGD+ (quant+) ¢ DCGD+ (quant+)
—*— DIANA+ (quant+) —*— DIANA+ (quant+)
10 10° 10! 102 10 10° 10t
Transmitted Megabytes Time (seconds)

Figure 6: Comparison of DCGD+ (quant+) and DIANA+ (quant+) with DCGD (quant) and
DIANA (quant).

21

splice, n=6 splice, n=6 splice, n=6

10° - DIANA+ (quant) 10°
~6- DIANA+ (quant+)

~€- DIANA+ (quant)
~®- DIANA+ (quant+)

10° 10° 10° g~ DiANA+ (quant)
~®- DIANA+ (quant+)
0 5000 10000 15000 10 10° 1073 102 10 10° 10t
Iterations Transmitted Megabytes Time (seconds)
german, n=4 erman, n=4 erman, n=4
10t —&— DIANA+ (quant) 10! ’ 10! =
1075 ~®— DIANA+ (quant+) 105

102 - DIANA+ (quant) 1023 ¢~ DIANA+ (quant)
~®- DIANA+ (quant+) ~®— DIANA+ (quant+)
0 5000 10000 15000 102 101 1073 107 10t
Iterations Transmitted Megabytes Time (seconds)
covtype, n=6 covtype, n=6 covtype, n=6
~&~ DIANA+ (quant) —&- DIANA+ (quant)
103 ~®- DIANA+ (quant+) 8~ DIANA+ (quant+)

1023 ~@— DIANA+ (quant)
~®- DIANA+ (quant+)
0 5000 10000 15000 10* 10° 102 10° 10?
Iterations Transmitted Megabytes Time (seconds)
svmguide3, n=4 svmguide3, n=4 svmguide3, n=4
10° & DIANA+ (quant) 10°
~®- DIANA+ (quant+)
10°
1010
101
1020 1020 | ¢~ DIANA+ (quant) - DIANA+ (quant)
~®— DIANA+ (quant+) ~®— DIANA+ (quant+)
0 5000 10000 15000 102 10 102 102 101 10° 10t
Iterations Transmitted Megabytes Time (seconds)
a%a, n=8 a%a, n=8 a%a, n=8
~ ~&- DIANA+ (quant) ~ ~@- DIANA+ (quant) .
10t ~®- DIANA+ (quant+) 10! ~®— DIANA+ (quant+) 10

1010 101 1010 4~ DIANA+ (quant)
~®- DIANA+ (quant+)
0 5000 10000 15000 6x10" 100 2x10°3x10° 102 102 10t 10° 10t
Iterations Transmitted Megabytes Time (seconds)
w8a, n=8 w8a, n=8 w8a, n=8

~@— DIANA+ (quant)
~&- DIANA+ (quant+)

- DIANA+ (quant)
~®- DIANA+ (quant+)

- DIANA+ (quant)
~®- DIANA+ (quant+)

0 5000 10000 15000 3x10° 4x10° 6x10° 10! 102 10t 100 10!
Iterations Transmitted Megabytes Time (seconds)

Figure 7: Comparison of DIANA+ with quantization that has varying or fixed number of levels.

22

splice, n=6 splice, n=6 splice, n=6

0 0
10 ~- DIANA+ (quant+) 10
~#- DIANAY (block quant+)

> DIANA+ (rand-r+)

- DIANA+ (quant+)
®- DIANA+ (block quant+)
= DIANA+ (rand-r+)

- DIANA+ (quant+)
#- DIANA+ (block quant+)
=6 DIANA+ (rand-r+)

0 5000 10000 15000 10 10° 10° 107 100 10° 10!
Iterations Transmitted Megabytes Time (seconds)
german, n=4 german, n=4 german, n=4
1 1 1
10 ~#- DIANA+ (quant+) 10 10
~®- DIANA+ (block quant+)
10° ¢ DIANA+ (rand-r+) 10° 10

101t

107

8~ DIANA+ (quant+) & ~&— DIANA+ (quant+)
1023 1023 - _g- DIANA+ (block quant+) 1023 | _- DIANA+ (block quant+)
= DIANA+ (rand-r+) = DIANA+ (rand-r+)
0 5000 10000 15000 102 10 10° 103 10? 10t
Iterations Transmitted Megabytes Time (seconds)
covtype, n=6 covtype, n=6 covtype, n=6
—@- DIANA+ (quant+)
103 ~®- DIANA+ (block quant+) 103

— DIANAY (rand-r+)
10°®

1013

1018

9~ DIANA+ (quant+)

~~ DIANA+ (quant+)
1023 | —e- DIANA+ (block quant+)

©~ DIANA+ (block quant+)

= DIANA+ (rand-r+) L =~ DIANA+ (rand-r+)
0 5000 10000 15000 10 10° 102 100 102
Iterations Transmitted Megabytes Time (seconds)
svmguide3, n=4 svmguide3, n=4 svmguide3, n=4
~@- DIANA+ (quant+)
1073 ~&- DIANA+ (block quant+) 103 1073
= DIANA+ (rand-r+)
108 10®
1013 HEETRE
1078 1018

~#- DIANA+ (quant+)
1023 |~ DIANA+ (block quant+)
— DIANA+ (rand-r+)

~&— DIANA+ (quant+)
1023 ~®- DIANA+ (block quant+)
< DIANA+ (rand-r+)

0 5000 10000 15000 1072 10 10° 1073 10 10!
Iterations Transmitted Megabytes Time (seconds)
a%a, n=8 a9a, n=8 a%a, n=8

—&— DIANA+ (quant+) ~~ DIANA+ (quant+)

-2 ~®- DIANA+ (block quant+) -2 ~®- DIANA+ (block quant+) 2
10 = DIANA+ (rand-r+) 10 = DIANA+ (rand-r+) 10
10
10
-11 - - ~— DIANA+ (quant+)
10 10 10 ~®— DIANA+ (block quant+)
== DIANA+ (rand-r+)
0 5000 10000 15000 10° 10! 102 10° 10?
Iterations Transmitted Megabytes Time (seconds)
w8a, n=8 w8a, n=8 w8a, n=8

~@- DIANA+ (quant+) 2
®- DIANA+ (block quant+) 10°
= DIANA+ (rand-r+)

@~ DIANA+ (quant+) 5
-®- DIANA+ (block quant+) 10
— DIANA+ (rand-r+)

10 106
101 1010
101 1014
~9— DIANA+ (quant+)
1018 1018 | —o- DIANA+ (block quant+)
== DIANA+ (rand-r+)
0 5000 10000 15000 10* 102 10 10° 10t 102
Iterations Transmitted Megabytes Time (seconds)

Figure 8: Comparison of smoothness-aware DCGD+/DIANA+ methods with varying-step quantiza-
tion (quant+) to original DCGD/DIANA methods with standard quantization (quant). Note that in

quant+ workers need to send L;/ 2 ¢ R9xd and quantization steps h; € R? to the master before the
training. This leads to extra costs in communication bits and time, which are taken into consideration.

23

C Proofs for Section 3: Smoothness-Aware Distributed Methods with
General Compressors

Here we provide the proofs of Theorem[I]and Theorem 2] Both proofs follow similar steps done for
sparsification in [Safaryan et al., 2021].

C.1 Proof of Theorem[I[} DCGD+ with arbitrary unbiased compression

To simplify the notation, let us skip the iteration count k in the derivations. We are going to estimate
the quantity E [||g(z) — V f(z*)||?] and establish the following bound for the gradient estimator

g(x) = £ S0 LGV fiw)):
B o)~ <2 (1 2] Doy + 72,

where D (z, *) is the Bregman divergence between x and =* with respect to f. Due to Lemma E.3
[Hanzely and Richtérik, [2019]], we have V f;(x) = L;/ *r; for some ;. Therefore,

E[LC(LI L)| = LB LI L)| = LU L = L = Vfile), (19)

which implies unbiasedness of the estimator g(x), namely E [g(x)] = V f(x). Note that:

2

E [llg(z) = Vf(2)]?]

% zn: L°Ci(LI"*V fi(x)) — V fi(x)

12 1/o /0 +1/2 2
= ZZE[e ”W())L/LWVﬁ(z)H]
1/ 1/ 2
- QZE[L) - 1| |
4 2
< ﬁZE(Ci,Li)HVﬁ(ax)HLI
i=1
& 2 S *\ 112 2 - *\ (12
< S Y LIVAE) = V@R + o Y LlVEAEI
i=1 ’ i=1 :
x4 207
= ﬁZEini(x,x*>+ -
=1
AL 207

< —=D *
> n f(.]?,.’L‘)

where & is due to E {L;hCZ—(LII/QVfi(x))] = Vfi(z) and Vfi(x) = L1/2LT1/2L1/2 ;
Ll/ 2LT1/ *V fi(x) based on and Vf;(z) = L; /2 r; for some r;. # can be directly obtained
by notlclng the definition of [,(C L) in Table 3] <> is based on the definition of £; and the fact

|z + ylI* < 2]jz||* 4 2]jy||°. % is due to Lemma E.3 of Hanzely and Richtdrik [2019] and the defi-
nition of ¢} defined in Theorem | l The inequality above together with convexity and L-smoothness
of f implies

Ellg(z) = V)] = Vf(z) = V)P +E[llg(z) - VI(@)]?]

4Lmax * 207
——Dy(x,z") + +

IN

2LDy(x,x™) +

*

2Lmax 2
(L * -) Df(x’m*) + 0-+-
n n

IN

Applying the result of |(Gorbunov et al.|[2020] we conclude the proof.

24

C.2 Proof of Theorem 2} DIANA+ with arbitrary unbiased compression

‘We start with the unbiasedness of the estimator

ZLW (LI (Vi) = ub)) + b

In , we showed unbiasedness using inclusion V f; (") € range(L;). Assuming u € range(L;)
for all £ > 0, we get Vfi(:vk) - uf € range(L;) for all k > 0. Hence, in the same way we can show
unbiasedness of ¢g* as

Ex [Qk]

% i L."Ey [cz- (le/z(v filz) — uf))] + b

1 n
= - ZL;/zLZTW(Vfi(x) —uf) 4+ uf

i=1

EY VAN = V"),

The inclusion u¥ € range(L;) directly follows from the initialization u) € range(L;) (see line 1 of
Algorithm and linear update rule of u**' = u¥ 4 oL/?A¥ (see line 5 of Algorithm|2). As both

V f;(2*) and u¥ belong to range(L;), denote V f;(z*) — u¥ = L./*r*. Next we bound
2
E[lg(x) - V@)?] = ZL”Q (LI (V file) = ub)) + ub = Vi)
_ 1 Vaok (11Y2 00 () _ kYY) YR ‘_kr
- nzizZlE[HLi ¢t (LI(Vhi(w)) — LTI (T fia) - o)
1< ! ! 2
= = E [\ FL (@) —ub)) - L] (Vi) - ub) }
i=1 i
1 n
< 2 ZE(Ci,Li)HVfi(ff) - Uf”iz
i=1
2L max o
< nI;aXZHsz’(- V/fi(a® maXZHU = Vfila")lIgs
mdx 2£maX
< ZDfl x,x* ai
4£max « 2£max
= —Dy(z,2")+ ok,
n
where of def LS = Vi)||2 is the error in the gradient learning process. To proceed,

we need to establish contractive recurrence relation for o* 7. For each summand, we have

25

E; {Huf“ — Vfi(z¥) ij]
= By [[|uf - V(") + o]

= flui = Vi)

1/o 1/2 2
if +2a (uf = Vfi(x*), Vfi(a®) = uf) i + @’ U L/c, (Lj "V fila) - uf)) HLT]

< Jluk = Vi) + 20 fVfi(x*),Vfi(xk)ui—“>Lz+a2]E{ C; (LII/Q(Vfi(x)uf))m
< fluk = Vi) + 20 (b = V), ThiaR) = by + (1 +w) [Vi) — ekl

< luk = VAl + 20 (b = Vila'), Vi) - by + o[V iR) - bl

= (1-a)|Juf = Vfi@")gs + [V") = Vi)

< (1-a)|u; —Vfi(flf*)Hij +2aDy, (", z%),

where we used bounds o < H% and 0 < L;/2LIL;/2 =< I. Thus, with o < Hj , the estimator
g" of DIANA+ satisfies

Ey, [¢"] = Vf(2¥)
B[l - Vo)) <2 (24

Ex [O’i+1} < (1 -a)o¥ +2aDy(z", z%).

2£max
n

2['max k

) Dy(z® 2*) + el

Again, we apply the generic result of (Gorbunov et al.| [2020] to complete the proof.

26

D Proofs for Section d;: Block Quantization

Here we provide the missing proofs of Section]

D.1 Proof of the variance bound (10)

Using Definition 3{of compression operator QF, we have

E[IQF(z) —=li] =

IN

<

- ||
S ! PE Ha ()—l
1) T
B d;

s min
> llat|? min | A7) LY
=1 j=1

dy

VK

! ||

hy

LU

. 2 . 1l . 1l 2
v min (1| Diag(L") . | Diag(L")]) 1"

From the definition of £(QF, L) we get
£(QF. L) < max min (1] Diag(L)], i Diag(L")]).

which implies if we ignore the first term.

D.2 Proof of Theorem 3} DCGD+ with block quantization

First, recall that quantization steps h; are given by

0i.B
g = e
| Diag(LY)||

Then, we have

h;

Emax
n
<
<
<

d

l €[B], whered;, p< mﬂ’B + Y
! ax £(QF | L;)
Z max ,
n i€[n) hio
1
*maX&;_B
n ien]
1 d d
- ——F1Li —T
nicm | B— B ’B+\/; 1

4n d/n T;q
{B—B]?é?ﬁ ““\F B et V0

Set 8 = d/n +n and B = n. Since n = O(v/d), we have = O(d/n) and hence o
sake of simplicity, assume d; = 4/n. Next

T
/i

Ti,n

<

IN

B—B

Ti71.

= 1. For the

Regardless of the choice h;, using the following inequalities with respect to matrix order
1 n
L-<fELZ—, L; < nL, 20
i ! 0

we bound L as follows

(20 1< 1 1 v
L=)\max L) < >\max - Lz < -)\max Lz = - Lz < *Lmax' 21
(L) (n >) =D max (Li) = - 21

Hence

< Z
pooopn T mop o nd op

which guarantees n times fewer communication rounds with the same number of bits per round. In
other words, each node communicates O(4/r) bits to the master in each iteration, which gives us
O(d) communication per communication round. Thus, overall communication complexity to achieve

€ > 0 accuracy is
d Lmax 1
@ < log) .
n o €

D.3 Proof of Theorem[d; DIANA+ with block quantization

L Emax v Lmax 2V Lmax 1 Lmax
oSt e (i),

As already mentioned, for DIANA+ each node aims to minimize w; + %ML(QEL_, L;) with respect to
its quantization steps h;. Notice that

P e u
hs \/d ! | Diag(L!
max J\/T-&-}g[aé WII iag(L;)|l

1
2 hi d; + — || Diag(LWY)|) .
il (Vi + L Diag(L)])

IN

1
i+ —L(QF | L;
W‘f'nu (Qp,» Li)

IN

This leads to the following optimization problem with respect to h:

. Lo I
miy s by (Vi + | Ding(L)]

B

1 Vd

S.t. Z<hl2+hll>+B:ﬁahl>0
=1

(22)

which is solved similar to (IT). Denote

B
Z Vi Aq.
=1

SHN

def 1 . ~ def
A = Vi + u—nllDlag(Lﬁl)H, Tip =

Analogous to (L)), the solution of has the following form

din
hy = , 1 € [B],
T A € 15]

where 51 p is determined by the constraint equality of (22) as

- T d2T? dT? . -
dip = o \/ y: 3t = < d T g+ LTZ’.L
2(8 - B) 4p-B)32 pB-B~ B-B B—B "

28

Let us estimate ﬁ’l and ﬁ’n using the assumptions B = n and (for the sake of simplicity) d; = /n.

d
~ 1 1 1 V1 Limax
Tn = — (Vd+ —|Diag(L; >1+ Lij; <14+ ——
v = 55 (V+ | Ding(Ly) v 2l <1
- 1 \/E d 1 ; i 1 - . 7
T, = = = — + — || Diag(L; =1+ —= Diag(L;
d; n<\/n | Diag(L)] unm;” g(L{)]

d
1551 Lmax

1
1+ ———S Ly, =1+ .
unvnd jz::l e unvnd

IN

Next, using 8 = 4/n +n and v; = O(1), we get

1
i+ —L(Qn ,L;) < 20,
wj + nu (h;) =

2d ~ [d ~
< —T; 20| —T;
>~ B “n in T B _n il

= 2Ty + 2vnT

Vleax Vleax> (1 Lmax)
2n [1+ +2vn 1+ =0|n+— .
(uny nd) v (;m\/g vnd H

Together with (21)), we complete the proof with the following iteration complexity:

1 Lyax | 1 Lmax
(’)(n—|— =+ a)
nop Vnd 1

IN

29

E Proofs for Section [S; Quantization with varying steps

In this part of the appendix we provide missing proofs and detailed arguments of Section [5]

E.1 An encoding scheme for Q;, operator

To communicate a vector of the form Qj(x), we adapt the encoding scheme of |Albasyoni et al.
[2020]. From the definition, we have

[Qn(@)]; = ||| - sign(x;k;) - kjh;

for all j € [d], where k > 0 are non-negative random variables coming from (). Thus, we need to
encode the magnitude |||, signs sign(z;k;) and non-negative integers k

For the magnitude ||z| we need just 31 bits. Let ng f Hj € [d]: k; k; = 0}| be the number of

coordinates x; that are compressed to 0. To communicate signs {s1gn(xjk): j € [d]}, we first send
the locations of those n coordinates and then d — ng bits for the values +1. Sendmg no positions can

be done by sending log d bits representing the number ng, followed by log () bits for the positions.
For the signs, we need log d + log () +d —ng < logd + dlog 3 bits at most. Finally, it remains to

encode k;’s for which we only need to send nonzero entries since the positions of k; = 0 are already
encoded. We encode k; > 1 with k; bits: k; — 1 ones followed by 0. Hence, the expected number of
bits to encode k;’s is

d_ & d_ o d d_ 1
B RS2 S 2y gy 2 =
j j j j=1 J j

le\

| \
M

where v; =

In total, Qy,(x) can be encoded by

d
31 +logd + log (ﬁ > +d— g+ |R7Y|
0

bits. Lastly, the log () term can be upper bounded by the binary entropy function Hs(t) def

—tlogt— (1 —t)log(1l —t) (see [Albasyoni et al.,2020] for more details), and the expected number
of encoding bits for Oy (x) can be upper bounded by

X
31+ log d + dH, (' d”) o+ 1A

where & = Qp ().

30

E.2 Proof of the variance bound (T4)

Let v € R? be the unit vector with non-negative entries vj = 1zil/||z| for j € [d]. Then

. x| . |z
E[IQu@) ~2E] = B U ol -sen(e) - (57) = el -senta) - 120]
2
= Jl=lE [Ji¢ (v) - ll}]
d
= [2IPE | > Ly (&(v;) —) (Guw) —)
=1
d
2
= Iz) LE {(éi(vj)_”j)} (23)
j—l
=l ZLJJ hj) ((kj + Dhj = v;)
v
oty i)
J
< fol? ZLyhfmm()
< min ZL]J ngLMh vj | ll=ll?
j=1
d
< min | Y Ljh2, ZL%h? 2.
= min (| Diag(L)h2||h | Diag(L)n]) [,
which implies (T4).
E.3 Proof of Theorem 5; DCGD+ with varying quantization steps
Based on the upper bound (T4) and the communication constraint given by ||h; !|| = 3 for some
8 > 0, we get the optimization problem
n}llin |Diag(L;)h;|| subject to ||h;1|| =P, (24)

for choosing the optimal quantization parameters h; ;. This problem has a closed form solution.
Indeed, due to the KKT conditions, we have

L2 h4

d
Wy, c(Z%—ﬁ) =0,
\V Zt:l Lzz;thzzt t=1

where (is the multiplier. Solving this leads to the solution:

1 /3% Ly
hii == Lot=1 70t 25
3J 6 L'L,] ()

For the solution (25) we have

d
~ S L 1
L(n,,L;) < Lf;jj% 3 ZLW’J’
37 j=1
< Elemo (26)

Therefore, if both parameters v and v, are O(1), then the rate (6) of DCGD+ becomes (’)(L;L‘—‘;"‘ +

%) To make a fair comparison against DCGD, we need to fix (9() number of bits each node

communicates to the master server. Now, to make DCGD+ communicate the same number of bits,
we set § = (9(%). Hence we have the following iteration complexity for DCGD+ based on solution

1L 1L
O (max + - max)
n d p

which is min(n, d) times better than the one of DCGD.

E.4 Proof of Theorem [6; DIANA+ with varying quantization steps

def
Denote A;; = L”] . Note that
r I
i . 2
w;+— < min Zhu’ Z +—m1n ZLJ]hJ’ f;jj f;j
nu ot npy — —
d e d 1, 4y, 2
_ : 2 2 : 459 12 Hisgg 2
= 1 z;hi;ja 1hi;j +min z; n hij» 2;(i) hi;j

>
ih +z

A
E.
=

L, . d Lo\ 2
ity 2oty 3 ()

d d
min | Y (14 Ay)hij, |2 (1+ A2%) b2

j=1 j=1

d
< D (1+Aij)h

j=1

IN

We solve the optimization problem

d
min > (14 Aj)hi; subjectto ||| =8, 27)

i

Jj=1

which has a closed form solution. Indeed, due to the KKT conditions, we have:

(28)

.
wi+— <
ny

ZL \fVl max
" B S B u

which further leads to O(n + %% + é%) iteration complexity if ; = O(1) and 8 = O(£).

32

F Notation Table

Table 3: Notation we use throughout the paper.

Basic

d number of the model parameters to be trained

n number of the nodes/workers in distributed system

[n] 1,2, n}

f:R? - R | overall empirical loss/risk ()
fi : R?T - R | local loss function associated with data owned by the node i € [n] (]
R:R%¥ - R | (possibly non-smooth) regularization (1]

x” trained model, i.e. optimal solution to (1J)

€ target accuracy
llz]lo def #{j € [d]: z; # 0}, number of nonzero entries of = € R?

|zl def \/ Z?:1 7, the standard Euclidean norm of z € R?

Dy(z,y) Bregman divergence between x and y with respect to f for z,y € R?
Standard

m strong convexity parameter of f Asm. 2|

L smoothness constant of f, namely L = Amax (L @])

L; smoothness constant of f;, namely L; = Amax(L:)

Lmax d:ef maxie[n] Li

C (possibly randomized) compression operator C: RT — R?

B (w) class of compressors with E [C(z)] = z, E[[|C(z) — =[] < w|z|*, Yz € R?

Ci compression operator controlled by node ¢

wj variance of compression operator C;

Wmax Lof maXie n] Wi
% step-size parameter in DCGD+ and DIANA+ methods
o learning rate for the local optimal gradients in DIANA+
Matrix Smoothness

L smoothness matrix of f @)
L' square root of symmetric and positive semidefinite matrix L

L Moore—Penrose inverse of matrix L

L; smoothness matrix of f;

L, Lij; 4" diagonal element of L;
£(C,L) | Cinf{£>0: E|C(x) — x|} < L]|z|* Vz € R?} < wAmax(L)

Li L, L) @
Emax d:‘Ef maxie[n] L(Cl, Ll) = maxie[n] El . @
v, 11 def 7}15(1;;51% and vy & mMaxX;en] 7115{1]_ Z;Li v Def. |8

Quantization

s number of quantization levels

B number of blocks to divide the space R?

l index for blocks, i.e. [€ [B]

d; dimension of the [*" subspace in R?, in particular Zf;l d=d

! 1*" block of coordinates of x € RY

L" 1*% diagonal block matrix of L with sizes d; x d;

hi quantization step of 1™ block for node i

J6} parameter controlling the number of encoding bits

J index for coordinates, i.e. j € [d]

hisj quantization step of 57" coordinate for node % 25)

33

	Conclusions and Limitations
	Generalization and quantization
	Technical contributions
	Limitations and possible workarounds

	Additional Experiments
	Setup
	Comparison to standard quantization techniques
	Ablation study of DIANA+ (block quant+) and DIANA+ (quant+)
	Comparison to matrix-smoothness-aware sparsification
	Numerical verification of Assumption 3

	Proofs for Section 3: Smoothness-Aware Distributed Methods with General Compressors
	Proof of Theorem 1: DCGD+ with arbitrary unbiased compression
	Proof of Theorem 2: DIANA+ with arbitrary unbiased compression

	Proofs for Section 4: Block Quantization
	Proof of the variance bound (10)
	Proof of Theorem 3: DCGD+ with block quantization
	Proof of Theorem 4: DIANA+ with block quantization

	Proofs for Section 5: Quantization with varying steps
	An encoding scheme for Qh operator
	Proof of the variance bound (14)
	Proof of Theorem 5: DCGD+ with varying quantization steps
	Proof of Theorem 6: DIANA+ with varying quantization steps

	Notation Table

