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A THE SCHRÖDINGER BRIDGE PROBLEM

In this section, we will provide a detailed solution for the two problems proposed in Section 3.5 of
the original article.

The First Process. In the 1st process of our approach, we can rewrite it though the perspective of
SBP:

Problem 1. The 1st process is to find a distribution from D(α0, αN/2) that minimizes the KL-
divergence: Q1∗ := argmin{DKL(Q1∥W1) | Q1 ∈ D(α0, αN/2)}, where α0 = pd(XA),
αN/2 = pθ(v), W1 is a prior reference measure.

Proof. Let D denote the set of all probability measures on Ω which are absolutely continuous with
respect to stationary Winener measure. By Girsanov’s theorem any Π ∈ D has a forward drift (µ(t)),
and a backward drift (λ(t)), the canonical process has Itô differential such that:

forward: dx(t) = µ(t)dt+ dW+(t) (19)

backward: dx(t) = λ(t)dt+ dW−(t) (20)

where W+(t),W−(t) are standard Wiener processes adapted to the forward and reverse time diffu-
sion. By defining b(t, x(t)) = µ(t)−∇ lnϕt(x) (Pavon & Wakolbinger, 1991), where ϕt · ϕ̂t = qt
and qt represents the density of x(t) that satisfies the Fokker-Planck (FPK) equation for the process
of the form dx(t) = b(t, x(t))dt + dW(t), and referring to e.g. (Pavon & Wakolbinger, 1991)
(Lemma 3.8) and (Léonard, 2014) (Theorem 2.4), the KLD between Q1 and W1 can be expressed
as a decomposition:

DKL[Q1∥W1] =

constant︷ ︸︸ ︷
DKL[Q1

0∥W1
0]

+ EQ1

[∫ N
2

0

1

2
∥µ(t)− b(t, x(t))∥2d(t)

] (21)

where Q1
0 and W1

0 denote the initial densities of Q1 and W1, and the first term is constant. By the
Theorem 3.9 (Pavon & Wakolbinger, 1991), we can obtain the forward equivalent objective for SBP
of the 1st process such that:

F (Q1) := min
Q1∈D(α0,αN/2)

EQ1

[∫ N
2

0
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2
∥µ(t)− b(t, x(t))∥2d(t)

]
(22)

Using reverse diffusion, we can also obtain the backward equivalent objective for SBP of the 1st

process:

B(Q1) := min
Q1∈D(α0,αN/2)

EQ1

[∫ N
2

0

1

2
∥λ(t)− b−(t, x(t))∥2d(t)

]
(23)

Then, there holds:

DKL[Q1∥W1] = DKL

[
Q1

0∥W1
0

]
+ F (Q1)

= DKL

[
Q1

N/2∥W
1
N/2

]
+B(Q1)

(24)

where Q1
N/2 and W1

N/2 denote the initial densities of Q1 and W1 at time index t = N
2 .

Half Bridge Problem. To simplify the numerical solution of the iterative algorithms, we set α0 as
initial value and force it into single-constraint problems, which transforms the original problem into
a half bridge problem (Pavon et al., 2021). Then the forward and backward half bridge of the 1st

process is given by:
forward: Q1∗ = inf

Q1∈D(α0,·)
DKL(Q1∥W1)

backward: P1∗ = inf
P1∈D(·,αN/2)

DKL(P1∥W1)

Using e.g. (Pavon et al., 2021) and (Vargas, 2021)(Theorem 9&10), the optimal solution of static
forward bridge holds:

q∗(x, y) = pW(x, y)
α0(x)

pW(x)
(25)
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where pW(x, y) = pW0 (x)pW(y|x) with marginal prior pW0 (x), the joint distribution q(x, y) ∈
D(α0(x), αN/2(y)), α0(x) =

∫
q(x, y)dy, αN/2(y) =

∫
p(x, y)dx. The optimal solution of static

backward bridge holds:

p∗(x, y) = pW(x, y)
αN/2(y)

pW(y)
(26)

Now, we have completed the description of the 1st process from the perspective of SBP and provided
the objectives. Half bridge’s solutions can be considered ”closed-form” to some extent, they can
also be used to remove constraints by including them as an initial value problem, which provides
simplification objectives for solving SBPs problems using iterative methods.

The Second Process. Similar to the 1st process, the 2nd process can also be represented as a de-
scription in terms of SBP.

Problem 2. The 2nd process is to find a distribution from D(αN/2, αN ) that minimizes the KL-
divergence: Q2∗ := argmin{DKL(Q2∥W2) | Q2 ∈ D(αN/2, αN )}, where αN/2 = pθ(v), αN =

pd(XB), W2 is a prior reference measure.

Similar to the discussion of the 1st process, the forward and backward half bridge of the 2nd process
is given by:

forward: Q2∗ = inf
Q2∈D(αN/2,·)

DKL(Q2∥W2)

backward: P2∗ = inf
P2∈D(·,αN )

DKL(P2∥W2)

So far, the formulation of the 2nd process towards SBP and the objectives are given.

B CONTROL FACTOR

Figure 4: The DIST value with different control factor ϕ.

14



Under review as a conference paper at ICLR 2024

Figure 5: The outputs with different control factor ϕ.

Table 3: DISTS value with different ϕ.
ϕ = 0 ϕ = 10 ϕ = 100 ϕ = 1000

sample 1

DS 0.2825 0.3161 0.4179 0.4613
DC 0.4574 0.4286 0.3544 0.2994
sample 2

DS 0.2760 0.2859 0.3111 0.3424
DC 0.3859 0.3630 0.3312 0.2822
sample 3

DS 0.2521 0.2617 0.2723 0.2986
DC 0.4098 0.3969 0.3841 0.3558

The distinct characteristic of our model in comparison to other methods is the conditioning mech-
anism, which allows for the flexibility to modify the degree of texture rendering while maintaining
semantic structure preservation. Our model can produce a wide range of stylized results by adjust-
ing the Control Factor (CF), ϕ, to control the balance between structure and texture, as illustrated in
Figure 5.

Qualitative evaluation. By altering the value of ϕ, the level of stylization and the semantic struc-
ture in the generated image can be adjusted. As depicted in Figure 5, as the value of ϕ increases,
the semantic structure of the image becomes more defined (e.g. windows and doors on buildings,
outlines of statues, etc.), while at the same time the level of stylization decreases (e.g. brushstrokes
and textures in the image, etc.). It is important to note that one cannot excessively reduce the value
of ϕ in an effort to achieve a stronger stylistic transition, as this can result in certain areas of the
image becoming overwhelmed (e.g. when ϕ = 1 and 10 in sample 1 and 2). Similarly, the value of
ϕ should not be increased excessively in an attempt to obtain a sharper semantic structure, as this
can result in the generated image being insufficiently stylized (e.g. the stylized strokes and textures
from Domain B are weak at ϕ = 1000 in samples 1 and 3).

Quantitative evaluation. Table 3 records the DISTS values (Ding et al., 2020) of the generated
images in Figure 5 in comparison to the target style image and the original content image. This data
can then be used to generate the line graph depicted in Figure 4. Through quantitative analysis, it is
evident that there is a clear trade-off between style DIST and content DIST, indicating that an en-
hancement in stylization is accompanied by a loss of semantic structural information. Furthermore,
it can be observed that as the semantic structure becomes sharper, the stylization is weakened.

C PROGRESSIVE RENDERING IMPLEMENTATION

As described in the original text, we employed VGG as an encoder to extract corresponding feature
from the content and style images as priors. The content feature target vector is extracted from
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Figure 6: The DISTS value varies over different Groups.

layer ‘conv4 2’, and the style feature target vectors are extracted from layers ‘conv1 1’, ‘conv2 1’,
‘conv3 1’, ‘conv4 1’ and ‘conv5 1’ (Gatys et al., 2016). In this section, we will discuss the impact
of using varying numbers of features on the final output results.

Group Design. In Group 1, we only utilized the style feature (‘conv1 1’) from the style image. In
Group 2, we employed style features (‘conv1 1’ and ‘conv2 1’) from the style image. In Group 3,
we utilized style features (‘conv1 1’, ‘conv2 1’ and ‘conv3 1’) from the style image. In Group 4,
we employed style features (‘conv1 1’, ‘conv2 1’, ‘conv3 1’ and ‘conv4 1’) from the style image.
In Group 5, we utilized style features (‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and ‘conv5 1’)
from the style image. In Group 6, we employed style features (‘conv1 1’, ‘conv2 1’, ‘conv3 1’,
‘conv4 1’ and ‘conv5 1’) from the style image and content feature (‘conv4 2’) from the content
image. Furthermore, we only impose the CF term in group 6 among all the groups.

Figure 7: The progressive changes of each Group.
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Table 4: Quantitative DISTS value with different Groups.
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

sample 1

DS 0.3892 0.3671 0.3438 0.3444 0.3323 0.4309
DC 0.3673 0.3968 0.4043 0.3928 0.3939 0.3325
sample 2

DS 0.3788 0.3312 0.3059 0.2654 0.2637 0.2817
DC 0.2016 0.2437 0.2674 0.3108 0.3109 0.2810
sample 3

DS 0.4041 0.3571 0.3206 0.3101 0.3086 0.3089
DC 0.2989 0.3573 0.3952 0.4123 0.4039 0.3889
sample 4

DS 0.4242 0.3661 0.3716 0.3607 0.3597 0.3663
DC 0.3433 0.4333 0.4748 0.4662 0.4716 0.4492
sample 5

DS 0.3637 0.3165 0.2914 0.2851 0.2892 0.3561
DC 0.3673 0.3968 0.4043 0.3928 0.3939 0.3325
Average

DS 0.3920 0.3476 0.3267 0.3131 0.3107 0.3488
DC 0.3279 0.3739 0.3977 0.4046 0.4065 0.3601

Qualitative evaluation. As shown in Figure 7, as the number of style feature targets imposed on the
images increases from Group 1 to Group 5, the stylization in the images becomes more prominent
(e.g. brush strokes and textures). However, we can observe that simply increasing the style features
could result in certain critical semantic structures in the image becoming increasingly blurred. With
the reference of ϕ and the content feature target, the images in Group 6 not only successfully achieve
stylization but also make the semantic structures clearer than the previous outputs.

Quantitative evaluation. The Table 4 presents the DISTS values (Ding et al., 2020) of the output
images compared to the target images, and it can be observed that as more style feature targets
are progressively imposed on each Group, the style DISTS value is getting smaller, indicating that
the generated images increasingly closely resemble the target style images in terms of texture and
style. In contrast, the content DISTS value is increasing, which indicates that the generated images
lose more and more information about their semantic structure as they are stylized, resulting in a
gradual blurring of contours from the content image. However, with the guidance of the content
feature target and the CF ϕ in Group 6, the content DISTS value plummets, meaning that the image
becomes more similar to the content image from Domain A in terms of semantic structure. At the
same time, the style DISTS value becomes larger, indicating a drop in performance at the stylized
level compared to the previous Group.

This analysis and Figure 6 reveal that in the process of style transfer, there is a trade-off between
preserving semantic structure and stylization, and it is difficult to preserve both at the same time.
However, our model’s unique CF mechanism allows for greater flexibility in terms of controlling
the extent to which semantic structure is preserved, enabling the user to select results from Group 6
when a clearer content image is desired, or results from Group 5 when stronger stylization is needed.

D SEMANTIC STRUCTURE PRESERVATION

When performing style transfer from a content image to an abstract painting, it particularly tests the
model’s ability to preserve semantic structures. As shown in Figure 8, our model exhibits strong
performance in preserving image semantic structures. In the original image, the woman is wearing
a bracelet on her wrist, which is not present in the rendered result in Group 3 due to the absence of
the content target or the ϕ that adjusts the sharpness of the original semantic structure in the output
image. Furthermore, because Group 3 only imposes lower-level vectors (‘conv1 1’, ‘conv2 1’ and
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Figure 8: Evaluation of semantic structure preservation. The original image is denoted by (a), the
image from Group 3 is denoted by (b), and the image from Group 6 is denoted by (c). Detailed
display images corresponding to (d) through (i) are also provided.

‘conv3 1’) of CNN, it is more biased towards simulating local small structure textures from Domain
B, resulting in a cluster of small structures near the nose and mouth. In contrast, Group 6 imposes
more high-level features (‘conv4 1’ and ‘conv5 1’), the content target and ϕ, which controls the
extent of semantic structure preservation. As a result, the bracelet and the hand curve, two semantic
structures in the source image, are nicely preserved in the final rendering results in Group 6, further
demonstrating the superior performance of our method.

E ABLATION STUDY

In this section, we conduct several ablation studies on the number of reference feature vectors
{
∑5

i=1(si, c1)}, the distance of Metric Space LD, loss term and the control factor (CF) ϕ.

Reference Feature Vectors. In the experiment, by utilizing Equation (14) (Section 3.3) as our
loss function, setting ϕ to 358, and using the Euclidean distance LD, we impose a varying number
of {

∑5
i=1(si, c1)} as prior references and obtain different output images, as shown in Figure 9.

Based on the outputs’ performance, with a small number of style features as references, the style

Figure 9: Ablation study of different number of target feature vectors. More detailed results and
evolution are illustrated in supplementary materials.

transfer results are not satisfactory. With more style features without content feature, the stylization
is improved, but the semantic structure is not well preserved. With all content and style features, the
output image can preserve clear semantic content structure and achieve extraordinary style transfer.

Metric Space Distance. In order to verify the effectiveness of distances in different metric spaces on
model performance, we compared the images generated using the three distances defined in Section
3.3, as shown in Figure 10. The results demonstrate that using the C space cannot complete the style
transfer task smoothly; using the lp space results in poorer style transfer effect, and some semantic
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content is not achieved in style transfer (as shown in the red box in the figure); using the Euclidean
space Rn can achieve satisfactory performance.

Loss Term and the Control Factor. To validate the necessity and rationality of the control factor
term ϕLA in Equation (14) (Section 3.3), we conducted comparative experiments as shown in Fig-
ure 11. In the experiments, we observed the influence of the ϕLA on the experimental results, and
obtained corresponding output images by modifying the hyperparameter ϕ. The results show that
when the ϕLA is not introduced, or the ϕ value is small, the style transfer will cause the semantic
structure of the content image to be blurred and lose some semantic content. Moreover, serious over-
flow will occur in the originally clean background. Increasing ϕ will alleviate the above problems,
but if ϕ is too large, the degree of stylization will be low, affecting the effect of style transfer.

Figure 10: Ablation study of the Metric space distance.

Figure 11: Ablation study of the Loss term and the control factor. We compared the results generated
by using or not using the CF term in loss function, and observed the impact of adjusting the ϕ
value on the images. More quantitative analysis and further discussions on this are presented in the
supplementary material.

F EXTRA TEST SAMPLES

Due to the page limit, we only showcased four samples in Figure 3 in the paper. Figure 12 shows
the remaining samples used in our tests.

G USER STUDY

User study has been discussed in Section 4.4. In this section, we provide an example illustrated in
Figure 13 to demonstrate the formatting of the questions and the description of the options in our
questionnaire. The participants in this user study have been informed of the content and objectives
of our research.
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Figure 12: This figure presents the extra samples.

Figure 13: Example of questionnaire
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