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These supplementary materials include the additional results for comparing to the state-of-the-art
(§A), the experiments with a growing memory budget (§B), more details about memory budgets (§C),
more ablation results (§D), additional information (§E), the instruction for the PyTorch code (§F) and
the checklist (§G).

A Additional Results for Comparing to the State-of-the-Art.

This is supplementary to Section 5.2 “Comparing to the State-of-the-Art.” In Table S1, we
supplement the last-phase accuracies (%) of RMM and some recent CIL methods [3, 5, 8, 10–12]. In
Table S2, we supplement the 95% confidence intervals of POD-AANets w/ RMM.

For Table S1, we can observe: 1) our RMM consistently improves the two top baselines LU-
CIR+AANets and POD+AANets [10] in all settings; 2) our POD-AANets w/ RMM achieves the best
performances.

Method
CIFAR-100 ImageNet-Subset ImageNet-Full

N=5 10 25 5 10 25 5 10 25

LwF [8] 45.34 41.86 41.07 44.74 39.22 37.40 39.63 38.31 39.84
iCaRL [12] 39.01 46.16 43.04 55.76 50.32 45.72 50.57 40.44 40.52
LUCIR [5] 54.47 52.98 49.37 60.88 56.66 50.10 58.34 51.70 46.83
Mnemonics [11] 55.49 53.08 49.71 64.06 62.36 60.02 58.23 56.28 52.80
PODNet [3] 54.95 53.29 52.17 68.08 65.57 58.50 60.28 58.61 50.63

LUCIR-AANets [10] 58.75 56.88 53.89 64.52 58.90 56.73 58.32 55.69 52.78
w/ RMM (ours) 60.48 58.96 54.51 67.42 66.60 63.12 58.86 55.97 53.41

POD-AANets [10] 57.81 55.70 52.53 70.02 68.97 63.89 61.10 57.70 53.41
w/ RMM (ours) 59.00 59.03 56.50 73.80 71.40 68.84 62.50 60.10 55.50

Table S1: Supplementary to Table 1. Last-phase accuracies (%) using two state-of-the-art methods
(LUCIR+AANets and POD+AANets [10]) w/ and w/o our RMM plugged in. The upper block is for
recent CIL methods. For fair comparison, we re-implement these methods using our strict memory
budget (see “Memory Budget” in Section 5.1) based on the public code.
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Method
CIFAR-100 ImageNet-Subset

N=5 10 25 5 10 25

BiC [15] 54.90±0.38 51.82±0.47 49.72±0.52 – – –
LUCIR [5] 63.34±0.30 62.47±0.29 59.69±0.28 71.21±0.45 68.21±0.41 64.15±0.32

PODNet [3] 64.60±0.15 63.13±0.42 61.96±0.25 76.45±0.40 74.66±0.32 70.15±0.41

POD-AANets [10] 66.61±0.91 64.61±1.13 62.63±0.98 77.36±0.06 75.83±0.05 72.18±0.07

POD-AANets [10] w/ RMM (ours) 68.86±1.02 67.61±0.69 66.21±0.62 79.52±0.05 78.47±0.04 76.54±0.06

Table S2: Supplementary to Table 1. Average accuracies (%) with 95% confidence intervals.

B Experiments with a Growing Memory Budget

This is supplementary to Section 5.2 “Comparing to the State-of-the-Art.” In Table S3, we
supplement the average accuracies (%) of RMM and some recent CIL methods [3, 5, 6, 8, 10–
12, 14, 15] using the setting that allows the memory budget to grow along with phases (i.e., the
second setting in Section 5.1 “Memory Budget”). In this setting, for saving exemplars, we allocate
a memory budget of 1, 000 samples since the 0-th phase, and we allocate an additional memory
budget of 20 samples for each new class in each phase. For example, on CIFAR-100 (N=5), the
total memory budget of the 1-st phase is set as 6, 000 samples (6, 000 samples = 10 classes/phase ×
500 samples/class + 1, 000 samples), and the total memory budget of the 2-nd phase is set as 6, 200
samples (6, 200 samples = 10 classes/phase × 500 samples/class + 1, 000 samples + 20 samples/class
× 10 classes).

From Table S3, we can observe: our POD-AANets w/ RMM achieves the best performances using
the setting that allows the memory budget to grow along with phases.

Method
CIFAR-100 ImageNet-Subset

N=5 10 25 5 10 25

LwF [8] 49.59 46.98 45.51 53.62 47.64 44.32
iCaRL [12] 57.12 52.66 48.22 65.44 59.88 52.97
BiC [15] 59.36 54.20 50.00 70.07 64.96 57.73
LUCIR [5] 63.17 60.14 57.54 70.84 68.32 61.44
TPCIL [14] 65.34 63.58 – 76.27 74.81 –
DDE [6] 65.42 64.12 – 76.71 75.41 –
Mnemonics [11] 63.34 62.28 60.96 72.58 71.37 69.74
PODNet [3] 64.83 63.19 60.72 75.54 74.33 68.31
LUCIR-AANets [10] 66.74 65.29 63.50 72.55 69.22 67.60

POD-AANets [10] 66.31 64.31 62.31 76.96 75.58 71.78
w/ RMM (ours) 68.36 66.67 64.12 79.50 78.11 75.01

Table S3: Supplementary to Table 1. Average accuracies (%) across all phases using the growing
memory budget. For the related methods [3, 5, 6, 8, 10–12, 14, 15], we directly use the results
reported in their original papers.

C More Details about Memory Budgets

This is supplementary to to Section 5.1 “Memory Budget.” In Table S4, we supplement the total
memory budgets and the memory budgets when we use cross-validation (i.e., all past, future, and
validation data are accessible) to find the best fixed memory split between old and new class data.
In every benchmark, the total budget of memory depends on the phase number N . For example,
on CIFAR-100, the total memory budget is set as 7, 000 samples when N=5 (7, 000 samples = 10
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classes/phase × 500 samples/class + 2, 000 samples). Please note that 2, 000 is a bounded memory
budget allocated since the 0-th phase for saving exemplars.

Dataset
CIFAR-100 ImageNet-Subset ImageNet-Full

N=5 10 25 5 10 25 5 10 25

Total Memory Budget 7,000 4,500 3,000 15,000 8,500 4,600 150,000 85,000 46,000

CrossVal Fixed - New 1,000 500 200 3,900 1,950 780 52,000 26,000 7,800
CrossVal Fixed - Old 6,000 4,000 2,800 11,100 6,550 3,820 98,000 59,000 38,200

Table S4: Supplementary to Section 5.1 “Memory Budget.” The memory budgets (i.e., the numbers
of samples) for different settings. The first block shows the total memory budget, and the second
block shows the memory budgets when we use cross-validation (i.e., all past, future, and validation
data are accessible) to find the best fixed memory split between old and new class data.

D More Ablation Results

Ablation Results in Unknown Scenarios. This is supplementary to Section 5.2 “Ablation Results.”
We may not know the number of incremental phases or the classes in future phases in real-world
application scenarios. To evaluate the performance of our RMM in unknown scenarios, we supple-
mented the experiments of using the policy functions trained “in distinct numbers of phases” and
“on different datasets” and show the testing results of CIFAR-100 in Table S5. It is clear in the table
that even if the policy is learned in a different setting, it does not hurt much compared to the best
performance achieved in the same setting (bold). For example, when tested on the target CIL task
of “CIFAR-100, N=25”, using the policy learned on “ImageNet-Subset, N=5” (65.40%) is only 0.8
percentage points lower than using the policy learned on “CIFAR-100, N=25” (66.21%, optimal),
and it is 2.8 percentage points higher than the baseline (62.63%). The reason is that our RMM policy
is learned on the pseudo CIL tasks synthesized in different settings, i.e., trained in a setting-agnostic
manner.

No. Method Policy learned on
Tested on Tested on Tested on

“CIFAR-100 “CIFAR-100’ “CIFAR-100
N=5” N=10” N=25”

1 Baseline - 66.61 64.61 62.63

2
w/ RMM

“CIFAR-100, N=5” 68.86 67.53 65.70
3 “CIFAR-100, N=10” 68.47 67.61 65.98
4 “CIFAR-100, N=25” 68.28 67.06 66.21

5
w/ RMM

“ImageNet-Subset, N=5” 68.62 67.45 65.40
6 “ImageNet-Subset, N=10” 68.84 67.22 65.77
7 “ImageNet-Subset, N=25” 67.96 67.04 65.82

Table S5: Supplementary to Table 2. Average recognition accuracy across all phases (%). Row 1
(baseline) is from the sota method POD-AANets [25]. In Rows 2-7, we show the results for training
the RMM policy on pseudo CIL tasks synthesized in one setting and evaluating the policy on the
target CIL task in another setting. For example, Row 5 is for training the policy on “ImageNet-Subset,
N=5” and testing it on “CIFAR-100, N=5/10/25”.

Ablation Results for Transferability Properties. This is supplementary to Section 5.2 “Ablation
Results.” Our learning and application of RMM policy functions do not require datasets to have
good transferability properties. To verify this, we supplement the experiments using a new dataset —
Non-Overlapping ImageNet (NO-ImageNet) by removing any overlapping classes between ImageNet
and CIFAR-100 (if several classes in ImageNet are semantically close to a class on CIFAR-100, all
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of them will be removed). We learn the RMM policy on NO-ImageNet and then apply it in the CIL
tasks of CIFAR-100. In Table S6, we can see the clear improvements, e.g., 2.97 percentage points on
N=10 comparing “policy learned on NO-ImageNet” (67.58%) to the baseline (64.61%). The reason
is that the memory allocation in RMM is realized through the meta-learned hyperparameters (using
pseudo CIL tasks), and hyperparameters have been shown easier to be transferred among different
tasks or datasets (than network parameters that encode detailed image patterns). We can find some
similar conclusions in few-shot learning that meta-learned hyperparameters can be transferred among
different few-shot tasks [9]. The experiment results on the out-of-domain datasets (e.g., stylized
ImageNet-Subset [4]) are available in Table S7.

No. Method Policy learned on
Tested on Tested on Tested on

“CIFAR-100 “CIFAR-100’ “CIFAR-100
N=5” N=10” N=25”

1 Baseline – 66.61 64.61 62.63

2
w/ RMM

CIFAR-100 68.86 67.61 66.21
3 NO-ImageNet 68.59 67.58 65.23

Table S6: Average recognition accuracy across all phases (%). Row 1 (baseline) is from the sota
method POD-AANets [10]. In Rows 2 and 3, we show the results for training the RMM policy on
pseudo CIL tasks synthesized in one setting and evaluating the policy on the target CIL task in another
setting. For example, Row 3 is for training the RMM policy on the Non-Overlapping ImageNet
(NO-ImageNet) and testing it on CIFAR-100 with N=5, 10, 25 (the number of phases in training is
the same as each test case).

No. Method Policy learned on N=5 N=10 N=25

1 Baseline – 49.02 44.59 38.23
2 w/ RMM ImageNet-Subset 53.15 50.05 42.89

Table S7: Average recognition accuracy across all phases (%) on stylized ImageNet-Subset [4]. In
this dataset, the class order and data splits are the same as ImageNet-Subset [12], and the images
are from stylized ImageNet [4]. Row 1 (baseline) is from the sota method POD-AANets [10]. In
Row 2, we show the results for training the RMM policy on pseudo CIL tasks synthesized using
ImageNet-Subset and evaluating the policy on the target CIL tasks from stylized ImageNet-Subset.

Ablation Results for Memory Budgets. This is supplementary to Section 5.2 “Ablation Results.”
We conduct the experiments by increasing the total memory budget from 1, 000 to 4, 000 and report
the results in Table S8. We observe that (1) the improvement by RMM is more significant for a
smaller memory budget, and (2) our RMM improves the performance by a clear margin when the
memory budget is increased a lot, e.g., to 4, 000. Our explanation is that the effectiveness of RMM is
because it relieves the problem of data imbalance between old and new classes. If the memory budget
is limited (e.g., 1, 000), RMM is clearly helpful. If the memory budget increases to certain levels
(e.g., 2, 000 and 4, 000) that the imbalance between old and new classes is still significant, RMM is
also helpful. If the memory budget is unlimited, which means it can be used to store all old-class
data, there is no imbalance problem anymore and thus no need to adjust the memory allocation.

Using the Entropy for Splitting the Data in Groups. This is supplementary to Section 5.2
“Ablation Results.” The entropy is often used to measure the uncertainty of the data, e.g., for
curriculum learning [1] and open set recognition [2]. We used it to split classes into two groups: (1)
high-entropy classes that are more uncertain and need more exemplars; and (2) low-entropy classes
that are less uncertain and need fewer exemplars. As suggested in the review, we also try prediction
scores in Level-2 (Table S9), and see slightly lower performance (than using entropy), while still
achieving satisfactory performance.

E Additional Information

Hardware Information. We run our experiments using GPU workstations as follows,
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No. Method Memory budget of exemplars N=5 N=10 N=25

1 Baseline 1000 64.31 60.97 58.77
2 w/ RMM (ours) 1000 68.20 65.57 63.08

margin +3.9 +4.6 +4.3

3 Baseline 2000 66.61 64.61 62.63
4 w/ RMM (ours) 2000 68.86 67.61 66.21

margin +2.3 +3 +3.6

5 Baseline 4000 67.86 66.87 65.74
6 w/ RMM (ours) 4000 70.12 69.05 67.72

margin +2.3 +2.2 +2

Table S8: Supplementary to Table 2. Average recognition accuracy across all phases (%) on CIFAR-
100, N=5/10/25. Row 1 (baseline) is from the sota method POD-AANets [10].

No. Method Tested on Tested on Tested on
“N=5” “N=10” “N=25”

1 Baseline 66.61 64.61 62.63
2 Using entropy for grouping (ours) 68.86 67.61 66.21
3 Using prediction scores for grouping 67.96 67.02 66.02

Table S9: Supplementary to Table 2. Average recognition accuracy across all phases (%) on CIFAR-
100. Row 1 (baseline) is from the sota method POD-AANets [10]. In Rows 2 and 3, we show the
results for using different metrics to group classes for Level-2 policy. For example, Row 3 shows the
results of using prediction score for grouping classes on “CIFAR-100, N=5/10/25”.

• CPU: AMD EPYC 7502P 32-Core Processor

• GPU: NVIDIA Quadro RTX 8000, 48 GB GDDR6

• Memory: 1024 GiB = 8x 128GiB, DDR4, 3200 MHz, ECC

Licenses. The code for the following papers using the MIT License: AANets [10], iCaRL [12],
Mnemonics [11], and PODNet [3].

About the Datasets. We use two datasets in our paper: CIFAR-100 [7] and ImageNet [13]. The data
for both datasets are downloaded from their official websites and allowed to use for non-commercial
research and educational purposes.

F PyTorch Code

The code is available at https://class-il.mpi-inf.mpg.de/rmm/.

Getting Started. To run this repository, we kindly advise you to install python 3.6 and PyTorch 1.2.0
with Anaconda. You may download Anaconda and read the installation instruction on the official
website (https://www.anaconda.com/download/).

Create a new environment and install PyTorch and torchvision on it:

1 conda create --name rmm -pytorch python =3.6
2 conda activate rmm -pytorch
3 conda install pytorch =1.2.0
4 conda install torchvision -c pytorch

Install other requirements:
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1 pip install PyYaml scikit -learn matplotlib pandas requests psutil tqdm
Pillow ==6.2.0

Running experiments on CIFAR-100.

Run the PyTorch code (data will be downloaded automatically):

1 python run_exp_cifar100.py

Running experiments on ImageNet-Subset.

Put the training data for ImageNet in:

1 ./data/imagenet/train

Put the validation data for ImageNet in:

1 ./data/imagenet/val

Run the PyTorch code:

1 python run_exp_imgnet.py

G Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The code is
available at https://class-il.mpi-inf.mpg.de/rmm/

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5.1 and the supplementary materials.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Table S2.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section E.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5.1.
(b) Did you mention the license of the assets? [Yes] See Section E.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See Section E.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See Section E.
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(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] See Section E.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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