
A Zero-shot Rademacher complexity and Proof of Theorem 1591

A.1 Problem setup and assumptions592

Let w2W✓Re denote an intervention and x2X ✓Rd denote an individual that received it. Assume593

the outcome to predict is a scalar y2 [0,1]. The hypothesis class isF={f : (w,x)!y}. The dataset has594

n interventions with m independent units which received each intervention, i.e. first n i.i.d. draws from595

PW and thenm i.i.d. draws fromPX for eachw(j). During training we have access to noisy estimate ỹ=596

y+⇠ where ⇠ is an independent noise with E⇠=0 and |⇠|✏ almost surely. We are tested directly on y.597

The ERM is598

f̂=min
f

L̂(f)=min
f

1

nm

nX

j=1

mX

i=1

(f(w(j),x(j)
i )�ỹ(j)i )2.

The test error is599

L(f)=Ew,x,y(f(w,x)�y)2

and let f⇤=minfL(f).600

We are interested in bounding the excess error L(f̂)�L(f⇤).601

Our key assumption is that interventions with similar attributes (w) have similar effects in expectation.602

More concretely, we assume that all hypotheses in our family are smooth with respect to w:603

Assumption 2.

8f 2F ,Ew,x
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#
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Furthermore, we assume that PW satisfies a Poincaré-type inequality:604

Assumption 3. For some constant C that only depends on PW , for any smooth function F ,605

V arw[F (w)]CE
⇥
krwF (w)k22

⇤
.

For example, PW can be any of the following distributions:606

• Multivariate Gaussian: w2Re⇠N (µ,⌃) for some vector µ2Re and positive semi-definite607

matrix⌃2Re⇥e;608

• w 2 Re has independent coordinates; each coordinate has the symmetric exponential609

distribution 1/2e�|t| for t2R.610

• PW is a mixture over base distributions satisfying Poincaré inequalities, and their pair-wise611

chi-squared distances are bounded.612

• PW is a mixture of isotropic Gaussians in Re.613

• PW is the uniform distribution over W⇢Re, which is open, connected, and bounded with614

Lipschitz boundary.615

We note that isotropic Gaussian can approximate any smooth densities in Re [39] (since RBF kernels616

are universal), showing that Assumption 3 is fairly general.617

We define a novel notion of function complexity specialized to the zero-shot setting. Intuitively, it618

measure how well we can fit random labels, which is first drawing n interventions and m recipients619

for each intervention. For examples of concrete upper bound on zero-shot Rademacher complexity620

see section A.4.621

Rnm(F )=
1

nm
Ew,x,�sup

f

nX

j=1

mX

i=1

�j
i f(w

(j),x(j)
i ) (8)

where �j
i are independently randomly drawn from {�1,1}.622
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A.2 Formal theorem statement623

Theorem 4. Under Assumptions 2 3, with probability 1��,624

L(f̂)L(f⇤)+8(1+✏)Rnm(F)+8

r
(1+✏)Rnm(F)log(1/�)

n

+(1+✏)

s
(32C�2+ 2(1+✏)2

m )log(1/�)

n
+
2log(1/�)

3n
.

A.3 Proof of the main theorem625

We define the population loss on the noisy label eL(f)=Ew,x,ỹ(f(w,x)�ỹ)2. Due to independence626

of ⇠, Ew,x,y,⇠(f(w,x) � y � ⇠)2 = Ew,x,y(f(w,x) � y)2 + E[⇠2] = L(f) + E[⇠2] for any f , so627

L(f̂)�L(f⇤)= eL(f̂)�eL(f⇤). We shall focus on bounding the latter.628

We first need a lemma that bounds the supremum of an empirical process indexed by a bounded629

function class.630

Lemma 5 (Theorem 2.3 of [6]). Assume that Xj are identically distributed according to P , G is631

a countable set of functions from X to R and, and all g 2 G are P -measurable, square-integrable,632

and satisfy E[g] = 0. Suppose supg2Gkgk1  1, and we denote Z = supg

���
Pn

j=1g(Xj)
���. Suppose633

�2�supg2GV ar(g(Xj)) almost surely, the for all t�0, we have634

Pr


Z�EZ+

p
2t(n�2+2EZ)+

t

3

�
e�t.

We apply Lemma 5 with Xj = (w(j), xj
1, ... , xj

m, ỹj1, ... , ỹjm), g(Xj) =635 ⇣
1
m

P
i(f(w

(j),x(j)
i )�ỹ(j)i )2�eL(f)

⌘
, �2 = supf2F (V ar( 1

m

P
i(f(w

(j), x(j)
i ) � ỹ(j)i )2)),636

t=log(1/�). Since f�ỹ2 [�1,1], g2 [�1,1]. With probability 1��,637

nsup
f

���bL(f)�eL(f)
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Multiplying both sides by 1/n, and using
p
a+b

p
a+

p
b,638

sup
f

���bL(f)�eL(f)
���Esup

f

���bL(f)�eL(f)
���+2
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(9)

The next lemma bounds the variance �2 in equation (9).639

Lemma 6.

8f 2F ,V arw(j),xj
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1...m

"
1

m

mX

i=1

(f(w(j),x(j)
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Proof of Lemma 6. Using the law of total variance, if we write640

g(w(j),xj
1...m,ỹj1...m)=

1

m

mX

i=1

(f(w(j),x(j)
i )�ỹ(j)i )2,

then641

V ar[g]=V arw[Ex,ỹ[g(w,x,ỹ) |w]]+Eh[V arx,ỹ[g(w,x,ỹ) |w]] (10)

To bound the first term of equation (10), we use Poincaré-type inequalities in Assumption 3. For each642

of the example distributions, we show that they indeed satisfy Assumption 3.643
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Lemma 7. Each of the example distributions in Assumption 3 satisfies a Poincare-type inequality.644

Proof. • When PW is the uniform distribution over W 2Re, which is open, connected, and645

bounded with Lipschitz boundary, we use Poincaré–Wirtinger inequality [57] on the smooth646

function E[g |w]: For some constant C that only depends on PW ,647

V arw[E[g |w]]CE
⇥
krwE[g |w]k22

⇤
. (11)

C is the Poincaré constant for the domain W in L2 norm. It can be bounded by 1/�1 where648

�1 is the first eigenvalue of the negative Laplacian of the manifold W [83]. Many previous649

works study the optimal Poincaré constants for various domains [43]. For example, when w is650

uniform overW which is a bounded, convex, Lipschitz domain with diameter d,Cd/⇡ [56].651

We can apply probabilistic Poincaré inequalities over non-Lebesgue measure PW :652

• When w⇠N (µ,⌃), we use the Gaussian Poincaré inequality (see e.g. Theorem 3.20 of [5]653

and using change of variables),654

V ar[F (w)]E[h⌃rwF (w),rwF (w)i].

We apply this with F (w) = E[g |w]. Since E[v>Av] = E[Tr(v>Av)] = E[Tr(Avv>)] =655

Tr(AE[vv>])kAk2E
⇥
kvk22

⇤
,656

V arw[E[g |w]]k⌃k2E
⇥
krwE[g |w]k22

⇤
,

which satisfies equation (11) with C=k⌃k2.657

• When w2Re has independent coordinates w1,...,we and each coordinate has the symmetric658

exponential distribution 1/2e�|t| for t2R, we first bound a single dimension using Lemma659

4.1 of [45], which says for any function k2L1,660

V ar(k(wi))4E
⇥
k0(wi)

2
⇤

which, combined with the Efro-Stein inequality (Theorem 3.1 of [5]),661

V ar(F (w))=E
eX

i=1

V ar(F (w) |w1,...,wi�1,wi+1,...,wn),

yields:662

V ar(F (w))4E
⇥
kF 0(w)k22

⇤

which satisfies equation (11) with C=4.663

Lastly, we consider the case where PW is a mixture over base distributions satisfying Poincaré664

inequalities. We first consider the case where the pair-wise chi-squared distances are bounded. Next,665

we show that mixture of isotropic Gaussians satisfies Poincaré inequality without further condition666

on pair-wise chi-squared distances.667

• When {P q
W }q2Q is a family of distributions, each satisfying Poincaré inequality with constant668

Cq, and PW is any mixture over {P q
W }q2Q with density µ, let KP (µ) = essµ supqC

q,669

which is an upper bound on the base Poincaré constants almost surely, and Kp
�2(µ) =670

Eq,q0⇠µ[(1+�2(P q
W ||P q0

W ))p]1/p, which is an upper bound on the pairwise �2-divergence.671

Using Theorem 1 of [8] we get that PW satisfies Poincaré inequality with constant C such672

that CKP (µ)(p⇤+Kp
�2(µ)) where p⇤ is the dual exponent of p satisfying 1/p+1/p⇤=1.673

As an example, when base distributions are from the same exponential family and674

the natural parameter space is affine, such as mixture of Poisson or Multinomial dis-675

tributions, the pair-wise chi-squared distances are bounded (under some additional676

conditions) and hence the mixture satisfies Poincaré inequality. More formally, let677

p✓(x)= exp
�
T (x)>✓�F (✓)+k(x)

�
where ✓2⇥ is the natural parameter space and A(✓)678

is the log partition function. Lemma 1 in [54] shows that679

�2(p✓1 ||p✓2)=e(A(2✓2�✓1)�(2A(✓2)�A(✓1)))�1,
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which is bounded as long as 2✓2 � ✓1 2 ⇥. This is satisfied for mixture of 1-D680

Poisson distributions which can be written as p(w|�) = 1
w! exp (wlog���) with681

natural parameter space R, and mixture of e-dimensional Multinomial distributions682

p(w|⇡) = exp
⇣
hw,log

⇣
⇡/
⇣
1�

Pe�1
i=1⇡i

⌘⌘
i+log

⇣
1�

Pe�1
i=1⇡i

⌘⌘
with natural parameter683

space Re�1. When applied to Gaussian family the natural parameters are684

✓q=

✓
⌃�1

q µq

vec
�
� 1

2⌃
�1
q

�
◆
.

Since the covariance has to be positive definite matrices, 2✓q�✓q0 may not be a set of valid685

natural parameter. We deal with this in the next case.686

• When {P q
W }q2Q is a mixture of isotropic Gaussians, each with mean µq2Re and covariance687

⌃q = �2
qIe, each satisfying Poincaré inequality with constant Cq (in the single-Gaussian688

case above we know that Cq�2
q ), PW also satisifes Poincaré inequality. We prove this via689

induction. The key lemma is below:690

Lemma 8 (Corollary 1 of [64]). Suppose measure p0 is absolutely continuous with respect691

to measure p1, and p0, p1 satisfy Poincaré inequality with constants C0, C1 respectively, then692

for all ↵2 [0,1] and �=1�↵, mixture measure p=↵p0+�p1 satisfies Poincaré inequality693

with with Cmax{C0,C1(1+↵�1)} where �1=
R dp0

dp1
dp0�1.694

We sort the components in the order of non-decreasing �2
q , and add in each component one695

by one. For each new component i= 2,...,|Q|, we apply the above lemma with p0 being696

mixture of P 1
W ,...,P i�1

W and p1 being the new component P i
W . We only need to prove that697

�1 is bounded at every step. Suppose p0 =
Pi�1

j=1↵jP
j
W with

Pi�1
j=1↵j =1, p1 =P i

W , and698

P j
W = 1

(2⇡)e/2�e
j
exp

�
� 1

2 (w�µj)>⌃
�1
j (w�µj)

 
. Therefore699

�1+1=

Z
dp0
dp1
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Z

w

p0(w)2

p1(w)
dw

=

Z

w
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j=1

↵2
j

�2e
j
exp

n
�kw�µjk2

�2
j

o
+
Pi�1

j=1

P
j0 6=j

2↵j↵j0

�e
j�

e
j0
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⇢
�kw�µjk2

2�2
j

� kw�µj0k2

2�2
j0

�

(2⇡)e/2

�e
i

exp
n
�kw�µik2

2�2
i

o dw

The convergence condition of the above integral is 2�2
i �2�2

j for all j<i which is satisfied700

when �2
i ��2

j .701

702

Next we observe that703

rwE[g |w]=rw

Z

x,ỹ
(f(w,x)�ỹ)2p(x,ỹ)dxdỹ=2

Z

x,y
(f(w,x)�ỹ)

@f

@w
p(x,ỹ)dxdỹ=2E


(f(w,x)�ỹ)

@f

@w

�
.

Since |f(w,x)�ỹ|1+✏ almost surely, E
��� @f

@w

���
2

2

�
�2,704

Eh

⇥
krwE[g |w]k22

⇤
=4E

"����(f(w,x)�y)
@f

@w

����
2

2

#
4(1+✏)2�2.

Therefore705

V arw[E[g |w]]CE
⇥
krwE[g |w]k22

⇤
4(1+✏)2C�2.

To bound the second term of equation (10), we use concentration of mean of m i.i.d. random variables.706
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Conditioned on w(j), each of the loss (f(w(j),x(j)
i )� ỹ(j)i )2 are i.i.d. and bounded in [0,(1+ ✏)2].707

Hence each variable has variance upper bound ((1 + ✏)2 � 0)2/4 = (1 + ✏)4/4 and the mean has708

variance upper bound (1+✏)4/4m.709

Therefore V ar[g]4(1+✏)2C�2+(1+✏)4/4m.710

Proof of Theorem 4.

L(f̂)�L(f⇤)2sup
f2F

|eL(f)�L̂(f)|

711

2Esup
f
|eL(f)�L̂(f)|+4

vuutEsupf
���L̂(f)�eL(f)

���log(1/�)

n
+

s
(32(1+✏)2C�2+ 2(1+✏)4

m )log(1/�)

n
+
2log(1/�)

3n
(12)

by equation (9) and Lemma 6.712

We now show that Esupf |eL(f)� L̂(f)|  2(1 + ✏)Rnm(F ). This is similar to the argument for713

classical Rademacher complexity714
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X
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1

A

=2Rnm( eL).

where the first inequality uses Jensen’s inequality and convexity of sup.715

Now we prove the equivalent of Talagrand’s contraction lemma to show that Rnm( eL) 2Rnm(F).716

Note that the squared loss is 2(1+ ✏)-Lipschitz since
���@(f�ỹ)2

@f

���= 2|f � ỹ| 2(1+ ✏). We use the717

following lemma to prove this:718

Lemma 9 (Lemma 5 of [49]). Suppose {�i}, { i}, i=1,...,N are two sets of functions on⇥ such719

that for each i an ✓,✓02⇥, |�i(✓)��i(✓0)| | i(✓)� i(✓0)|. Then for all functions c: ⇥!R,720

E�
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"
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For any set of w,x, we apply Lemma 9 with⇥=F , ✓=f , N=nm, �ij(f)=(f(w(j),x(j)
i )�ỹ(j)i )2,721

 ij(f) = 2(1+ ✏)f(w(j),x(j)
i ), and c(✓) = 0. Since

��(f�ỹ)2�(f 0�ỹ)2
�� 2(1+ ✏)|f �f 0|, so the722

condition for Lemma 9 hold. We take expectation over w,x and divide both sides by nm to get723

1
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which means Rnm(L)2(1+✏)Rnm(F). Substituting this into inequality (12) finishes the proof.724

725
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A.4 Zero-shot Rademacher complexity bound for the linear hypothesis class726

Consider the linear classifier F = {(w>
1 w+w>

2 x : kw1k2B,kw1k2C}. Suppose kwk2 1 and727

kxk21.728
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kw(j)k22+B2

sX

ij

kx(j)
i k22

1

A

=(B1+B2)/
p
nm.

We observe that the bound is the same as the standard Rademacher complexity for nm independent729

samples, which is interesting. The relationship between standard and zero-shot Rademacher730

complexity for other function classes is an important future direction.731

B Extended Related Work732

Our approach to zero-shot prediction of intervention effects is related to recent advances in733

heterogenous treatment effect (HTE) estimation, zero-shot learning, and meta-learning.734

B.1 Heterogenous treatment effect (HTE) estimation735

Conditional average treatment effect (CATE) estimation. A number of approaches have been736

developed to predict the effect of an existing intervention on an individual or subgroup, based737

on historical data from individuals who received it. This problem is often referred to in the738

literature as heterogeneous treatment effect (HTE) estimation [26, 11], to denote that the goal is739

to detect heterogeneities in how individuals respond to an intervention. A more specific instance740

of HTE estimation, which we focus on here, is conditional average treatment effect (CATE)741

estimation [76, 42], in which the goal is to predict the effect of a treatment conditioned on an742

individual’s features. A variety of methods and specific models have been developed to achieve this743

goal [26, 32, 21, 28, 76, 66, 1, 84, 24, 86, 25, 14, 12, 42, 34, 11, 2], and we refer to Bica et al. and Curth744

et al. for a detailed review of these methods [4, 14]. These methods estimate CATE for an existing745

intervention, based on historical data from individuals who received it and those that did not.746

While these approaches have a number of useful applications, they do not address CATE for747

novel interventions which did not exist during training (zero-shot). Our primary contribution is a748

meta-learning framework to leverage these existing CATE estimators for zero-shot predictions. In749

the CaML framework (Figure 2), each task corresponds to predicting CATE for a single intervention.750

We synthesize a task by sampling a natural experiment for each intervention, and then use any existing751

CATE estimator to generate a noisy target label for our the task (Step 2: estimate pseudo-outcomes).752

We rely on pseoudo-outcome estimates as training labels because prior work has shown that training753

on observed outcomes directly leads to biased CATE estimates [9, 42, 34], a result which we find754

holds true in our experiments as well (see T-learner and S-learner w/ meta-learning in Tables 2 and 3).755

Pseudo-outcome estimators. Prior work has developed a variety of methods to estimate CATE pseudo-756

outcomes, which are noisy but unbiased estimates of CATE, such as the X-learner [42], R-learner [53],757

DR-learner [34], and RA-learner [14]. Moreover, the outputs of any other CATE estimation method,758

such as methods which directly estimate CATE via an end-to-end neural network [32, 66, 68] are an759

equally valid choice of pseudo-outcome. The literature on pseudo-outcome estimation is growing con-760

tinuously as new estimators are being developed [19, 38]. Typically, these estimators are specific to a sin-761

gle binary intervention, for which a set of nuisance models are trained and used to compute the pseoudo-762

outcomes. As such, applying meta-learning algorithms to these pseudo-outcomes requires synthesizing763

a natural experiment for each intervention, which corresponds to a single task in the CaML framework.764
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Multi-cause estimators. Our methods to address zero-shot CATE estimation for combinations765

of interventions are distinct from multi-cause estimators for combinations of binary or categorical766

interventions [78, 58, 62]. Recent work has shown that these methods can predict the effects of new767

combinations of interventions [48], when every intervention in the combination has been observed768

at some point during. However, these methods do not estimate CATE for novel interventions which did769

not exist during training. By contrast, CaML estimates CATE for zero-shot intervention combinations770

in which none of the interventions in the combo was ever observed during training (Appendix Table C).771

B.2 Zero-shot learning772

Zero-shot learning (ZSL) has traditionally aimed to reason over new concepts and classes [80, 60]773

which did not exist during training time. While ZSL has primarily focused on natural language774

processing and computer vision [77], recent interest has been sparked in generalizing over novel775

interventions (zero-shot) in the biomedical domain [61, 27] in which data can be cheaply collected776

for hundreds or thousands of possible interventions [87, 71, 17]. However, general-purpose zero-shot777

causal methods have been largely unexplored. Notable exceptions include GranITE [23] and SIN [23],778

which each extend a specific CATE estimation [53, 42] method to incorporate intervention features779

(W ). However, these approaches have significant drawbacks, which we discuss in Section 2.780

B.3 Meta-learning781

Meta-learning, or learning to learn, aims to train models which can quickly adapt to new settings782

and tasks. The key idea is to enable a model to gain experience over multiple learning episodes - in783

which episodes typically correspond to distinct tasks - to accelerate learning in subsequent learning784

episodes [30]. The meta-learning literature is rich and spans multiple decades [72, 65, 63, 3], with785

recent interest focused on model-agnostic methods to train deep learning models to quickly adapt to786

new tasks [18, 59, 52]. A common focus in the meta-learning literature is few-shot learning, in which787

a model must adapt to a new task given a small support set of labeled examples. By contrast, we focus788

on the zero-shot setting, in which no such support set exists. However, we hypothesize that the typical789

meta-learning problem formulation and training algorithms may also improve zero-shot performance.790

Thus, CaML’s problem formulation and algorithm inspiration from the meta-learning literature,791

particularly the Reptile algorithm [52] and its application to other tasks in causal inference [67].792

Our experimental results show that this meta-learning formulation improves CaML’s performance,793

compared to a standard multi-task learning strategy.794

C Experimental details795

C.1 Experimental setup796

Here, we provide more details about the experimental setup for each investigated setting. This serves797

to complement the high-level overview given in Table 1. Experiments were run using Google Cloud798

Services. Deep learning-based methods (i.e., CaML and its ablations, S-learner w/ meta-learning,799

T-learner w/ meta-learning, SIN, GraphITE, FlexTENET, TARNet, and DragonNet) were run on800

n1-highmem-64 machines with 4x NVIDIA T4 GPU devices. The remaining baselines (RA-learner,801

R-learner, X-learner, and T-learner) were run on n1-highmem-64 machines featuring 64 CPUs.802

Fair comparison. We perform hyper-parameter optimization with random search for all models, with803

the meta-testing dataset predetermined and held out. To avoid “hyperparameter hacking”, hyperparam-804

eters ranges are consistent between methods wherever possible, and were chosen using defaults similar805

to prior work [33, 23]. Choice of final model hyper-parameters was determined using performance met-806

rics (specific to each dataset) computed on the meta-validation dataset, using the best hyper-parameters807

over 48 runs (6 servers x 4 NVIDIA T4 GPUs per server x 2 runs per GPU ) (Appendix C.4). All table808

results are computed as the mean across 8 runs of the final model with distinct random seeds.809

C.1.1 Claims dataset810

Interventions (W ): We consider drug prescriptions consisting of either one drug, or two drugs811

prescribed in combination. We observed 745 unique single drugs, and 22,883 unique drug pairs,812

excluding interventions which occurred less than 500 times. Time of intervention corresponds to the813

first day of exposure. To obtain intervention information, we generated pre-trained drug embeddings814
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from a large-scale biomedical knowledge graph [7] (see Appendix C.5). Drugs correspond to nodes815

in the knowledge graph, which are linked to other nodes (e.g. genes, based on the protein target of816

the drug). Drug combination embeddings are the sum of the embeddings for their constituent drugs.817

Control group. A challenge in such causal analyses of clinical settings is defining a control group. We818

randomly sample 5% (1.52M patients) to use as controls, with a 40/20/40 split betweem meta-train/meta-819

val/meta-test. When sampling a natural experiment for a given intervention, we select all patients from820

this control group that did not receive such an intervention. An additional challenge is defining time821

of intervention for the control group. It is not possible to naively sample a random date, because there822

are large quiet periods in the claims dataset in which no data is logged. We thus sample a date in which823

the control patient received a random drug, and thus our measure of CATE estimates the increase in824

side effect likelihood from the drug(s) W , compared to another drug intervention chosen at random.825

Outcome (Y ): We focus on the side effect pancytopenia: a deficiency across all three blood cell826

lines (red blood cells, white blood cells, and platelets). Pancytopenia is life-threatening, with a 10-20%827

mortality rate [36, 41], and is a rare side effect of many common medications [40] (e.g. arthritis and828

cancer drugs), which in turn require intensive monitoring of the blood work. Our outcome is defined829

as the (binary) occurrence of pancytopenia within 90 days of intervention exposure.830

Features (X): Following prior work [22], patient medical history features were constructed by831

time-binned counts of each unique medical code (diagnosis, procedure, lab result, drug prescription)832

before the drug was prescribed. In total, 443,940 features were generated from the following time bins:833

0-24 hours, 24-48 hours, 2-7 days, 8-30 days, and 31-90 days, 91-365 days, and 365+ days prior. All834

individuals in the dataset provided by the insurance company had at least 50 unique days of claims data.835

Metrics: We rely on best practices for evaluating CATE estimators as established established by recent836

work [81, 10], which recommend to assess treatment rules by comparing subgroups across different837

quantiles of estimated CATE. We follow the high vs. others RATE (rank-weighted average treatment838

effect) approach from Yadlowsky et. al [81], which computes the difference in average treatment effect839

(ATE) of the top u percent of individuals (ranked by predicted CATE), versus all individuals:840

RATE@u=E
h
Y (1)�Y (0) |FS(S(X))�1�u

i
�E

h
Y (1)�Y (0)

i
, (13)

where S(·) is a priority score which ranks samples lowest to highest predicted CATE, and FS(·) is the841

cumulative distribution function (CDF) of S(Xi). For instance, RATE @ 0.99 would be the difference842

between the top 1% of the samples (by estimated CATE) vs. the average treatment effect (ATE) across843

all samples, which we would expect to be high if the CATE estimator is accurate. The real-world use844

case of our model would be preventing drug prescription a small subset of high-risk individuals. Thus,845

more specifically, for each task j, intervention wj in the meta-dataset, and meta-model ✓ (our priority846

score S(·)), we compute RATE@u for each u in [0.999,0.998,0.995,0.99] across individuals who847

received the intervention.848

We now summarize how to estimate RATE performance metrics for a single intervention (task).849

As RATE performance is calculated separately per-intervention we are concerned with a single850

intervention, we use the simplified notation (i.e. Yi(1) instead of Yi(w)) from Section 3. Due to the851

fundamental problem of causal inference (we can only observe Yi(0) or Yi(1) for a given sample),852

the true RATE, as defined above, cannot be directly observed.853

We follow the method outlined in Section 2.2 and 2.4 of Yadlowsky et. al, [81] in which we compute854
b�i, a (noisy but unbiased) estimate for CATE which is in turn used to estimate RATE:855

E
h
b�i
��Xi

i
⇡⌧(Xi)=E

⇥
Yi(1)�Yi(0)

��Xi

⇤
. (14)

Our data is observational, and as such we can estimate b�i using a direct non-parametric estimator [75]:856

b�i=Wi(Yi�m̂(Xi,0))+(1�Wi)(m̂(Xi,1)�Yi) (15)
m(x,w)=E[Yi(w)|Xi=x] (16)

where m(x,w) is a model that predicts the outcome. Here m̂(x,w) represent nonparametric estimates857

of m(x,w), respectively, which we obtain by fitting a cross-fitting a model to the intervention natural858

experiment over 5-folds. We use random forest models for m̂(x,w), as they perform well (achieving859

�0.90 ROC AUC across all meta-testing tasks for predicting outcomes) and are robust to choice of860

hyperparameters.861
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RATE can then be estimated via sample-averaging estimator. Specifically, we compute the difference862

between the average value of b�i for those in the top u percent of individuals (based on our meta-model’s863

predictions), compared to the average b�i across all individuals. For further discussion on estimating864

RATE, we refer readers to [81]. Note that estimates of RATE are unbounded: RATE can be less than865

0 (due to predictions inversely relating to CATE).866

Finally, because our meta-testing dataset consists of individuals treated with drugs known in the867

medical literature to cause pancytopenia (identified by filtering drugs using the side effect database868

SIDER [40]), observational metrics of recall and precision are also a rough proxy for successful869

CATE estimation. Thus, as secondary metrics, we also compute Recall@u and Precision@u for870

the same set of thresholds as RATE, where a positive label is defined as occurrence of pancytopenia871

after intervention. We find that these metrics are highly correlated to RATE in our performance results.872

Training & Evaluation: For each method, we ran a hyperparameter search with 48 random873

configurations (48 due to running 8 jobs in parallel on 6 servers each) that were drawn uniformly874

from a pre-defined hyperparameter search space (see Appendix C.4). Methods that can be trained on875

multiple tasks to then be applied to tasks unseen during training (i.e., CaML and its ablations, S-learner876

w/ meta-learning, T-learner w/ meta-learning, SIN, GraphITE) were trained for 24 hours (per run) on877

the meta-training tasks. Model selection was performed on the meta-validation tasks by maximizing878

the mean RATE@0.998 across meta-validation tasks. Then, the best hyperparameter configuration879

was used to fit 8 repetition runs across 8 different random seeds. Each repetition model was then tested880

on the meta-testing tasks, where for all metrics averages across the testing tasks are reported. To make881

the setting of multi-task models comparable with single-task models that were trained on meta-testing882

tasks (requiring a train and test split of each meta-testing task), the evaluation of all models was883

computed on the test split of the meta-testing tasks, respectively. Single-task baselines (FlexTENET,884

TARNet, and DragonNet, RA-learner, R-learner, X-learner, and T-learner) were given access to the885

meta-testing tasks during training. Specifically, model selection was performed on the meta-validation886

tasks, while the best hyperparameter configuration was used to train 8 repetition models (using 8887

random seeds) on the train split of each meta-testing task. For the final evaluation, each single-task888

model that was fit on meta-testing task i was tested on the test split of the same meta-testing task i,889

and the average metrics were reported across meta-testing tasks.890

C.1.2 LINCS891

Interventions (W ): Interventions in the LINCS dataset consist of a single perturbagen (small892

molecule). For intervention information, we used the molecular embeddings for each perturbagen893

using the RDKit featurizer The same cell line-perturbagen combinations are tested with different894

perturbagen dosages and times of exposure. [44].To maintain consistency in experimental conditions895

while also ensuring that the dataset is sufficiently large for training a model, we filter for most896

frequently occurring dosage and time of exposure in the dataset, which are 10µM and 24 hours,897

respectively. We use data from 10,322 different perturbagens.898

Control group. For each perturbagen (at a given timepoint and dose), we use cell lines which did899

not receive that intervention as the control group.900

Outcomes (Y ): We measure gene expression across the top-50 and top-20 landmark differentially901

expressed genes (DEGs) in the LINCS dataset. Accurately predicting in gene expression in these902

DEGs is most crucial to the drug discovery process.903

Features (X): We use 19,221 features from the Cancer Cell Line Encyclopedia (CCLE) [20] to904

describe each cell-line, based on historical gene expression values in a different lab environment. Our905

dataset consisted of 99 unique cell lines (after filtering for cell-lines with CCLE features).906

Metrics: A key advantage of experiments on cells is that at evaluation time we can observe both Y (0)907

and Y (1) for the same cell line X , through multiple experiments on clones of the same cell-line in908

controlled lab conditions. In the LINCS dataset, Y (0) is also measured for all cells which received909

an intervention. Thus, we can directly compute the Precision Estimation of Heterogenous Effects910

(PEHE) on all treated cells in our meta-testing dataset. PEHE is a standard metric for CATE estimation911

performance [28], analagous to mean squared error (MSE).912

PEHE=
1

N

NX

i=1

(⌧i�⌧̂i)2 (17)
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Training & Evaluation: For each method, we ran a hyperparameter search with 48 random913

configurations (48 due to running 8 jobs in parallel on 6 servers each) that were drawn uniformly914

from a pre-defined hyperparameter search space (see Appendix C.4). Methods that can be trained915

on multiple tasks to then be applied to tasks unseen during training (i.e., CaML and its ablations,916

S-learner w/ meta-learning, T-learner w/ meta-learning, SIN) were trained for 12 hours (per run) on917

the meta-training tasks. Model selection was performed on the meta-validation tasks by minimizing918

the overall PEHE for the Top-20 most differentially expressed genes (DEGs) across meta-validation919

tasks. Then, the best hyperparameter configuration was used to fit 8 repetition runs across 8 different920

random seeds. Each repetition model was then tested on the meta-testing tasks, where for all metrics921

averages across the testing tasks are reported.922

C.2 Selecting holdout interventions for meta-validation and meta-testing923

C.2.1 Claims.924

In the 30.4 million patient insurance claims dataset, each intervention task in meta-train/meta-925

val/meta-testing corresponds to a natural experiment of multiple patients, with some interventions (e.g.926

commonly prescribed drugs) having millions of associated patients who were prescribed the drug. One927

challenge is that in this setting, there is overlap in subjects between the natural experiments sampled by928

CaML, which can lead to data leakage between training and testing. For instance, if a patient received929

Drug 1 (in meta-test) and Drug 2 (meta-train), they would appear in both natural experiments, resulting930

in data leakage.931

We take a conservative approach and exclude all patients who have ever received a meta-testing drug in932

their lifespan from the natural experiments for meta-val/meta-train. Similarly, we exclude all patients933

who received a meta-validation drug from meta-training.934

This approach means we must take great care in selecting meta-testing drugs. Specifically, we must935

trade off between selecting drugs that are important (covering enough patients) while not diminishing936

the training dataset size. For instance selecting a commonly prescribed (e.g. aspirin) for meta-testing937

would deplete our meta-training dataset by over 50% of patients. Thus we only selected meta-test/meta-938

validation drugs which were prescribed to between 1,000,000 and 100K patients in our dataset, after939

filtering for only drugs which known to cause Pancytopenia [40] (using the SIDER database). From940

this subset of drugs, we randomly selected 10 meta-testing drugs and 2 meta-validation drugs, resulting941

in a total meta-testing/meta-validation pool of 4.1 million patients and 685K patients respectively.942

To evaluate on unseen pairs of drugs on the same hold-out test dataset, we additionally created a second943

pairs testing dataset from the 5 most frequently occurring combinations from the meta-testing dataset.944

This allowed us to train a single model on the same meta-train split and evaluate on both single drug945

and drug pair interventions without occurrence of data leakage. Designing a larger evaluation of946

pairs was not possible because while pairs of drugs are commonly prescribed as intervention, each947

particular pair of drugs is a rare event, and accurately evaluating CATE estimation performance (for948

a rare outcome such as Pancytopenia) requires amassing a natural experiment with at least several949

thousand patients who received the same intervention.950

C.2.2 LINCS.951

The goal in selecting holdout interventions for the meta-validation and meta-testing sets was to ensure952

that they consisted of both cell lines and tasks (small molecules) that had not been seen previously953

at the time of training (i.e. zero-shot on cell lines and tasks).954

Using a random data splitting approach would result in large portions (up to 50%) of the data being955

unused to comply with the zero-shot requirements on cell lines and tasks. One approach to tackle956

this was to reserve only those tasks in the held-out sets which had been tested on the fewest cell lines.957

This preserved the maximum amount of data but resulted in an average of just 1 cell line per task in958

the meta-testing and meta-validation sets, which would not be fair to the non-zero shot baselines.959

To address these issues, we designed a new data split procedure that exploits the structure of how960

tasks and cell lines are paired. To do so, We first clustered tasks by the cell lines they are tested on.961

We then identified a set of 600 drugs that had all been tested on a shared set of roughly 20 cell lines.962

We divided the cell lines and tasks within this set into the meta-validation and meta-testing set, while963

enforcing zero-shot constraints on both. This resulted in roughly 10 cell lines per intervention in both964
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the meta-validation and meta-testing sets, while still maintaining a reasonably large size of 11 distinct965

cell lines and 300 distinct tasks in both sets. All remaining tasks and cell lines were reserved for the966

training set. (See Table 8)967

C.3 Understanding CaML’s performance968

Our comparison to CATE estimators which are restricted to single interventions (Grey, Table 2,B.3)969

shows that a key reason for CaML’s strong performance is the ability to joinly learn across from many970

intervention datasets, in order to generalize to unseen intervention.971

Additionally, in both the Claims and LINCS settings, we conduct two key ablation studies to further972

understand the underlying reason for CaML’s strong performance results.973

In our first ablation experiment (w/o meta-learning), we trained the CaML model without employing974

meta-learning, instead using the standard empirical risk minimization (ERM) technique [73]. This can975

be seen as a specific implementation of the CaML algorithm (refer to Algorithm 1) when k=1 [52].976

The results of this experiment showed a varying degree of performance deterioration across our977

primary tests. In the Claims settings, we observed a decrease in the RATE performance metric by978

15%-22% (refer to Table 2), while in the LINCS settings, the PEHE performance metric decreased979

by approximately 0.01 (see Table 3). These results indicate that the absence of meta-learning affects980

the model’s performance, although the impact varies depending on the specific setting. An important981

detail to consider is that the Claims data experiments dealt with substantially larger datasets, each982

comprising hundreds of thousands of patients per intervention. This extensive scale of data potentially983

amplifies the benefits of using meta-learning in the CaML model for the Claims dataset. The larger984

dataset enables the model to adapt to a given task over a larger set of iterations without reusing the985

same data, thereby enhancing the efficacy of meta-learning.986

Our second ablation (w/o RA-learner) assesses the sensitivity of CaML’s performance to different987

pseudo-outcome estimation strategies. A key aspect of CaML is flexibility in choice of any pseudo-988

outcome estimator to infer CATE, in contrast to prior work which uses specific CATE estimation strate-989

gies [23, 33]. We find that CaML performance benefits strongly from flexibility of pseudo-outcome esti-990

mator choice. We assess this by using an alternative pseudo-outcome estimator. Firstly, we find that this991

ablation results in much noisier model training. For instance, the standard deviation in RATE across the992

8 random seeds increases by 20⇥when using the alternative pseudo-outcome estimator in the claims set-993

ting. Moreover, the alternative pseudo-outcome estimator typyically worsens performance, decreasing994

RATE by up to 6% in the Claims setting , and increasing PEHE by 20%-21% in the LINCS setting (Table995

3). We note that this ablation performs slightly better at the 0.99 threshold, which may be a result of the996

high variance in this ablation. Specific choice of alternative pseudo-outcome estimator for this ablation997

varies by setting. We use the R-learner [53] for Claims as it also achieves strong single task performance998

(Table 2, grey) on Claims data. However, R-learner is restricted to single-dimensional outcomes, and999

thus for LINCS (in which outcomes are 50 and 20 dimensional), we use the PW-learner instead [14].1000

C.4 Hyperparameter space1001

C.4.1 Claims dataset hyperparameter space1002

We list the hyperparameter search spaces for the medical claims dataset in the following tables. Table 91003

represents the search space for CaML. The SIN baseline consists of two stages, Stage 1 and Stage 2. For1004

the Stage 1 model, we searched the identical hyperparameter search space as for CaML (Table 9). For1005

Stage 2, we used the hyperparameters displayed in Table 10. The search space for the GraphITE baseline1006

is displayed in Table 11. For the S-learner and T-learner w/ meta-learning baselines, we use the same1007

hyperparameter space as for CaML (Table 9) with the only major difference that the these baselines1008

predicts the outcome Y instead of ⌧̂ . For all deep learning-based methods, we employed a batch size of1009

8,192, except for GraphITE, where we were restricted to using a batch size of 512 due to larger memory1010

requirements. Single-task neural network baselines (FlexTENet, TARNet, and DragonNet) are shown1011

in Tables 12,13, and 14, respectively. For the remaining baselines, i.e., the model-agnostic CATE estima-1012

tors, the (shared) hyperparameter search space is shown in Table 15. Finally, applied L1 regularization to1013

the encoder layer of the customizable neural network models (that were not reused as external packages),1014

i.e., SIN learner, GraphITE, T-learner w/ meta-learning, and S-learner w/ meta-learning, and CaML.1015
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C.4.2 LINCS hyperparameter space1016

We list the hyperparameter search spaces for LINCS in the following tables. CaMLis shown in Table 16.1017

SIN Stage 1 used the same search space as CaML (Table 16. The search space of SIN Stage 2 is shown1018

in Table 17. S learner and T-learner w/ meta-learning used the same search space as CaML. The search1019

space of GraphITE is shown in Table 18. All methods that were applied to LINCS used a batch size of 20.1020

C.5 More details on intervention information1021

Here we give more details about the intervention information used for the medical claims dataset.1022

In order to perform zero-shot generalization, we acquired information about a specific intervention1023

through the use of pretrained embeddings. We generated these embeddings on the Precision Medicine1024

Knowledge Graph [7] that contains drug nodes as well as 9 other node types. We extracted embeddings1025

for 7957 drugs from the knowledge graph.1026

To extract rich neighborhood information from the knowledge graph we used Stargraph [47], which1027

is a coarse-to-fine representation learning algorithm. StarGraph generates a subgraph for each node1028

by sampling from its neighbor nodes (all nodes in the one-hop neighborhood) and anchor nodes (a1029

preselected subset of nodes appearing in the multihop neighborhood). In our case the anchor nodes1030

were the 2% of graph nodes with the highest degree. For the scoring function we used the augmented1031

version of TripleRE [85] presented in the StarGraph article [47].1032

We performed a hyperparameter optimization to compare different models and determine the one1033

we used to calculate our final embeddings (see Table C.5). The hyperparameter search was random1034

with the objective of minimizing the loss function used in training on held out data. The search range1035

for each of the parameters is displayed in C.5. Since certain parameters did not seem to influence the1036

final score as much we decided to use them as constants and focus on optimizing the hyperparameters1037

in the table. Therefore the number of sampled anchors was set to 20 and u=0.1 in the augmented1038

TripleRE function, the values matching those seen in Stargraph [46].1039

Our final embeddings were 256-dimensional, the learning rate was 2e-4, the drop-ratio was 5e-3. We1040

used the self-adversarial negative sampling loss with �=8 and we sampled 4 neighbor nodes for each1041

subgraph.1042

To additionally evaluate the quality of the embeddings we assigned classes to drug combinations1043

and then scored them using multiple clustering metrics. We were interested to see if embeddings1044

of drug combinations used for similar purposes would be embedded closer together than other drug1045

combinations. For the class label of single drugs we used the first level of the Anatomical Therapeutic1046

Chemical (ATC) code, which represents one of the 14 anatomical or pharmacological groups. Since1047

certain medications have more than one ATC code, we took the mode of all labels for a specific drug.1048

For multiple drugs we combined all distinct first level values and took the mode of them as the label. We1049

used the Silhouette metric, Calinski Harabasz index and Davies Bouldin index as well as the average1050

classification accuracy over 10 runs of training a random forest classifier on a random sample of 80%1051

of the dataset and evaluating on the remaining 20%. Out of all tested embeddings the hyperparameter1052

optimized StarGraph embeddings performed best (exceeding 93% in the classification accuracy metric).1053

C.6 Pseudo-outcome estimation1054

In our experiments, we estimate pseudo-outcomes ⌧̃ for a given intervention w using the1055

RA-learner [14]:1056

⌧̃=W (Y �µ̂0(X))+(1�W )(µ̂1(X)�Y ) (18)

where µ̂w is an estimate of µw(X)=EP

h
Y |X=x,W =w

i
.1057

Furthermore, in both settings we only estimate CATE for treated individuals. We focus on treated1058

individuals in the Claims setting because we care about the risk of an adverse event for prescribing1059

a sick patients drugs that may cure their sickness, not the adverse event risk of prescribing healthy1060

patients drugs (which is of less clinical interest). In the LINCS setting, we focus on treated cells as1061

for these cell-lines Y (0) is also measured from a cloned cell-line under similar laboratory conditions,1062

which allows us to directly estimate CATE prediction performance using the PEHE metric. As we1063

focus on treated samples, the RA-learner can be simplified to ⌧̃ = Y � µ̂0(X). We estimate µ̂0(X)1064
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using a random forest model in the Claims setting, whereas in the LINCS setting we use the point1065

estimate from the untreated control cell line’s gene expression.1066

C.7 Baselines1067

Here we provide more details on the baselines used in our experiments.1068

Trained on test task: These baselines leverage CATE estimators which can only be trained on a single1069

task (typically these are the strongest baselines, when there is a large enough dataset for a single task).1070

Thus, we train a single model for each meta-testing task on its train split, and evaluate performance1071

on its test split. We use a number of strong baselines for CATE estimation developed by prior work1072

including both model-agnostic and end-to-end deep learning approaches: T-learner. Specifically,1073

we use the model-agnostic CATE estimators: [42], X-learner [42], RA-learner [14], R-learner [53].1074

We additionally use the end-to-end deep learning estimators DragonNet [68], TARNet [66], and1075

FlexTENet [15], using implementations from [15]. For model-agnostic CATE estimators, we use1076

random forest models following prior work [12, 76].1077

Zero-shot. These baselines use CATE estimators which incorporate intervention information (W ) and1078

are capable of multi-task learning. We train these baselines on all meta-training tasks. These baselines1079

have no access to the meta-testing tasks during training. We found in preliminary experiments that1080

in some cases, baseline models trained with vanilla ERM would not even converge. To allow for1081

fair comparison to baselines, we allow for all zero-shot baselines to be trained using Reptile (by1082

training using the same optimization strategy as Algorithm 1, while allowing for training with ERM1083

by including k=1 in the hyperparameter search space).1084

Firstly, we use GraphITE [23] and Structured Intervention Networks [33]. These are, to the best1085

of our knowledge, the only methods from prior work which are (in principle) capable of zero-shot1086

generalization. We use existing implementations provided by the authors [33].1087

Additionally, we implement two strong baselines which estimate CATE by modeling potential1088

outcomes, rather than via pseudo-outcomes. These are variants of the S-learner and T-learner [42] with1089

meta-learning, which use the intervention information as input, rather than one-hot encoded vectors of1090

the different interventions—such that they also have zero-shot capability. Specifically, we train MLPs1091

using the same architecture as CaML to estimate the response function from observed outcomes:1092

µ(x,w)=EP

h
Y |X=x,W =w

i
(19)

and estimate CATE by1093

⌧̂w(x)= µ̂(x,w)�µ̂(x,0) (20)

Where w denotes the corresponding intervention information w for an intervention, and 0 denotes1094

a null intervention vector. In the LINCS setting, we represent 0 as a vector of zeros, whereas in the1095

Claims setting we represent 0 as the mean embedding of all drugs (as the estimand is the increase in1096

adverse event likelihood compared to a randomly chosen drug). The difference between the T-learner1097

and the S-learner is that the T-learner estimates two models, one for control units and one for treated1098

units. By contrast, the S-learner estimates a shared model across all units.1099
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Split # of Patients
Allopurinol Test 815,921
Pregabalin Test 636,995
Mirtazapine Test 623,980
Indomethacin Test 560,380
Colchicine Test 370,397
Hydralazine Test 363,070
Hydroxychloroquine Test 324,750
Methotrexate Test 323,387
Memantine Test 306,832
Fentanyl Test 261,000
Etodolac Val 438,854
Azathioprine Val 100,000

Table 6: Held-out test and validation drugs for our single-drug meta-testing and meta-validation
datasets for our Claims evaluation in Table 2. Drugs are unseen (excluded) during training. All drugs
are known to cause pancytopenia [40]

Split # of Patients
Allopurinol + Hydralazine Test 7,859
Methotrexate + Hydroxychloroquine Test 25,716
Pregabalin + Fentanyl Test 5,424
Indomethacin + Colchicine Test 42,846
Mirtazapine + Memantine Test 10,215

Table 7: Held-out test pairs of drugs for our meta-testing and meta-validation datasets in Appendix Table
B.3. Both drugs are unseen (excluded) during training. All drugs are known to cause pancytopenia [40]

Split # Perturbagens # Cell-Lines Mean #Cell Lines/Task
Meta-training 9717 77 5.79

Meta-validation 304 11 9.99
Meta-testing 301 11 10.77

Table 8: Composition of the meta-training, meta-validation and meta-testing sets for the LINCS
dataset. No cell lines or drugs (tasks) were shared across any of the splits.

Hyperparameter Search range
Num. of layers {2,4,6}
Dim. of hidden layers {128,256}
Dropout {0,0.1}
Learning rate {3⇥10�3,1⇥10�3,3⇥10�4,1⇥10�4}
Meta learning rate {1}
Weight decay {5⇥10�3}
Reptile k {1,10,50}
L1 regularization coefficient {0,1⇥10�7,5⇥10�7}

Table 9: Hyperparameter search space for CaML (our proposed method) on the medical claims dataset.
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Hyperparameter Search range
Num. of como layers {2,4,6}
Num. of covariate layers {2,4,6}
Num. of propensity layers {2,4,6}
Num. of treatment layers {2,4,6}
Dim. of hidden como layers {128,256}
Dim. of hidden covariate layers {128,256}
Dim. of hidden treatment layers {128,256}
Dim. of hidden propensity layers {16,32,64,128}
Dropout {0,0.1}
Learning rate {3⇥10�3,1⇥10�3,3⇥10�4,1⇥10�4}
Meta learning rate {1}
Sin Weight decay {0,5⇥10�3}
Pro Weight decay {0,5⇥10�3}
GNN Weight decay {0,5⇥10�3}
Reptile k {1,10,50}
L1 regularization coefficient {0,1⇥10�7,5⇥10�7}

Table 10: Hyperparameter search space for SIN on the medical claims dataset. The SIN model consists
of two stages, Stage 1 and Stage 2. For the Stage 1 model we searched the identical hyperparameter
search space as for CaML (Table 9). For Stage 2, we used the hyperparameters shown in this table.

Hyperparameter Search range
Num. of covariate layers {2,4,6}
Num. of treatment layers {2,4,6}
Dim. of hidden treatment layers {128,256}
Dim. of hidden covariate layers {128,256}
Dropout {0,0.1}
Independence regularization coefficient {0,0.01,0.1,1.0}
Learning rate {3⇥10�3,1⇥10�3,3⇥10�4,1⇥10�4}
Meta learning rate {1}
Weight decay {5⇥10�3}
Reptile k {1,10,50}
L1 regularization coefficient {0,1⇥10�7,5⇥10�7}

Table 11: Hyperparameter search space for GraphITE on the medical claims dataset.

Hyperparameter Search range
Num. of out layers {1,2,4}
Num. of r layers {2,4,6}
Num. units p out {32,64,128,256}
Num. units s out {32,64,128,256}
Num. units s r {32,64,128,256}
Num. units p r {32,64,128,256}
Weight decay {5⇥10�3}
Orthogonal penalty {0,1⇥10�5,1⇥10�3,0.1}
Private out {True, False }
Learning rate {3⇥10�3,1⇥10�3,3⇥10�4,1⇥10�4}

Table 12: Hyperparameter search space for FlexTENet on the medical claims dataset.
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Hyperparameter Search range
Num. of out layers {1,2,4}
Num. of r layers {2,4,6}
Num. units out {128,256}
Weight decay {5⇥10�3}
Penalty disc {0,1⇥10�3}
Learning rate {3⇥10�3,1⇥10�3,3⇥10�4,1⇥10�4}

Table 13: Hyperparameter search space for TARNet on the medical claims dataset.

Hyperparameter Search range
Num. of out layers {1,2,4}
Num. of r layers {2,4,6}
Num. units r {128,256}
Num. units out {128,256}
Weight decay {5⇥10�3}
Learning rate {3⇥10�3,1⇥10�3,3⇥10�4,1⇥10�4}

Table 14: Hyperparameter search space for DragonNet on the medical claims dataset.

Hyperparameter Search range
Num. of estimators [50,250]
Max depth [10,50]
Min sample split [2,8]
Criterion regress {squared error, absolute error}
Criterion binary {gini, entropy}
Max features {sqrt, log2, auto}

Table 15: Hyperparameter search space for model-agnostic CATE estimators, i.e., R-learner,
X-learner, RA-learner, and T-learner on the medical claims dataset.

Hyperparameter Search range
Num. of layers {2,4,6}
Dim. of hidden layers {512,1024}
Dropout {0,0.1}
Learning rate {3⇥10�3,1⇥10�3,3⇥10�4,1⇥10�4}
Meta learning rate {0.1,0.5,0.9}
Weight decay {0.1}
Reptile k {1,2,3}
L1 regularization coefficient {0,1⇥10�7,5⇥10�7}

Table 16: Hyperparameter search space for CaML (our proposed method) on the LINCS dataset.
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Hyperparameter Search range
Num. of como layers {2,4,6}
Num. of covariates layers {2,4,6}
Num. of propensity layers {2,4,6}
Num. of treatment layers {2,4,6}
Dim. output {128,256}
Dim. of hidden treatment layers {128,256}
Dim. of hidden covariate layers {128,256}
Dim. of hidden como layers {128,256}
Dim. of hidden propensity layers {16,32,64,128}
Model dim. {512,1024}
Dropout {0,0.1}
Learning rate {3⇥10�3,1⇥10�3,3⇥10�4,1⇥10�4}
Meta learning rate {0.1,0.5,0.9}
Sin weight decay {0.0,0.005}
Pro weight decay {0.0,0.005}
GNN weight decay {0.0,0.005}
Weight decay {0.1}
Reptile k {1,2,3}
L1 regularization coefficient {0,1⇥10�7,5⇥10�7}

Table 17: Hyperparameter search space for the SIN baseline on the LINCS dataset.

Hyperparameter Search range
Num. of covariate layers {2,4,6}
Num. of treatment layers {2,4,6}
Num. of layers {2,4,6}
Dim. of hidden covariate layers {128,256}
Independence regularization coefficient {0,0.01,0.1,1.0}
Dropout {0,0.1}
Model dim. {512,1024}
Learning rate {3⇥10�3,1⇥10�3,3⇥10�4,1⇥10�4}
Meta learning rate {0.1,0.5,0.9}
Weight decay {0.1}
Reptile k {1,2,3}
L1 regularization coefficient {0,1⇥10�7,5⇥10�7}

Table 18: Hyperparameter search space for the GraphITE baseline on the LINCS dataset.

Hyperparameter Search range
Dropout [1e-4,1e-1]
Learning rate [1e-5,1e-3]
Weight decay [1e-5,1e-2]
Adversarial temperature [1,10]
Gamma [0,30]
Num. of sampled neighbors 0-10
Dim. of hidden layers { 64, 128, 256, 512}

Table 19: The hyperparameter optimization search ranges used in the selection of the optimal model
for the generation of knowledge graph node embeddings that would serve as intervention information
for the medical claims dataset.
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