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ABSTRACT

Recent studies have shown that Transformers can perform in-context reinforce-
ment learning (RL) by imitating existing RL algorithms, enabling sample-efficient
adaptation to unseen tasks without parameter updates. However, these models also
inherit the suboptimal behaviors of the RL algorithms they imitate. This issue pri-
marily arises due to the gradual update rule employed by those algorithms. Model-
based planning offers a promising solution to this limitation by allowing the mod-
els to simulate potential outcomes before taking action, providing an additional
mechanism to deviate from the suboptimal behavior. Rather than learning a sepa-
rate dynamics model, we propose Distillation for In-Context Planning (DICP), an
in-context model-based RL framework where Transformers simultaneously learn
environment dynamics and improve policy in-context. We evaluate DICP across a
range of discrete and continuous environments, including Darkroom variants and
Meta-World. Our results show that DICP achieves state-of-the-art performance
while requiring significantly fewer environment interactions than baselines, which
include both model-free counterparts and existing meta-RL methods. The code is
available at https://github.com/jaehyeon-son/dicp.

1 INTRODUCTION

Since the introduction of Transformers (Vaswani et al., 2017), their versatility in handling diverse
tasks has been widely recognized across various domains (Brown et al., 2020; Dosovitskiy et al.,
2021; Bubeck et al., 2023). A key aspect of their success is in-context learning (Brown et al., 2020),
which enables models to acquire knowledge rapidly without explicit parameter updates through
gradient descent. Recently, this capability has been explored in reinforcement learning (RL) (Chen
et al., 2021; Schulman et al., 2017; Lee et al., 2022; Reed et al., 2022), where acquiring skills in
a sample-efficient manner is crucial. This line of research naturally extends to meta-RL, which
focuses on leveraging prior knowledge to quickly adapt to novel tasks.

In this context, Laskin et al. (2023) introduce Algorithm Distillation (AD), an in-context RL ap-
proach where Transformers sequentially model the entire learning histories of a specific RL algo-
rithm across various tasks. The goal is for the models to replicate the exploration-exploitation be-
haviors of the source RL algorithm, enabling them to tackle novel tasks purely in-context. Beyond
replication, Laskin et al. (2023) show that this approach can enhance sample efficiency by bypass-
ing intermediate learning steps or distilling histories from multiple actors. This combination of an
off-the-shelf RL algorithm with the in-context learning capability of Transformers has demonstrated
strong potential for improving the adaptability of meta-RL (Lee et al., 2023a; Liu & Abbeel, 2023;
Huang et al., 2024; Zisman et al., 2024; Sinii et al., 2024).

However, prior in-context RL approaches have a notable limitation: they tend to replicate the sub-
optimal behaviors of the source algorithm. The source RL algorithm updates its policy gradually
through gradient descent, sometimes deliberately preventing abrupt changes (Schulman et al., 2015;
2017). As a result, it may take multiple iterations to fully integrate newly discovered information,
leading to repeated suboptimal actions during this process. Without a mechanism to deviate from
the source algorithm’s behavior, existing in-context RL methods (Laskin et al., 2023; Huang et al.,
2024; Sinii et al., 2024) inherit these inefficiencies.
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Figure 1: Comparison between previous approaches (Laskin et al., 2023; Lee et al., 2023a; Huang
et al., 2024) and our proposed Distillation for In-Context Planning (DICP). Unlike the previous
approaches that directly predict actions without modeling dynamics, our approach leverages the in-
context learned dynamics model for planning.

To address this limitation, we introduce Distillation for In-Context Planning (DICP), an in-context
model-based RL framework where the dynamics model is learned in-context alongside policy im-
provement. Unlike in-context policy improvement, in-context learning of the dynamics model does
not inherit the suboptimal behaviors of the source algorithm, as modeling the environment’s dynam-
ics is independent of the inefficiency. By planning with this in-context learned dynamics model,
our framework provides the agent with an additional mechanism to overcome the suboptimal behav-
iors of the source algorithm. Furthermore, simulating potential outcomes before executing actions
allows for more deliberate decision-making based on predicted future returns. To the best of our
knowledge, ours is the first model-based approach on in-context RL using Transformers to imitate
the source algorithm.

To demonstrate the effectiveness of our framework, we conduct experiments in both discrete and
continuous environments, including Darkroom variants (Laskin et al., 2023) and Meta-World bench-
mark suite (Yu et al., 2019). The results indicate that our approach significantly surpasses both in-
context model-free counterparts (e.g., AD (Laskin et al., 2023), DPT (Lee et al., 2023a), and IDT
(Huang et al., 2024)) and existing meta-RL methods (e.g., RL2 (Duan et al., 2016), MAML (Finn
et al., 2017), PEARL (Rakelly et al., 2019), MACAW (Mitchell et al., 2021), FOCAL (Li et al.,
2021), BOReL (Dorfman et al., 2021), MoSS (Wang et al., 2023b), and IDAQ (Wang et al., 2023a)).
Notably, our method achieves state-of-the-art results on the Meta-World ML1 and ML10 bench-
marks, while requiring significantly fewer environmental interactions compared to the baselines.

2 RELATED WORK

RL as sequence modeling. With the advent of Transformers, which can learn from much larger
datasets than what an agent can typically collect online, their application to offline RL (Levine
et al., 2020) has gained prominence (Chen et al., 2021; Janner et al., 2021; Lee et al., 2022; Reed
et al., 2022). Despite these advances, Laskin et al. (2023) point out a key limitation: these ap-
proaches struggle to improve their policy in-context through trial and error. The primary reason is
that they are designed to imitate the dataset policy, which makes them unsuitable for performing
in-context RL on novel tasks. To address this, Laskin et al. (2023) propose Algorithm Distillation
(AD), an in-context RL approach where a Transformer is trained to distill learning histories from a
source RL algorithm across diverse tasks. Notably, AD becomes effective when the context length
of Transformers exceeds the episode horizon. Instead of imitating the source algorithm’s actions,
Decision-Pretrained Transformer (DPT; Lee et al. (2023a)) is designed to predict optimal actions.
In-context Decision Transformer (IDT; Huang et al. (2024)) implements a hierarchical approach to
in-context RL, where the Transformer predicts high-level decisions that guide a sequence of actions,
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rather than predicting each action individually. In addition, Sinii et al. (2024) propose an in-context
RL approach for variable action spaces, while Zisman et al. (2024) synthesize learning histories by
gradually denoising policies rather than directly executing a source algorithm.

Meta-RL. Deep meta-RL began with online approaches, where RNNs are employed to learn RL
algorithms that generalize across environments (Duan et al., 2016; Wang et al., 2016). In parallel,
gradient-based approaches (Finn et al., 2017; Nichol et al., 2018) aim to discover parameter initial-
izations that rapidly adapt to new tasks. Recently, offline meta-RL has gained attention, leveraging
pre-collected meta-training datasets to address the meta-RL problem (Mitchell et al., 2021; Dorf-
man et al., 2021; Yuan & Lu, 2022; Wang et al., 2023a;b). Various methods have been explored for
this problem, including gradient-based (Mitchell et al., 2021), Bayesian (Dorfman et al., 2021), and
contrastive learning approaches (Yuan & Lu, 2022). Furthermore, recent in-context RL approaches
(Laskin et al., 2023; Lee et al., 2023a; Huang et al., 2024; Sinii et al., 2024), including our own, fall
within the category of offline meta-RL.

Model-based meta-RL. In the prior research on model-based meta-RL, Zintgraf et al. (2020;
2021); Dorfman et al. (2021) focus on learning to infer belief states about environment dynamics,
while Wang et al. (2023b) aim to infer task representations. Wang et al. (2023a) quantify uncertainty
using an ensemble of meta-training dynamics when facing novel meta-test tasks. Nagabandi et al.
(2019); Pinon et al. (2022); Rimon et al. (2024) learn to construct dynamics models for planning.
Our approach aligns with the latter category but stands out by integrating both the policy and the
dynamics model within the same sequence model. This contrasts with prior work that either relies
on separate modules for modeling dynamics (Nagabandi et al., 2019; Rimon et al., 2024), or omits
a policy network while depending solely on the dynamics model (Pinon et al., 2022). We provide a
more comprehensive overview of related works in App. C.

3 PROBLEM FORMULATION

POMDP. We consider a partially observable Markov decision process (POMDP): M =
(S,A,O, T ,R, γ). At each time step t, an agent interacts with the environment by selecting an
action at ∈ A based on the current state st ∈ S. The environment transitions to the next state
st+1 ∈ S according to the transition model T (st+1 | st, at), and the agent receives a reward rt ∈ R,
determined by the reward model R(rt | st, at). However, the agent does not directly observe the
true state st. Instead, it receives partial observation ot ∈ O of the state st. The discount factor
γ ∈ [0, 1] controls the relative importance of immediate versus future rewards. The tuple (T ,R) is
referred to as the dynamics model or world model. The agent’s history up to time step t is defined as
ht = (o0, a0, r0, . . . , ot, at, rt). The objective of RL is to find a policy that maximizes the expected
cumulative reward J = Eπ,M

[∑T
t=0 γ

trt

]
, where T is the number of interactions. Throughout the

paper, we use the terms environment and task interchangeably to refer to a POMDP.

Meta-RL. We define an algorithm f : H × O → ∆(A), where H is the space of histories,
and ∆(A) represents the space of probability distributions over A. The objective of meta-RL is
to discover an algorithm f that maximizes the expected cumulative reward J over a distribution of
POMDPs p(M). During meta-training, the algorithm is optimized on a set of tasks sampled from
p(M), while during meta-test, it is evaluated on another set of tasks sampled from p(M). For
simplicity, we refer to meta-training and meta-test as training and test when the context is clear.

Following previous works (Laskin et al., 2023; Huang et al., 2024), we focus on scenarios where
an offline dataset of learning histories D = {hi

T = (oi0, a
i
0, r

i
0, . . . , o

i
T , a

i
T , r

i
T )}ni=1 is available,

generated by a source algorithm fsource for a set of meta-training tasks {Mi ∼ p(M)}ni=1. The loss
function for AD (Laskin et al., 2023) is defined as

LAD(θ) = −
n∑

i=1

T∑
t=1

log fθ(a
i
t | oit, hi

t−1), (1)

where θ represents a sequence model. Similarly, the loss functions for DPT (Lee et al., 2023a) and
IDT (Huang et al., 2024) are respectively presented in Eq. 3-4 in App. C.
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Algorithm 1 Meta-Training Phase

1: Required: task distribution p(M), source
algorithm fsource, sequence model θ, context
length k

2: D ← {}
3: for i = 1 . . . n do
4: Sample a training taskMi ∼ p(M).
5: Execute fsource onMi and collect learning

history hi
t = (oi0, a

i
0, r

i
0, . . . , o

i
T , a

i
T , r

i
T ).

6: D ← D ∪ hi
t

7: end for
8: while not converge do
9: Sample k-step segments from D.

10: Update θ for Eq. 2 with the sampled tra-
jectory segments.

11: end while

Algorithm 2 Meta-Test Phase

1: Required: task distribution p(M), sequence
model θ

2: for j = 1 . . .m do
3: Sample a test taskMj ∼ p(M).
4: h−1 ← ()
5: for t = 0 . . . T do
6: at ← DICP(ot, ht−1, θ)
7: ot+1, rt ← Perform action at onMj .
8: ht ← (ht−1, ot, at, rt)
9: end for

10: end for

Algorithm 3 Distillation for In-Context Planning
(DICP)

1: Input: Current observation ot, learning his-
tory ht−1, sequence model θ

2: Set beam size K, sample size L
3: B ← {}
4: for l = 1 . . . L do
5: ât ∼ fθ( · | ot, ht−1)

6: r̂t, ôt+1, R̂t ∼ gθ( · | ot, ât, ht−1)

7: ĥt ← (ht−1, ot, ât, r̂t)

8: B ← B ∪ (ĥt, ôt+1)
9: end for

10: while stopping criterion is not met do
11: B′ ← {}
12: for all (ĥs−1, ôs) ∈ B do
13: for l = 1 . . . L do
14: âs ∼ fθ( · | ôs, ĥs−1)

15: r̂s, ôs+1, R̂s ∼ gθ( · | ôs, âs, ĥs−1)

16: ĥs ← (ĥs−1, ôs, âs, r̂s)
17: B′ ← B′ ∪ (ĥs, ôs+1)
18: end for
19: end for
20: B ← Top K elements of B′ w.r.t.∑s−1

t′=t r̂t′ + R̂s

21: end while
22: (ht−1, ot, ât, r̂t, . . . , ôS+1) ← Top element

of B w.r.t.
∑S−1

t′=t r̂t′ + R̂S

23: Return: ât

4 DISTILLATION FOR IN-CONTEXT PLANNING

In this section, we propose Distillation for In-Context Planning (DICP), where the agent utilizes
an in-context learned dynamics model to plan actions. To learn the dynamics model in-context, we
introduce meta-model gθ : H×O×A → ∆(R)×∆(O)×∆(R), which shares the same sequence
model θ with the algorithm fθ. It yields probability distributions over the spaces of reward rt, next
observation ot+1, and return-to-go Rt =

∑H
t′=t rt′ based on history ht−1, current observation ot,

and action at. H represents the time step at which the episode ends. We optimize θ throughout the
meta-training phase (Alg. 1) with following loss:

L(θ) =LIm(θ)+λ ·LDyn(θ), where LDyn(θ) =−
n∑

i=1

T∑
t=1

log gθ(rt, ot+1, Rt|ot, at, ht−1). (2)

Here, LIm corresponds to one of LAD, LDPT, or LIDT (Eq. 1, 3-4), and λ is a hyperparameter that
balances the imitation loss LIm and the dynamics loss LDyn.

After meta-training, the sequence model θ is fixed and evaluated during the meta-test phase (Alg. 2).
A key distinction between our method and previous in-context RL approaches (Laskin et al., 2023;
Lee et al., 2023a; Huang et al., 2024) lies in how actions are selected (L6). Previous methods
generate actions directly from the sequence model: at ← fθ( · | ot, ht−1). These approaches may
replicate the inefficiencies arising from the gradual updates of gradient-based RL algorithms, as they
imitate the source algorithm’s behaviors.

In contrast, our method employs an additional DICP subroutine (Alg. 3) for action selection. As
a planning strategy, we adopt Model Predictive Control (MPC) (Nagabandi et al., 2018; 2019; Sæ-
mundsson et al., 2018). At each time step, the agent simulates future outcomes, selects the path that
maximizes predicted return, and executes the first action in that path. Specifically, upon receiving an
observation ot, the agent samples L candidate actions {â1t , . . . , âLt }, and predicts the consequences
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of the actions using the dynamics model, which are the next observations {ô1t+1, . . . , ô
L
t+1} and re-

wards {r̂1t , . . . , r̂Lt }. The agent also predicts return-to-go {R̂1
t , . . . , R̂

L
t } for each candidate action

to evaluate each path. The process repeats for future time steps, generating new candidate actions
{{â1,1t+1, . . . , â

1,L
t+1}, . . . , {â

L,1
t+1, . . . , â

L,L
t+1}} and corresponding consequences, until either the prede-

fined planning horizon is reached or the episode ends. This process constructs a planning tree, where
each path is ranked based on the predicted return. The overall DICP algorithm is presented in Alg. 3,
where superscripts are omitted for brevity.

After building the planning tree, the agent can apply a suitable tree search algorithm that fits within
computational and memory constraints. In our setup, we employ beam search as it is well-suited
to Transformers, where decoding, sorting, and slicing operations for respective beams are paral-
lelizable. For each planning step, the top K paths are selected based on the predicted return. As
demonstrated in §5, when the environment provides well-structured dense rewards, a simple greedy
search combined with the in-context learned dynamics model achieves competitive performance,
although beam search remains applicable in such environments. In Alg. 3, greedy search is repre-
sented by skipping the while loop of L10-21.

The DICP algorithm provides a mechanism for the agent to deviate from the source algorithm’s
suboptimal behaviors and immediately pursue reward-maximizing actions. Since modeling the en-
vironment’s dynamics is independent of the source algorithm’s gradual update rule, the agent can
leverage the in-context learned dynamics model to enhance the decision-making process. When the
agent identifies promising transitions that contain information for achieving higher returns, the dy-
namics model assigns higher expected returns to prospective state-action pairs that align with this
information. When such pairs are sampled (L6 & L14), the dynamics model assigns them higher
returns (L7 & L15), encouraging further exploration toward these promising areas (L20 & L22).

Architecture. We evaluate our framework using architectures from AD (Laskin et al., 2023), DPT
(Lee et al., 2023a), and IDT (Huang et al., 2024), incorporating modifications to include the addi-
tional loss term LDyn as shown in Eq. 2. These modifications are illustrated in Fig. 4 in App. A. We
refer to the resulting models as DICP-AD, DICP-DPT, and DICP-IDT. For DICP-AD and DICP-
DPT, we append the action at to the input sequence and train the model to predict the reward rt,
next observation ot+1, and return-to-go Rt conditioned on at. Additionally, following Lee et al.
(2023a), we compress each (o, a, r) tuple into a single token before passing it through the Trans-
former. For DICP-IDT, the model predicts the results of actions within its Decisions-to-Go module,
which interacts with the environment through low-level actions. However, we find that the original
architecture struggles to propagate reward information, as the Reviewing-Decisions module encodes
only observations and actions. To address this, we modify the Making-Decisions module to also en-
code rewards. For completeness, we review the original contributions of Lee et al. (2023a); Huang
et al. (2024) in App. C.

Distribution choice. For the distribution class of fθ, we use a categorical distribution for discrete
action spaces and a Gaussian distribution with diagonal covariance for continuous ones. For gθ, we
apply the same approach, using a categorical distribution for discrete state spaces and rewards, and
a Gaussian for continuous ones. Thus, LIm(θ) and LDyn(θ) correspond to either cross-entropy loss
or Gaussian negative log-likelihood, depending on the environment.

5 EXPERIMENTS

5.1 ENVIRONMENTS

We evaluate our DICP framework across a diverse set of environments. For discrete environments,
we use Darkroom, Dark Key-to-Door, and Darkroom-Permuted, which are well-established bench-
marks for in-context RL studies (Laskin et al., 2023; Lee et al., 2023a; Huang et al., 2024). For
continuous ones, we test on the Meta-World benchmark suite (Yu et al., 2019).

Darkroom. Darkroom is a 2D discrete environment where the agent should locate a goal with
limited observations. The state space consists of a 9 × 9 grid, and the action space includes five
actions: up, down, left, right, and stay. The agent earns a reward of 1 whenever reaching the goal,
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with 0 reward otherwise. The agent’s observation is restricted to its current position, which makes
it challenging to infer the goal’s location. The agent always starts at the center of the grid, and the
tasks are distinguished by varying goal locations, resulting in 81 distinct tasks. The tasks are divided
into disjoint training and test sets, with a 90:10 split. Each episode has a horizon of 20 steps.

Dark Key-to-Door. Dark Key-to-Door is a variation of Darkroom, where the agent should find
a key before reaching the goal. The agent receives a reward of 1 upon finding the key and an
additional reward of 1 upon reaching the goal. Unlike Darkroom, the agent only earns a reward
from the goal once per episode, with a maximum reward of 2 per episode. This environment features
81× 81 = 6561 distinct tasks, each defined by different key and goal locations. The train-test split
ratio is 95:5. The episode horizon is extended to 50 steps.

Darkroom-Permuted. Darkroom-Permuted is another variant of Darkroom, where the action
space is randomly permuted. In this environment, the agent starts in a fixed corner of the grid,
with the goal located in the opposite corner. There are 5! = 120 unique tasks, each corresponding to
a different permutation of the action space. Since the agent is tested on novel permutations, it must
explore the environment to figure out the effects of each action. The train-test split ratio is the same
as in Darkroom. The episode horizon is 50 steps.

Meta-World. Meta-World (Yu et al., 2019) is a robotic manipulation benchmark suite designed for
meta-RL and multi-task RL. The suite includes 50 continuous control tasks and offers three distinct
meta-RL benchmarks: ML1, ML10, and ML45. We focus on ML1, which provides 50 pre-defined
seeds for both training and test for each task. Each seed represents a different initialization of the
object, goal, and the agent. Although the agent receives dense rewards tailored to each specific task,
its performance is evaluated based on the average success rate across test seeds, which differs from
the dense reward structure. The episode horizon is 500 steps. We also report results on ML10 in
App. B, where the goal is to learn from 10 training tasks and generalize to 5 test tasks.

5.2 BASELINES

In-context RL methods. We compare our approach with recent in-context model-free methods,
including AD (Laskin et al., 2023), DPT (Lee et al., 2023a), and IDT (Huang et al., 2024). We
follow the evaluation protocols of previous works (Laskin et al., 2023; Huang et al., 2024). For the
source algorithms, we use PPO (Schulman et al., 2017) to generate learning histories. We collect
data using 100 actors, accumulating a total of 100K to 1M environment steps, depending on the
environment. The context length is set to four and ten episode horizons for discrete and continuous
environments, respectively. We evaluate DPT only in Darkroom variants because they assume the
availability of optimal actions, which are not applicable in general environments.

Other meta-RL methods. For model-free meta-RL methods, we include RL2 (Duan et al., 2016),
MAML (Finn et al., 2017), PEARL (Rakelly et al., 2019), MACAW (Mitchell et al., 2021), and
FOCAL (Li et al., 2021). For the model-based methods, we compare against MuZero (Schrittwieser
et al., 2019), BOReL (Dorfman et al., 2021), MoSS (Wang et al., 2023b), and IDAQ (Wang et al.,
2023a). To ensure a fair comparison, we report IDAQ results using SAC as the source algorithm,
rather than expert policies. The original BOReL leverages an oracle reward function, so we report
results without it, leading to failure on most tasks as discussed in Dorfman et al. (2021); Wang et al.
(2023a). MuZero is not originally designed for meta-RL, but we include it due to its strong perfor-
mance after pre-training on meta-training tasks followed by fine-tuning on meta-test tasks (Anand
et al., 2022). Due to the challenge in reproducing meta-RL approaches, we present the results re-
ported in the original papers, following prior works (Anand et al., 2022; Wang et al., 2023b).

5.3 RESULTS

We begin by comparing our approach with model-free counterparts on the Darkroom, Dark Key-to-
Door, and Darkroom-Permuted environments. The first row of Fig. 2 displays the learning curves
for these environments. Under our unified configurations and implementations, the best algorithm
among AD, DPT, and IDT varies according to environments. Nonetheless, our model-based ap-
proach consistently outperforms the model-free counterparts. For planning, we use beam search
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Figure 2: Learning curves of in-context RL approaches during the meta-test phase on discrete (1st
row) and continuous (2nd and 3rd rows) environments. Our methods outperform model-free counter-
parts in both sample efficiency and overall performance. Results are averaged over 5 and 3 train-test
splits for discrete and continuous benchmarks, respectively. We also report the mean success rate
across all 50 tasks in Meta-World ML1. The final performance results for all ML1 benchmarks are
presented in Table 1 and Table 8. Shaded areas represent 95% confidence intervals.

with a beam size of 10, considering all 5 actions at each planning step. The ablation study over
different beam sizes are discussed in §6.1.

Furthermore, we evaluate our approach on Meta-World ML1 benchmarks against previous meta-RL
methods, including both model-free and model-based methods. Table 1 presents the mean success
rates over the meta-test phase for Reach-v2, Push-v2, Pick-Place-v2, Sweep-v2, and Peg-Insert-
Side-v2, following previous works (Yu et al., 2019; Anand et al., 2022; Wang et al., 2023b;a). Our
method achieves state-of-the-art performance on this benchmarks, surpassing all previous meta-RL
methods. A key highlight is that our approach reaches this performance with a maximum of only
200K environment steps, whereas most other methods require at least 10M steps. To ensure a fair
comparison with Wang et al. (2023a), whose meta-test is conducted with only 5K environment steps,
we also report the results at 5K steps in Table 9. Our approach consistently outperforms the baselines
from Wang et al. (2023a) at this step count as well. While in-context model-free baselines (Laskin
et al., 2023; Huang et al., 2024) are also relatively sample-efficient, their performance remains sub-
optimal compared to our method. The learning curves are displayed in the second and third rows
of Fig. 2. For planning, we employ greedy search with a sample size of 10 at each step. We also
report additional results on all remaining ML1 benchmarks in Table 8 and on ML10 in Table 10,
respectively.
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Table 1: Meta-test success rates on Meta-World ML1. The success rates are reported as percentages,
averaged over 3 train-test splits with 50 test seeds. The results marked with ∗ are taken from Yu et al.
(2019), while the ones with † are from Wang et al. (2023a). The results for MoSS and MuZero are
from Wang et al. (2023b) and Anand et al. (2022), respectively. Our approach achieve state-of-the-
art performance with much fewer environment steps. Results at 5K steps are presented in Table 9.
We omit ‘-v2’ from the task names.

Method Reach Push Pick-Place Sweep Peg-Insert-Side Max Steps

RL2∗ 100 96 98 – – 300M
MAML∗ 100 94 80 – – 300M
PEARL∗ 68 44 28 – – 300M

MACAW† – – – 4 0 5K
FOCAL† – – – 38 10 5K

MuZero 100 100 100 – – 10M
MoSS 86 100 100 – – 40M

BoREL† – – – 0 0 5K
IDAQ† – – – 59 30 5K

AD 86 88 96 67 73 200K
IDT 100 94 95 96 76 200K

DICP-AD (Ours) 84 87 97 71 83 200K
DICP-IDT (Ours) 100 100 100 100 87 200K

6 ABLATION STUDY

We perform an ablation study to evaluate key design choices in our approach. We examine the effect
of model-based planning at different scales (§6.1), the effect of context length on the accuracy of
the in-context learned dynamics model (§6.2), and the effect of different source algorithms (§6.3).

6.1 EFFECT OF MODEL-BASED PLANNING AT DIFFERENT SCALES

We evaluate our approach using search algorithms at varying scales, as shown in the first row of
Fig. 3. Experiments are conducted in two environments: Darkroom (discrete) and Reach-v2 (con-
tinuous). We use DICP-AD for Darkroom and DICP-IDT for Reach-v2, the best-performing models
for each environment. The results demonstrate that incorporating model-based planning signifi-
cantly improves performance compared to baselines that train the dynamics model but do not use
it for planning. While increasing the beam size or sample size improves performance, the gains
plateau after a size of 10. When the dynamics model is not used for planning, the performance is
comparable to that of model-free baselines.

6.2 EFFECT OF CONTEXT LENGTHS ON ACCURACY OF THE DYNAMICS MODEL

We investigate the effect of context length on the accuracy of the in-context learned dynamics model.
Our hypothesis is that extending the context length enables the model to capture more information
about the environment, improving prediction accuracy. To verify this, we evaluate the test loss by
forwarding the learning histories of the source algorithm on meta-test tasks into the meta-trained
DICP-IDT on Reach-v2. The test loss is measured as the mean squared error between the predicted
and actual rewards and observations. The models are trained with a context length of 1000, and
the loss is calculated by averaging across every 10 positions within the context. The results in the
second row of Fig. 3 support our hypothesis: longer context lengths yield more accurate predictions
for both observations and rewards. Given that the effectiveness of model-based planning heavily
depends on the dynamics model’s bias (Janner et al., 2019; Hiraoka et al., 2021), our framework
benefits from longer context lengths. Furthermore, as in-context model-free RL methods have also
been shown to improve with extended context lengths (Laskin et al., 2023), our combined framework
gains substantial advantages from using longer context lengths.
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Figure 3: First row: The effect of model-based planning at different scales. We present learning
curves with varying beam sizes K and sample sizes L. For the case labeled “No planning,” the
dynamics model is not utilized for planning, while the meta-model is still trained. The dashed
vertical line marks the time step when planning begins, coinciding with the point where the context
is fully filled. Second row: The effect of context lengths on the accuracy of the in-context learned
dynamics model. Results are averaged over 3 train-test splits.

Table 2: Meta-test success rates of in-context RL approaches using SAC as the source algorithm.
Our approach outperforms original model-free IDT. The results are averaged over 3 train-test splits.

Method Reach Push Pick-Place Sweep Peg-Insert-Side

IDT 85 65 17 4 1
DICP-IDT (Ours) 85 69 20 3 3

6.3 EFFECT OF DIFFERENT SOURCE ALGORITHMS

Our framework is agnostic to the choice of the source algorithm, as are previous model-free ap-
proaches (Laskin et al., 2023; Lee et al., 2023a; Huang et al., 2024). To empirically verify this,
we train IDT and DICP-IDT with SAC (Haarnoja et al., 2018) as the source algorithm. As shown
in Table 2, our method continues to outperform model-free counterpart. These results demonstrate
that our approach is robust to the choice of source algorithm, outperforming model-free baselines
regardless of which source algorithm is used. It is worth noting that since our SAC configuration is
not specifically tuned for these tasks, the overall performance may be underestimated. The hyperpa-
rameters for SAC are detailed in App. A.

7 CONCLUSION

We introduced an in-context model-based RL framework that leverages Transformers to not only
learn dynamics models but also improve policies in-context. By incorporating model-based plan-
ning, our approach effectively addresses the limitations of previous in-context model-free RL meth-
ods, which often replicate the suboptimal behavior of the source algorithms. Our framework demon-
strated superior performance across various discrete and continuous environments, establishing in-
context RL as one of the most effective meta-RL approaches.
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One limitation of our approach is the additional computational cost incurred during action selection
compared to model-free methods. However, this trade-off aligns with the broader trend of leverag-
ing increased inference-time computation to maximize the reasoning capabilities of Transformers
(Brown et al., 2020; Wei et al., 2022). Future work could explore adaptive planning strategies
that dynamically adjust the planning scale based on context. Another promising direction is in-
corporating expert demonstrations to accelerate learning. Additionally, investigating offline dataset
construction strategies to enable our method to adapt to changing dynamics would be a meaningful
research direction (Lee et al., 2023b; 2024; Son et al., 2024). Finally, exploring more advanced or
efficient sequence models could further enhance in-context RL.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. Our open-sourced code en-
ables easy replication of all experiments, and all datasets used in our experiments can be generated
using our code. Detailed configurations are provided in both the code and App. A. We hope this
resource serves as a valuable reference for the research community, particularly for newcomers, by
providing a unified implementation of in-context RL methods.
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A IMPLEMENTATION DETAILS

A.1 SOURCE ALGORITHMS

For the source algorithms (Schulman et al., 2017; Haarnoja et al., 2018), we use the implementation
of Stable Baselines 3 (Raffin et al., 2021). The hyperparamter settings are detailed in Table 3-4.
Unless otherwise specified, most hyperparameters are set to default values.

Table 3: Hyperparamters for the source PPO algorithm.

Hyperparmater Darkroom Dark Key-to-Door Darkroom-Permuted Meta-World

learning rate 3e-4 3e-4 3e-4 3e-4
n steps 20 50 50 100

batch size 50 100 50 200
n epochs 20 10 20 20

γ 0.99 0.99 0.99 0.99

total timesteps 100K 100K 100K 1M

Table 4: Hyperparamters for the source SAC algorithm.

Hyperparmater Meta-World

learning rate 3e-4
learning starts 100

batch size 128
train freq 10

gradient steps 1
buffer size 1M

γ 0.99

total timesteps 1M

A.2 TRANSFORMERS

We implement Transformers using the open-source TinyLlama (Zhang et al., 2024). The hyperpa-
rameters are provided in Table 5, along with additional parameters specific to IDT.

Table 5: Hyperparamters for Transformers. All three Transformer modules in IDT share the same
set of hyperparameters.

Hyperparmater AD/DPT (disc.) IDT (disc.) AD (cont.) IDT (cont.)

n layer 4 4 4 4
n head 4 4 8 4

n embed 32 32 64 32
intermediate size 128 128 256 128

dropout 0.1 0.1 0.1 0.1
attention dropout 0.1 0.1 0.1 0.1

optimizer AdamW AdamW AdamW AdamW
scheduler cosine decay cosine decay cosine decay cosine decay

learning rate (at start) 1e-2 1e-3 1e-2 1e-3
β1 0.9 0.9 0.9 0.9
β2 0.99 0.99 0.99 0.99

weight decay 0.01 0.01 0.01 0.01
λ 1 1 1 1

n actions per high-level decision – 10 – 10
dim z – 8 – 8

14



Published as a conference paper at ICLR 2025

Causal Transformer

𝑎𝑡

𝑎𝑡

𝑜𝑡𝑜𝑡−𝑘
𝑎𝑡−𝑘
𝑟𝑡−𝑘

𝑟𝑡, 𝑜𝑡+1, 𝑅𝑡

𝑜𝑡−1
𝑎𝑡−1
𝑟𝑡−1

Causal Transformer

𝑎𝑡

𝑎𝑡
⋆

𝑜𝑡 𝑜𝑡−1
𝑎𝑡−1
𝑟𝑡−1

𝑜𝑡−𝑘
𝑎𝑡−𝑘
𝑟𝑡−𝑘

𝑎𝑡
⋆ 𝑟𝑡, 𝑜𝑡+1, 𝑅𝑡

(a) DICP-AD

Causal Transformer

𝑎𝑡

𝑎𝑡

𝑜𝑡𝑜𝑡−𝑘
𝑎𝑡−𝑘
𝑟𝑡−𝑘

𝑟𝑡, 𝑜𝑡+1, 𝑅𝑡

𝑜𝑡−1
𝑎𝑡−1
𝑟𝑡−1

Causal Transformer

𝑎𝑡

𝑎𝑡
⋆

𝑜𝑡 𝑜𝑡−1
𝑎𝑡−1
𝑟𝑡−1

𝑜𝑡−𝑘
𝑎𝑡−𝑘
𝑟𝑡−𝑘

𝑎𝑡
⋆ 𝑟𝑡, 𝑜𝑡+1, 𝑅𝑡

(b) DICP-DPT

Decisions to Go

𝑟𝑡 𝑜𝑡+𝑐−1 𝑎𝑡+𝑐−1𝑧𝑡 𝑜𝑡 𝑎𝑡

𝑎𝑡+𝑐−1𝑎𝑡 𝑟𝑡+𝑐−1,𝑜𝑡+𝑐,𝑅𝑡+𝑐−1

Making Decisions

𝑅𝑡+𝑐
′ 𝑜𝑡+𝑐

𝑡

𝑡 + 𝑐

𝑅𝑡
′ 𝑜𝑡

𝑡 − 𝑐

𝑡

𝑅𝑡−𝑐
′ 𝑜𝑡−𝑐

𝑡 − 𝑐

Reviewing

Decisions

𝑜𝑡
𝑎𝑡
𝑟𝑡

𝑜𝑡+𝑐−1
𝑎𝑡+𝑐−1
𝑟𝑡+𝑐−1

𝑟𝑡, 𝑜𝑡+1, 𝑅𝑡

𝑧𝑡

(c) DICP-IDT

Figure 4: Model-based adaptation of in-context RL methods for DICP. The notations are defined as
follows: z: high-level decisions, R: return-to-go, k: the number of transitions within the context, c:
the number of low-level actions guided by a single high-level decision, and R′: relabeled return-to-
go, following (Huang et al., 2024). Newly introduced components are highlighted in blue.

Table 6: Hyperparamters for planning.

Hyperparmater Darkroom Dark Key-to-Door Darkroom-Permuted Meta-World

planning horizon 8 16 16 1
beam size (K) 10 10 10 –
sample size (L) 5 5 5 10

A.3 ENVIRONMENTS

In the ML1 benchmarks, we observe that using shorter horizons for the source algorithm accelerates
the learning of in-context RL methods. Specifically, we terminate the source algorithm after 100
steps, as opposed to the original 500-step horizon provided by Meta-World. To minimize train-test
discrepancies, we also meta-test the in-context RL methods using 100-step horizons. Even under
these less favorable conditions, in-context RL methods still outperform the baselines, as shown in
Fig. 2 and Table 1.

A.4 PLANNING

We find that predicting only the immediate reward, rather than both the immediate reward and the
return-to-go, is sufficient to outperform baselines. Summation of predicted immediate rewards up
to the current step can serve as a myopic proxy for the total return of a planning path. In Dark-
room variants, the binary nature of rewards often leads to different beam paths achieving the same

Table 7: FLOPs per action selection.

Method Darkroom Dark Key-to-Door Darkroom-Permuted Meta-World

AD 6M 20M 20M 709M
DPT 6M 20M 20M 709M
IDT 8M 8M 8M 3M

DICP-AD 2G 18G 18G 8G
DICP-DPT 2G 18G 18G 8G
DICP-IDT 147M 147M 147M 15M
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cumulative reward during planning. When such ties arise, we break them by following the model’s
preference during action generation. This approach allows the agent to behave like a model-free
counterpart when the goal or key is distant, while benefiting from model-based planning when the
dynamics model can confidently predict rewards over shorter horizons. In Meta-World, the dense,
human-designed reward structure further improves the effectiveness of this myopic return estima-
tion. Since the rewards are designed to guide the agent toward the goal by greedily following reward
increases, ranking planning paths based on immediate rewards often sufficient to improve in-context
RL approaches. Hyperparamters for planning are detailed in Table 6.

Table 8: Results on all benchmarks of Meta-World ML1. We omit the rows for the 5 tasks reported
in Table 1, while they are still included in the mean calculation.

Task AD IDT DICP-AD (Ours) DICP-IDT (Ours)

Assembly 0 2 28 4
Basketball 50 54 48 66

Bin-Picking 2 6 0 6
Box-Close 34 32 44 38

Button-Press-Topdown 98 100 100 100
Button-Press-Topdown-Wall 98 100 100 100

Button-Press 100 100 100 100
Button-Press-Wall 100 100 100 100

Coffee-Button 100 100 100 100
Coffee-Pull 88 78 42 90
Coffee-Push 98 100 92 100

Dial-Turn 76 76 30 94
Disassemble 0 0 0 0
Door-Close 100 100 100 100
Door-Lock 98 100 88 98
Door-Open 78 14 90 80

Door-Unlock 78 72 74 82
Hand-Insert 84 70 86 68

Drawer-Close 100 100 100 100
Drawer-Open 26 46 62 90
Faucet-Open 100 100 96 98
Faucet-Close 100 100 86 100

Hammer 8 22 52 10
Handle-Press-Side 100 100 94 100

Handle-Press 100 100 100 100
Handle-Pull-Side 36 100 82 100

Handle-Pull 56 66 74 78
Lever-Pull 96 96 100 98

Pick-Place-Wall 6 66 6 70
Pick-Out-Of-Hole 36 98 2 86

Plate-Slide 92 96 94 90
Plate-Slide-Side 100 100 100 100
Plate-Slide-Back 92 98 88 86

Plate-Slide-Back-Side 94 100 100 96
Peg-Unplug-Side 86 100 38 98

Soccer 94 96 92 100
Stick-Push 2 0 0 2
Stick-Pull 2 14 0 50
Push-Wall 86 94 92 100
Push-Back 0 0 0 0
Reach-Wall 100 98 94 100
Shelf-Place 0 68 0 62
Sweep-Into 86 86 88 88

Window-Open 100 100 100 100
Window-Close 100 100 88 98

Mean 68 75 69 80

While model-based planning requires additional computation, the cost is negligible. Specifically,
our method does not increase the number of training parameters compared to model-free counter-
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parts, and the primary difference lies in the increased number of Transformer inferences per action
selection. As shown in Table 7, the maximum computation per action selection is approximately 18
GFLOPs in our experiment. Given that modern GPUs can process hundreds of TFLOPs per sec-
ond, the computational expense is minimal in practice while the performance gains are substantial,
making the trade-off highly favorable in our framework. The difference becomes even less signifi-
cant when using architectures like IDT, which are specifically designed to handle longer sequences
efficiently.

B ADDITIONAL EXPERIMENTS

We conducted experiments across all 50 environments of Meta-World ML1, using PPO (Schulman
et al., 2017) as the source algorithm with the same hyperparameters as those used in Table 1. Each
method is evaluated with 20K environment steps during the meta-test phase. As shown in Table 8,
our method outperforms model-free counterparts. The mean learning curve is displayed in Fig. 2. It
is noteworthy that since our configuration for the source algorithm is not tuned for every task, the
results may not fully reflect the full potential of in-context RL methods, including ours.

Table 9: Meta-test success rates with 5K environment steps on 5 benchmarks of ML1. The results
marked with † are taken from Wang et al. (2023a). Our approach consistently outperforms all the
baselines at 5K steps as well.

Method Sweep Peg-Insert-Side Steps

MACAW† 4 0 5K
FOCAL† 38 10 5K

BoREL† 0 0 5K
IDAQ† 59 30 5K

IDT 71 41 5K

DICP-IDT (Ours) 87 45 5K

Furthermore, we also conducted experiments on ML10 from Meta-World, a benchmark designed to
evaluate the generalization ability of meta-RL methods using ten predefined training tasks and five
test tasks. The results, presented in Table 10, demonstrate that our approach surpasses the model-free
counterpart and achieves state-of-the-art performance on this benchmark with significantly fewer
environment steps than the baselines. Notably, our method does not rely on expert demonstrations
or task descriptions for the test tasks.

Table 10: Meta-test success rates on Meta-World ML10. The success rates are reported as percent-
ages, averaged over 3 different seeds. The results marked with ∗ are taken from Yu et al. (2019).

Method Success Rate Steps

PEARL∗ 13.0 350M
MAML∗ 31.6 350M

RL2∗ 35.8 350M

IDT 36.7 500K

DICP-IDT (Ours) 46.9 500K

C EXTENDED RELATED WORK

DPT. Decision-Pretrained Transformer (DPT; Lee et al. (2023a)) is an in-context RL approach
that meta-trains (or pre-trains) Transformers to predict optimal actions based on contextual trajecto-
ries. Consequently, DPT requires access to the optimal actions during training. The authors suggest
several sources for gathering the meta-training dataset, including (i) randomly sampled trajectories
directly from the environment, (ii) trajectories generated by a source RL algorithm, and (iii) trajec-
tories of an expert policy. In this work, we concentrate on the second source to minimize reliance on
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direct access to environment dynamics and expert policies. While the authors also discuss deploying
DPT when offline datasets of the meta-test tasks are available, our focus is on scenarios where only
offline datasets for meta-train tasks are available for a fair comparison. In this scheme, the loss
function of DPT is defined as

LDPT(θ) = −
n∑

i=1

T∑
t=1

log fθ(a
⋆
t | oit, hi

t−1), (3)

where a⋆t denotes the optimal action on the true state st.

IDT. In-Context Decision Transformer (IDT; Huang et al. (2024)) addresses the high computa-
tional costs of previous in-context RL methods, particularly when handling long-horizon tasks. IDT
restructures the decision-making process to predict high-level decisions instead of individual ac-
tions. These high-level decisions then guide multiple action steps in a separate module, dividing the
Transformer used in the earlier approach (Laskin et al., 2023) into modules with shorter sequences.
The architecture of IDT consists of three modules: (i) the Making-Decisions module predicts high-
level decisions, (ii) the Decisions-to-Go module decodes these high-level decisions into low-level
actions, and (iii) the Reviewing-Decisions module encodes the resulting low-level actions back into
high-level decisions. The loss function for IDT is structured similarly to that of AD, while the loss
can be divided across the three modules:

LIDT(θ) = −
n∑

i=1

T∑
t=1

log fθ(a
i
t | oit, hi

t−1)

= −
n∑

i=1

T∑
t=1

[
log fθ(a

i
t | zt, oit) + log fθ(zt | oit, ẑt−1) + log fθ(ẑt−1 | hi

t−1)
]
, (4)

where zt is a high-level decision and ẑt−1 is an encoded context by the Reviewing-Decisions mod-
ule.

TTO. TTO (Janner et al., 2021) is an offline RL approach that imitates the policy of the offline
dataset, while simultaneously learning a dynamics model to facilitate planning to improve upon that
policy. Our approach is similar to this in that we also use model-based planning to improve upon
offline datasets. However, our framework focuses on improving a distilled algorithm rather than a
specific policy. This distinction makes our problem setting more general and challenging compared
to single-task RL like TTO, since our agent should learn the dynamics model primarily in-context
when encountering novel tasks.

Model-based RL. Model-based RL has gained significant attention due to its ability to improve
sample efficiency by utilizing a dynamics model to generate simulated experiences (Ha & Schmid-
huber, 2018; Kaiser et al., 2020; Janner et al., 2019; Schrittwieser et al., 2019; Ye et al., 2021; Hafner
et al., 2023). Some approaches further incorporate planning with search algorithms, such as MCTS
(Schrittwieser et al., 2019; 2021; Ye et al., 2021) or beam search (Janner et al., 2021), to explore
the planning space effectively. However, a key challenge in model-based RL is managing the bal-
ance between sample efficiency and model bias, as errors in the learned dynamics model can lead to
suboptimal decision-making (Janner et al., 2019).

Model-based Meta-RL. Previous approaches have explored model-based approach to meta-RL
(Sæmundsson et al., 2018; Lin et al., 2020; Hiraoka et al., 2021; Rimon et al., 2022). Clavera et al.
(2018) aim to overcome the limitations of model-based RL (Janner et al., 2019) by incorporating
a meta-model. Nagabandi et al. (2019) improve upon model-free meta-RL methods (Duan et al.,
2016; Finn et al., 2017) to adapt shifting dynamics. Anand et al. (2022) focus on zero-shot general-
ization, adapting MuZero (Schrittwieser et al., 2019) to meta-RL. More recently, Rimon et al. (2024)
introduce a model-based meta-RL approach that combines a meta-RL method (Zintgraf et al., 2020)
with a model-based RL method (Hafner et al., 2023).
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