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ABSTRACT

In our supplementary materials we provide implentation details, additional experi-
mental results and further exploration of our latent embeddings. We also present
our results for the lesser addressed Lake split (Lake et al.,[2015) of the Omniglot
few-shot classification benchmark, detail on our differentiable rasterization function
fraster and our data processing procedures.

A RASTERIZATION

The key enabler of our novel pixel loss for sketch drawings is our differentiable rasterization function
fraster- Sequence based loss functions such as Ly are sensitive to the order of points while in
reality, drawings are sequence invariant. Visually, a square is a square whether it is drawn clockwise
or counterclockwise.

The purpose of a sketch representation is to lower the complexity of the data space and decode in a
more visually intuitive manner. While it is a necessary departure point, the sequential generation of
drawings is not key to our visual representation and we would like SketchEmbedNet to be agnostic to
any specific sequence needed to draw the sketch that is representative of the image input.

To facilitate this, we develop our rasterization function f,qe, Which renders an input sequence of
strokes as a pixel image. However, during training, the RNN outputs a mixture of Gaussians at each
timestep. To convert this to a stroke sequence, we sample from these Gaussians; this can be repeated
to reduce the variance of the pixel loss. We then scale our predicted and ground truth sequences by
the properties of the latter before rasterization.

Stroke sampling At the end of sequence generation we have N x (6M +3) parameters, 6 Gaussian
mixture parameters, 3 pen states, [V, times, one for each stroke. To obtain the actual drawing we
sample from the mixture of Gaussians:
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After sampling we compute the cumulative sum of every stroke over the timestep so that we obtain
the absolute displacement from the initial position:
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Scaling Each sketch generated by our model begins at (0,0) and the variance of all strokes in the
training set is normalized to 1. On a fixed canvas the image is both very small and localized to the
top left corner. We remedy this by computing a scale A and shift xpif, Yshife using labels y and apply
them to both the prediction y’ as well as the ground truth y. These parameters are computed as:

w H
A = min { ) } ) 4)
Lmax — Tmin Ymax — Ymin
Tshife = fo%/\y Yshift = MA- &)

Tmax, Tmins Ymax, Ymin are the minimum and maximum values of x;, y; from the supervised stroke
labels and not the generated strokes. W and H are the width and height in pixels of our output canvas.
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Calculate pixel intensity Finally we are able to calculate the pixel p;; intensity of every pixel in
our H x W canvas.
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where the distance function is the distance between point (i, j) from the line segment defined by the
absolute points (x¢—1,y:—1) and (x4, y¢). We also blow up any distances where s1 ;1 < 0.5 so as to
not render any strokes where the pen is not touching the paper.

B IMPLEMENTATION DETAILS

We train our model for 300k iterations with a batch size of 256 for the Quickdraw dataset and 64 for
Sketchy due to memory constraints. The initial learning rate is 1e-3 which decays by 0.85 every 15k
steps. We use the Adam (Kingma & Ba, |2015)) optimizer and clip gradient values at 1.0. o = 2.0
is used for the Gaussian blur in Lpix1. For the curriculum learning schedule, the value of « is set
to 0 initially and increases by 0.05 every 10k training steps with an empirically obtained cap at
Omax = 0.50 for Quickdraw and oy = 0.75 for Sketchy.

The ResNet12 (Oreshkin et al.| 2018)) encoder uses 4 ResNet blocks with 64, 128, 256, 512 filters re-
spectively and ReLLU activations. The Conv4 backbone has 4 blocks of convolution, batch norm (loffe
& Szegedyl 2015), ReLU and max pool, identical to|Vinyals et al.[(2016). We select the latent space
to be 256 dimensions, RNN output size to be 1024, and the hypernetwork embedding size to be 64.
We use a mixture of M = 30 bivariate Gaussians for the mixture density output of the stroke offset
distribution.

C LATENT SPACE INTERPOLATION

Like in many encoding-decoding models we evaluate the interpolation of our latent space. We select
4 embeddings at random and use bi-linear interpolation to produce new embeddings. Results are in

Figures Taand TH]
DR D B

o0

OOO0Ee29ag
OO0 8P
HOTOOE)Y Y g c
OO ET g
SOOOG9PER Y

e
B @k
@@@@
SJSTRSATAY
@@@5@
LI Cder @
& @ G o
G G @ T O
@@@

5
B
3
O
G

Cy Co o e

PPEEPY RSO0
PR PR o Y
(PP IO A D () WA WP TN 7
WP [P P 0 (P P P 22\ A
(P P (P b2 007 2 &P A NP\

(a) Interpolation of classes: power outlet, snowman,

jacket, elbow

OO 9089@ Y
wiwlelelciwOISEIEl®)
SO 00@9@E®
SOTEHEEOH@O®
TEOOG0O@O®®

(b) Interpolation of classes: cloud, power outlet, bas-
ket, compass

Figure 1: Latent space interpolations of randomly selected examples

We observe that compositionality is also present in these interpolations. In the top row of Figure
[Tal the model first plots a third small circle when interpolating from the 2-circle power outlet and
the 3-circle snowman. This small circle is treated as single component that grows as it transitions
between classes until it’s final size in the far right snowman drawing.
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Some other RNN-based sketching models (Ha & Eckl 2018; |Chen et al., [2017) experience other
classes materializing in interpolations between two unrelated classes. Our model does not exhibit this
same behaviour as our embedding space is learned from more classes and thus does not contain local
groupings of classes.

D EFFECT OF o ON FEW-SHOT CLASSIFICATION

We performed additional experiments exploring the impact of our curriculum training schedule for a.
The encoding component of our drawing model was evaluated on the few-shot classification task for
different values of auax every 25k iterations during training. A graph is shown in Figure 2] and the
full table of all values of auy,y is in Table[T}
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Figure 2: Few-shot classification accuracy of armax values 0.0 and 0.5 over training

Table 1: Few-shot classification accuracy of all ay,x values

amax 25k 50k 75k 100k 125k 150k 175k 200k 225k 250k 275k 300k

0.00 8935 8794 88.73 88.46 88.01 88.04 88.23 87.73 88.03 87.86 87.65 87.17
025 89.21 9039 90.20 89.75 87.78 8837 88.64 88.05 8798 8841 88.15 87.82
050 90.48 89.58 89.81 89.02 90.68 9124 90.26 9094 91.12 9130 91.12 91.39
075 91.39 8995 89.56 89.81 89.95 90.79 91.02 91.09 91.82 90.76 91.42 90.59
095 90.23 90.15 90.10 89.55 90.27 9237 9227 9029 9158 91.02 89.73 89.77

E INTRA-ALPHABET LAKE SPLIT

The creators of the Omniglot dataset and one-shot classification benchmark originally proposed an
intra-alphabet classification task. This task is more challenging than the common Vinyals split as
characters from the same alphabet may exhibit similar stylistics of sub-components that makes visual
differentiation more difficult. This benchmark has been less explored by researchers; however, we
still present the performance of our SketchEmbedding model against evaluations of other few-shot
classification models on the benchmark. Results are shown in Table 2]
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Table 2: Few-shot classification results on Omniglot (Lake split)

Omniglot (Lake split) (way, shot)

Algorithm Backbone Train Data 5,1) (5,5) (20,1) (20,5)
Conv-VAE Conv4 Quickdraw ~ 73.12 £ 0.58 88.50 £0.39 53.45+0.51 73.62+0.48
SketchEmbedding (Ours) Conv4 Quickdraw ~ 89.16 £ 0.41 97.12 £0.18 74.24 +£0.48 89.87 +£0.25
SketchEmbedding (Ours) ResNetl2  Quickdraw  91.03 £0.37 97.91+0.15 77.94+0.44 9249 +0.21
BPL (Supervised) (Lake et al.|[2015{12019) N/A Omniglot - - 96.70

ProtoNet (Supervised) (Snell et al.[[2017{|Lake et al.|2019) Conv4 Omniglot - - 86.30

RCN (Supervised) (George et al.[[2017{|Lake et al.|2019) N/A Omniglot - - 92.70

VHE (Supervised) (Hewitt et al.[|2018{|Lake et al.|[2019) N/A Omniglot - - 81.30

Unsurprisingly, our model is outperformed by supervised models and does fall behind by a more
substantial margin than in the Vinyals split. However, our SketchEmbedding approach still achieves
respectable classification accuracy overall and greatly outperforms a Conv-VAE baseline.

F EFFECT OF RANDOM SEEDING ON FEW-SHOT CLASSIFICATION

The training objective for SketchEmbedNet is to reproduce sketch drawings of the input. This task is
unrelated to few-shot classification may perform variably given different initialization. We quantify
this variance by training our model with 15 unique random seeds and evaluating the performance of
the latent space on the few-shot classification tasks.

We disregard the per (evaluation) episode variance of our model in each test stage and only present
the mean accuracy. We then compute a new confidence interval over random seeds. Results are
presented in Tables 3] @} [5

Table 3: Random Seeding on Few-Shot Classification results on Omniglot (Conv4)

(way, shot)

Seed (5,1) (5,5) (20,1) (20,5)
1 96.45 99.41 90.84 98.08
2 96.54 99.48 90.82 98.10
3 96.23 99.40 90.05 97.94
4 96.15 99.46 90.50 97.99
5 96.21 99.40 90.54 98.10
6 96.08 99.43 90.20 97.93
7 96.19 99.39 90.70 98.05
8 96.68 99.44 91.11 98.18
9 96.49 99.42 90.64 98.06
10 96.37 99.47 90.50 97.99
11 96.52 99.40 91.13 98.18
12 96.96 99.50 91.67 98.30
13 96.31 99.38 90.57 98.04
14 96.12 99.45 90.54 98.03
15 96.30 99.48 90.62 98.05

Average 9637 +0.12 99.43 £0.02 90.69 £0.20 98.07 £ 0.05

4
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Table 4: Random Seeding on Few-Shot Classification results on Omniglot (ResNet12)

(way, shot)

Seed 5,1 (5,5) (20,1) (20,5)
1 96.61 99.58 91.25 98.58
2 96.37 99.52 90.44 98.40
3 96.04 99.58 89.86 98.27
4 96.44 99.50 90.76 98.40
5 95.95 99.52 89.88 98.29
6 95.63 99.45 89.28 98.17
7 96.24 99.52 89.90 98.34
8 95.41 99.45 88.75 98.05
9 96.04 99.49 89.70 98.24
10 95.40 99.41 88.91 98.05
11 95.82 99.51 89.67 98.24
12 96.25 99.51 90.21 98.28
13 95.84 99.53 89.71 98.18
14 96.04 99.56 89.89 98.31
15 96.04 99.57 89.97 98.32

Average 96.00 £0.31 99.51£0.04 89.89+0.56 98.27+0.12

Table 5: Random Seeding on Few-Shot Classification results on mini-ImageNet

(way, shot)

Seed 5,1) 5,5) (5,20) (5,50)
1 37.15 52.99 63.92 68.72
2 39.38 55.20 65.60 69.79
3 39.40 55.47 65.94 70.41
4 40.39 57.15 67.60 71.99
5 38.40 54.08 65.36 70.08
6 37.94 53.98 65.24 69.65
7 38.88 55.71 66.59 71.35
8 37.89 52.65 63.42 68.14
9 38.25 53.86 65.02 69.82
10 39.11 55.29 65.99 69.98
11 37.39 52.88 63.66 68.33
12 38.24 53.91 65.19 69.82
13 38.62 53.84 63.83 68.69
14 37.73 53.61 64.22 68.41
15 39.50 55.23 65.51 70.25

Average 38.55+045 54394063 6514+0.59 69.69+0.56

G DATA PROCESSING

G.1 QUICKDRAW

We apply the same data processing methods as in [Ha & Eck|(2018)) with no additional changes to
produce our stroke labels y. When rasterizing for our input &, we scale, center the strokes then pad
the image with 10% of the resolution in that dimension rounded to the nearest integer.

The following hSt Of ClaSSCS were used fOI' training: The Eiffel Tower, The Mona Lisa, aircraft carrier, alarm clock, ambulance, angel,
animal migration, ant, apple, arm, asparagus, banana, barn, baseball, baseball bat, bathtub, beach, bear, bed, bee, belt, bench, bicycle, binoculars, bird, blueberry, book,
boomerang, bottlecap, bread, bridge, broccoli, broom, bucket, bulldozer, bus, bush, butterfly, cactus, cake, calculator, calendar, camel, camera, camouflage, campfire,
candle, cannon, car, carrot, castle, cat, ceiling fan, cell phone, cello, chair, chandelier, church, circle, clarinet, clock, coffee cup, computer, cookie, couch, cow, crayon,
crocodile, crown, cruise ship, diamond, dishwasher, diving board, dog, dolphin, donut, door, dragon, dresser, drill, drums, duck, dumbbell, ear, eye, eyeglasses, face,
fan, feather, fence, finger, fire hydrant, fireplace, firetruck, fish, flamingo, flashlight, flip flops, flower, foot, fork, frog, frying pan, garden, garden hose, giraffe, goatee,
grapes, grass, guitar, hamburger, hand, harp, hat, headphones, hedgehog, helicopter, helmet, hockey puck, hockey stick, horse, hospital, hot air balloon, hot dog,
hourglass, house, house plant, ice cream, key, keyboard, knee, knife, ladder, lantern, leaf, leg, light bulb, lighter, lighthouse, lightning, line, lipstick, lobster, mailbox,
map, marker, matches, megaphone, mermaid, microphone, microwave, monkey, mosquito, motorbike, mountain, mouse, moustache, mouth, mushroom, nail, necklace,
nose, octopus, onion, oven, owl, paint can, paintbrush, palm tree, parachute, passport, peanut, pear, pencil, penguin, piano, pickup truck, pig, pineapple, pliers, police
car, pool, popsicle, postcard, purse, rabbit, raccoon, radio, rain, rainbow, rake, remote control, rhinoceros, river, rollerskates, sailboat, sandwich, saxophone, scissors,

see saw, shark, sheep, shoe, shorts, shovel, sink, skull, sleeping bag, smiley face, snail, snake, snowflake, soccer ball, speedboat, square, star, steak, stereo, stitches,
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stop sign, strawberry, streetlight, string bean, submarine, sun, swing set, syringe, t-shirt, table, teapot, teddy-bear, tennis racquet, tent, tiger, toe, tooth, toothpaste,
tractor, traffic light, train, triangle, trombone, truck, trumpet, umbrella, underwear, van, vase, watermelon, wheel, windmill, wine bottle, wine glass, wristwatch,
zigzag, blackberry, power outlet, peas, hot tub, toothbrush, skateboard, cloud, elbow, bat, pond, compass, elephant, hurricane, jail, school bus, skyscraper, tornado,
picture frame, lollipop, spoon, saw, cup, roller coaster, pants, jacket, rifle, yoga, toilet, waterslide, axe, snowman, bracelet, basket, anvil, octagon, washing machine,

tree, television, bowtie, sweater, backpack, zebra, suitcase, stairs, The Great Wall of China

G.2 OMNIGLOT

We derive our Omniglot tasks from the stroke dataset originally provided by [Lake et al.|(2015) rather
than the image analogues. We translate the Omniglot stroke-by-stroke format to the same one used in
Quickdraw. Then we apply the Ramer-Douglas-Peucker (Douglas & Peucker, |1973)) algorithm with
an epsilon value of 2 and normalize variance to 1 to produce y. We also rasterize our images in the
same manner as above for our input .

G.3 SKETCHY

Sketchy data is provided as an SVG image composed of line paths that are either straight lines or
Bezier curves. To generate stroke data we sample sequences of points from Bezier curves at a high
resolution that we then simplify with RDP, e = 5. We also eliminate continuous strokes with a short
path length or small displacement to reduce our stroke length and remove small and noisy strokes.
Path length and displacement are considered with respect to the scale of the entire sketch.

Once again we normalize stroke variance and rasterize for our input image in the same manners as
above.

The following classes were use for training after removing overlapping classes with mini-ImageNet:
hot-air_balloon, violin, tiger, eyeglasses, mouse, jack-o-lantern, lobster, teddy_bear, teapot, helicopter, duck, wading_bird, rabbit, penguin, sheep, windmill, piano, jel-
lyfish, table, fan, beetle, cabin, scorpion, scissors, banana, tank, umbrella, crocodilian, volcano, knife, cup, saxophone, pistol, swan, chicken, sword, seal, alarm_clock,
rocket, bicycle, owl, squirrel, hermit_crab, horse, spoon, cow, hotdog, camel, turtle, pizza, spider, songbird, rifle, chair, starfish, tree, airplane, bread, bench, harp,
seagull, blimp, apple, geyser, trumpet, frog, lizard, axe, sea_turtle, pretzel, snail, butterfly, bear, ray, wine_bottle, , elephant, raccoon, rhinoceros, door, hat, deer, snake,
ape, flower, car_(sedan), kangaroo, dolphin, hamburger, castle, pineapple, saw, zebra, candle, cannon, racket, church, fish, mushroom, strawberry, window, sailboat,

hourglass, cat, shoe, hedgehog, couch, giraffe, hammer, motorcycle, shark

H AUTOREGRESSIVE DRAWING MODEL COMPARISONS

We summarize the key components of SketchEmbedNet in comparison to other autoregressive
drawing models in Table[6]

Table 6: Model comparisons between generative autoregressive models that produce pixel or vector
sketch drawings.

Autoregressive sketching models

Model Dataset # classes Encoder Decoder Loss function

Handwriting Sequence|Graves (2013]  TAM-OnDB|Liwicki & Bunke {2005} 1 RNN Mixture Density RNN Lroke

DRAW |Gregor et al. {2015 SVHNNetzer et al. {201 1], MNIST|LeCun et al. (1998} 10 RNN RNN Lpixer + L1

Sketch-RNNJHa & Eck ¥2018] Quickdraw|Jongejan et al. {2016 1 Bi-directional RNN Mixture Density RNN Lpen + Luwoke + LKL

Sketch-pix2seq|Chen et al.[{2017) Quickdraw Jongejan et al. {2016 3,6 simple CNN Mixture Density RNN Lpen + Lstroke
Quickdraw/Jongejan et al. {2016/, Bi-directional RNN . .

Al-Sketcher|Cao et al. (2019 FaceX|Cao et al (2019, 5,10, 15,20 + CNN Autoencoder Mixture Density RNN Lpen + Luwoke + LKL
QuickdrawlJongejan et al. 2016}, P 5 . Len + Lwroke + Li2

deep_p2s/Song et al. (2018 ShoesV2[Yu et al. (2016 ChairV2 1 Bi-directional RNN, CNN CNN, Mixture Density RNN Lkt + Loporcat

SketchEmbedding (ours) Quickdraw|Jongejan et al. {2016 300 ResNet12|Oreshkin et al. (2018} Mixture Density RNN Lpen + Latroke + Lopinel

I FEW-SHOT CLASSIFICATION ON OMNIGLOT — FULL RESULTS

The full results table for few-shot classification on the Omniglot (Lake et al.,2015) dataset, including
the ResNet12 (Oreshkin et al., 2018)) model.
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Table 7: Few-shot classification results on Omniglot

Omniglot (way, shot)

Algorithm Backbone Train Data 5,1) 5,5 (20,1) (20,5)
Training from Scratch QHsu et al.] 2019 N/A Omniglot 52.50+0.84 7478 £0.69 2491 £0.33 47.62+0.44
Random CNN Conv4 N/A 67.96 £0.44 83.85+ 031 44.39+0.23 60.87 +0.22
Conv-VAE Conv4 Omniglot 7783 £0.41 9291 +0.19 62.59+0.24 84.01 £0.15
Conv-VAE Conv4 Quickdraw ~ 81.49 +0.39 94.09 £0.17 66.24 +0.23 86.02 £0.14
Conv-AE Conv4 Quickdraw ~ 81.54 £ 0.40 93.57 £0.19 67.24+024 84.15+0.16
B-VAE (8 = 250 g al.|2017 Conv4 Quickdraw ~ 79.11 £0.40 9323 £0.19 63.67 024 84.92+0.15
k-NN 019 N/A Omniglot ~ 57.46+ 1.35 81.16£0.57 39.73+0.38 66.38 +0.36
Linear Classifier (Hsu et al.| N/A Omniglot 61.08 £1.32 81.824+0.58 43.20+0.69 6633+ 0.36
MLP + Dropout (Hs [ N/A Omniglot 51.95+0.82 7720+ 0.65 30.65+0.39 58.62+0.41
Cluster Matching lﬁmﬂlw N/A Omniglot 5494 +£0.85 71.09£0.77 3219+ 040 4593 +0.40
CACTUs-MAML Conv4 Omniglot 68.84 £0.80 87.78 £0.50 48.09+£0.41 73.36+0.34
CACTUs-ProtoNet (Hsu et al.| Conv4 Omniglot 68.12 £ 0.84 8358 +£0.61 47.75+043 66.27 £+ 0.37
AAL-ProtoNet (Antoniou & Storkey! Conv4 Omniglot 84.66 £0.70 88.41 027 68.794+1.03 74.05+ 0.46
AAL-MAML | ] Conv4 Omniglot 88.40+0.75 98.00£0.32 70.20+0.86 88.30 £ 1.22
UMTRA (Khodadadeh et al.| Conv4 Omniglot 83.80 95.43 74.25 92.12
SketchEmbedding (Ours) Conv4 Omniglot 94.88 £0.22 99.01 £0.08 86.18 £0.18 96.69 & 0.07
SketchEmbedding-avg (Ours) Conv4 Quickdraw  96.37 99.43 90.69 98.07
SketchEmbedding-best (Ours) Conv4 Quickdraw ~ 96.96 + 0.17 99.50 +0.06 91.67 +0.14 98.30 £ 0.05
SketchEmbedding-avg (Ours) ResNetl2  Quickdraw  96.00 99.51 89.88 98.27
SketchEmbedding-best (Ours) ResNetl2  Quickdraw  96.61 £0.19 99.58 +£0.06 91.25+0.15 98.58 + 0.05
SketchEmbedding(KL)-avg (Ours) Conv4 Quickdraw  96.06 99.40 89.83 97.92
SketchEmbedding(KL)-best (Ours) Conv4 Quickdraw ~ 96.60 + 0.18  99.46 £0.06 90.84 +0.15 98.09 £ 0.06
SketchEmbedding (w/ Labels) (Ours) Conv4 Quickdraw ~ 88.52+0.34 96.73 £0.13 71.35+024 88.16£0.14
MAML (Supervised) (Finn et al.| Conv4 Omniglot 9446 £0.35 98.83+£0.12 84.60£0.32 96.29 +0.13
ProtoNet (Supervised) (Snell et al. m Conv4 Omniglot 98.35+0.22 99.58 £0.09 95.31+0.18 98.81+0.07

" Stroke data used for training

J  FEW-SHOT CLASSIFICATION ON MINI-IMAGENET — FULL RESULTS

The full results table for few-shot classification on the mini-ImageNet dataset, including the ResNet12

(Oreshkin et all 2018) model and Conv4 models.

Table 8: Few-shot classification results on mini-ImageNet

mini-ImageNet (way, shot)
Algorithm Backbone Train Data 5,1) 5,5) (5,20) (5,50)
Training from Scratch (lm 2019 N/A mini-ImageNet  27.59 £0.59 3848 £0.66 51.53+£0.72 59.63 +0.74
UMTRA Khodadadeh et al. Conv4 mini-ImageNet  39.93 50.73 61.11 67.15
CACTUs-MAM su et 2 ) Conv4 mini-ImageNet  39.90 £0.74 5397 £0.70 63.84 +£0.70 69.64 + 0.63
CACTUs- ProtoNet (Hsu et al.| et al.[201¢ Conv4 mini-ImageNet  39.18 £0.71 53.36 £0.70 61.54 £0.68 63.55 + 0.64
AAL-ProtoNet (Antoniou & Storkey]|2 Conv4 mini-ImageNet  37.67 4+ 0.39  40.29 4 0.68 - -
AAL-MAML (Antoniou & Storkey|[20 Conv4 mini-ImageNet 3457 £0.74 49.18 £ 0.47 - -
Random CNN Conv4 N/A 26.85+0.31 33.37+0.32 3851+£028 41.41+028
Conv-VAE Conv4 mini-ImageNet  23.30 £0.21 26224+ 0.20 29.93 £0.21 32.57 +0.20
Conv-VAE Conv4 Sketchy 2327+0.18 2628 £0.19 3041=+0.19 33.97+0.19
Random CNN ResNetl2 N/A 28.59 +£0.34 3591 +£0.34 41.314+033 44.07 £0.31
Conv-VAE ResNetl2  mini-ImageNet 23.82 +£0.23 28.16 £0.25 33.64+0.27 37.81+0.27
Conv-VAE ResNet12  Sketchy 24.61 £0.23 28.85+0.23 35724027 40.44+0.28
SketchEmbedding-avg (ours) Conv4 Sketchy* 37.01 51.49 61.41 65.75
SketchEmbedding-best (ours) Conv4 Sketchy* 38.61 £042 53.82+041 6334+035 67.22+0.32
SketchEmbedding-avg (ours) ResNetl2  Sketchy* 38.55 54.39 65.14 69.70
SketchEmbedding-best (ours) ResNetl2  Sketchy* 40.39 £ 044 57.15+0.38 67.60 £033 71.99+0.3
MAML (supervised) (Finn et al. Conv4 mini-ImageNet  46.81 £0.77 62.13+£0.72 71.03 £0.69 75.54 + 0.62
ProtoNet (supervised) (Snell et al.{2017 Conv4 mini-ImageNet 46.56 £0.76 62.29 £ 0.71 70.05 £0.65 72.04 = 0.60

* Stroke data used for training
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K ADDITIONAL CONCEPTUAL COMPOSITIONALITY
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Figure 3: Uncherrypicked conceptual compositionality examples

Conceptual Compositionality Examples

Basketball — Circle + Square
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Figure 4: Additional conceptual compositionality examples

L EMBEDDING PROPERTIES OF OTHER BASELINE MODELS

Here we substantiate the uniqueness of the properties observed in SketchEmbeddings by applying
the same experiments to a 3-VAE (Higgins et al.} 2017) as well a vanilla autoencoder trained on the
same dataset. We also include results of a SketchEmbedNet trained with a KL objective.
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L.1 B-VAE

B-VAE (8 = 200)
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Figure 5: Section ?? results for 5-VAE

The 3-VAE (Higgins et al. [2017) exhibits similar unsupervised clustering in comparison to the
Conv-VAE and is generally incapable of distinguishing input images that have different shape
compositions but the same overall silhouette (first two examples from the left). Differently it is
better at distinguishing non-synthetic examples that contain multiple squares or circles (3rd figure).
However, it utterly fails the latent variable regression task and does not exhibit any significant
conceptual composition in latent space.

L.2 AUTOENCODER AND SKETCHEMBEDNET-KL

AutoEncoder

A-O+ 0O
SketchEmbedding-KL

&-0+0=8 §-0+ d=1 H-2+0=J w-J+0=%

Figure 6: Section ?? results for Autoencoder and SketchEmbedding-KL

We show that the performance of SketchEmbedding embeddings in our experiments in Section ??
which focuses on organization in latent space is not correlated with the KL term. We present both a
vanilla autoencoder without the KL objective and a SketchEmbedNet trained with a KL objective.
We observe a drop in overall generation quality in the Conceptual Composition decoding as is
expected with an additional constraint but maintained performance in the other tasks. Meanwhile, the
autoencoder does not demonstrate any marked improvements over the Conv-VAE in the main paper
or any other baseline comparison.
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M ADDITIONAL COMPOSITIONALITY MODES

We provide additional clustering methods t-SNE (Maaten & Hintonl, 2008)) and PCA as well as 2 new
experiments that explore the compositionality of our latent SketchEmbedding.

Additional clustering methods We include additional t-SNE and PCA results of the experiments
in the main paper. These are presented in Figures[7] [B] Q|[I0} [IT} t-SNE and UMAP are stochastic and
do not always produce the same visualization while PCA is deterministic and prioritizes the most
important dimensions.
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Figure 7: 2D Embedding visualization of different spatial orientations of circles and squares
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Figure 8: 2D Embedding visualization of different linear distances between shapes
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Figure 9: Latent space visualization squares and circles arranged differently in a 2x2 array
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Figure 10: Latent space visualization of composing circles and squares within one another or outside
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Figure 11: Latent space visualization of composing multiple circles and squares in real sketch
drawings
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Additional Experiments Here we provide different investigations into the compositionality of our
learned embedding space that were not present in our main paper. These results presented in Figure

[[2land [13]
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Figure 12: 2D Embedding visualization of different spatial orientations of circles and squares

In Figure[T2] we place a square in the center of the example and place a circle above, below or to the
sides of it. Once again we find that our SketchEmbedding embedding clusters better than the VAE

approach.
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Figure 13: Latent space visualization of composing multiple circles and squares in real sketch
drawings

New examples are generated where each class has a different numbers of circles. Both the VAE
approach and our SketchEmbedding cluster well and neither appear to learn the count manifold.

N HYPERNETWORK ACTIVATIONS

To further explore how our network understands drawings, we examine the relationships between the
activations of the hypernetwork of our HyperLSTM (Ha et al., 2017).

The hypernetwork determines the weights of the LSTM that generates the RNN at each decoding
timestep. These activations are 512-dimensional vectors. We collect the activations from many

12
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examples, cluster them in 512-dimensional space and visualize the strokes belonging to each cluster
for each example. A full decoding is also rendered where each cluster within an example is assigned
a color.

Single class: snowman First we explore this clustering using only the snowman class from Quick-
draw (Jongejan et al., [2016). We expect substantial reuse of a "circle" both within and over many
examples. Clustering of the strokes is done with the DBSCAN (Ester et al., [1996)) and parameter
€ = 3.9. Results are in Figure[T4] Each row is a separate input; the far left column is the color-coded,
composed image, the second is the noise cluster and every subsequent column is a unique cluster.
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Figure 14: Snowman class stroke clustering

While cluster re-use is limited, cluster O often contains a large, fully enclosed circle. Many other
clusters may contain circles or partial strokes with some reuse. Larger, fully composed and coloured
sketches are presented in Figure [13]
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Figure 15: Fully composed images with coloured cluster assignments

Many classes: round objects We repeat the above experiment with a mixture of classes that
generally can be expected to contain circles. These classes were circles, snowmen, clocks and cups.
The two former classes are frequently composed only of circles while the latter are expected to
consistently contain other distinct shapes. Results are presented in Figure[I6]and select examples in

Figure

13
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Figure 16: Snowman class stroke clustering

We still observe that the model continues to isolate circles in the first column and note it continues to
do so for the cup and clock classes which are not exclusively circular.
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Figure 17: Fully composed images with coloured cluster assignments

Many random classes: Finally, we repeat the above clustering with the 45 randomly selected
holdout classes from the Quickdraw training process of SketchEmbedding. Results are once again
presented in Figure[T8]and select examples in Figure[I9]
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Figure 18: Snowman class stroke clustering
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Figure 19: Fully composed images with coloured cluster assignments
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