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Abstract

Engaging in conversational recommendations within a specific sce-
nario represents a promising paradigm in the real world. Scenario-
relevant situations often affect conversations and recommendations
from two closely related aspects: varying the appealingness of items
to users, namely situated item representation, and shifting user in-
terests in the targeted items, namely situated user preference. We
highlight that considering those situational factors is crucial, as this
aligns with the realistic conversational recommendation process in
the physical world. However, it is challenging yet under-explored.
In this work, we are pioneering to bridge this gap and introduce
a novel setting: Situated Conversational Recommendation Systems
(SCRS). We observe an emergent need for high-quality datasets,
and building one from scratch requires tremendous human effort.
To this end, we construct a new benchmark, named SCREEN, via
a role-playing method based on multimodal large language models.
We take two multimodal large language models to play the roles
of a user and a recommender, simulating their interactions in a co-
observed scene. Our SCREEN comprises over 20k dialogues across
1.5k diverse situations, providing a rich foundation for exploring
situational influences on conversational recommendations. Based
on the SCREEN, we propose three worth-exploring subtasks and
evaluate several representative baseline models. Our evaluations
suggest that the benchmark is high quality, establishing a solid ex-
perimental basis for future research. The code and data are available
at https://github.com/DongdingLin/SCREEN.

CCS Concepts

« Computing methodologies — Discourse, dialogue and prag-
matics; « Information systems — Recommender systems.
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1 Introduction

Building a Conversational Recommendation System (CRS) [4, 14,
22] that can communicate with people in multimodal situations
is an attractive goal for the AT community. Existing multimodal
CRSs [7, 27, 38, 40, 44] integrate textual and visual product informa-
tion in various ways to enhance recommendation processes. Chen
et al. [3], Nie et al. [29] enrich the multimodal context by incor-
porating item images and dialogue histories. Meanwhile, Zhang
et al. [42] employs a multi-attribute graph model to capture diverse
item attributes. Additionally, Du et al. [6] advances item represen-
tations through a multimodal transformer, capturing both global
and local perspectives of items. Multimodal CRSs are targeted to
integrate textual and visual information to model user preferences
and item representations, expecting the system to provide precise
and appropriate recommendations.

Despite considerable advancements, existing multimodal CRSs
still face challenges in understanding dynamic user preferences
and accurately representing real-world items. This is mainly due
to two key aspects: (1) User Preference Modeling: current methods
[7, 38, 44] narrowly leverage a user’s historical profiles, general
interests, and conversational histories to model user preferences.
These approaches typically overlook the dynamic nature of user
interests and choices, which can fluctuate significantly due to situ-
ational factors, such as product location and the current season’s
climate. This leads to what can be termed as situated user preference
— a concept that requires grounding the user’s underlying inter-
ests to the current environment and situational context. (2) Item
Representation: conventional modeling in CRSs often represents
items through intrinsic and static attributes [6]. It fails to account
for the variability in an item’s attraction, which can change with
situational factors like the spatial layout and daily weather, leading
to what can be termed as situated item representation. This con-
cept extends beyond traditional static attributes by adapting to
environmental contexts, providing a more context-sensitive item
representation. As demonstrated in Figure 1, considering the situ-
ation (e.g., spring) beyond the intrinsic attributes of an item (e.g.,
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Situated Conversational Recommendation System

Situation

Time: Late afternoon

Location: A clothing store
Climate: The climate is warm and pleasant, with a gentle breeze and the
essence of
User Mood: The user is in a relaxed and cheerful mood
User The user is dressed in a light, casual button-down shirt and khaki chino

Appearance: pants, with long, soft hair.

Conversation
ﬁ Hi, I want to buy a dress that | can wear to a party. ]
- Do you have any recommendations?
& . .
- ©

[ Of course, do you prefer long skirts or short?

@ | usually wear short skirts. But | want to try long
&) skirts for this party.

What do you think of this light-red dress? It appears

very elegant and is suitable for wearing to party. It is 1’
also quite appropriate for the season and -

matches well with your temperament.
6 Looks great, thanks for the recommendation, please
et add it to my shopping cart.

Figure 1: An illustrative example for Situated Conversational
Recommendation System (SCRS).

brand or appearance) leads to a more accurate representation of
the item in the given context. Moreover, by analyzing the user’s
outfit (e.g., dressed in a light shirt), emotion (e.g., cheerfulness),
and dialogue history, the system captures user preferences more
accurately within the current scenario. Afterward, the system is
able to recommend a personalized product (e.g., a light-red dress)
that is more appealing to the user.

In this work, we extend the traditional multimodal CRS to a
more realistic paradigm: Situated Conversational Recommendation
System (SCRS). It requires the system to consider the inherent con-
nection between users and items under specific situational contexts,
thereby conversing with higher engagement and providing more
appropriate recommendations to users. While the advancement
of SCRS is essential, the absence of a high-quality benchmark re-
mains a significant obstacle to its development. Thus, we raise the
question: how can we utilize minimal human efforts to construct a
high-quality SCRS dataset?

Inspired by the powerful human-mimicking capabilities of large
language models (LLMs) [10, 19], we construct a high-quality SCRS
benchmark, namely Situated Conversational REcommENdation
(SCREEN), based on a role-playing approach. We use carefully
designed instructions to prompt LLMs as agents to play the roles
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of users and recommenders in a simulated environment. To let
them “see” the co-observed scene, we use multimodal LLMs to
extract visual features given specific situations. In the end, we ob-
tain over 1.5k scenes with 20k recommendation-oriented dialogues.
Moreover, we delineate three critical subtasks to evaluate SCRS
comprehensively: system action prediction, situated recommenda-
tion, and system response generation. These subtasks measure the
system’s performance in accurately interpreting user intentions,
modeling situated item representations, capturing situated user
preferences, and generating responses that actively engage users.
Additionally, we employ multiple representative baseline models
and evaluate their performances on the SCREEN benchmark.

Our contributions are summarized as follows: (1) We expand the
scope of traditional multimodal CRS to SCRS. This under-explored
yet promising paradigm incorporates situational context into the
recommendation reasoning process, furnishing users with more
engaging and contextually appropriate recommendations. (2) We
construct a comprehensive and high-quality benchmark named
SCREEN to facilitate exploration in this nascent field. (3) We identify
and articulate three essential subtasks for evaluating SCRS. We
further present baseline results on the SCREEN, establishing a solid
experimental basis for future research.

2 Related Work

2.1 Conversational Recommendation Systems

Conversational recommendation systems (CRS) have become a ma-
jor research focus, delivering superior recommendations through
natural language interactions [14, 22, 34]. Most CRS datasets, includ-
ing REDIAL [20], TG-REDIAL [46], INSPIRED [11], and DuRecDial
[23, 24], rely heavily on text, using dialogue histories and item at-
tributes but neglect the crucial role of visual information associated
with items. To address the need for multimodal CRS, the intro-
duction of the MMD benchmark dataset [33] marked a significant
advancement, initiating tasks that cater to multimodal, domain-
specific dialogues. The MMConv dataset [21] further expanded
this by covering multiple domains. Despite these advancements,
existing datasets fail to fully capture the diverse expressions of
users’ subjective preferences and recommendation behaviors in
real-life scenarios, a gap the SURE dataset [25] seeks to fill. The
SIMMC-VR dataset [36] also enhances the system’s comprehension
of spatial and temporal contexts. However, integrating situational
context into CRS—adapting recommendations based on users’ en-
vironments and activities—remains underexplored, presenting a
promising direction for developing more context-aware systems.

2.2 Situated Dialogues

Recent advancements in situated dialogues have emphasized the
importance of embedding interactions within specific contextual
situations, driving interest in training agents for multimodal ac-
tions grounded in dynamic multimodal input and historical dia-
logue context. To facilitate this research, Crook et al. [5], Moon
et al. [28] developed the SIMMC dataset, establishing a foundation
for situational, interactive multimodal conversations. Despite its
significance, the SIMMC dataset faced criticism for its simplistic
and unrealistic multimodal contexts. To this end, Kottur et al. [17]
introduced SIMMC 2.0, enhancing multimodal dialogue capabilities
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Figure 2: Overview of our automatic dataset construction framework for situated conversational recommendation.

but focusing primarily on immediate, local topics, which limited
its support for more dynamic, forward-looking conversations.To
address this limitation, Otani et al. [31] presented SUGAR, a dataset
to improve agents’ proactive response selection. Despite these ad-
vancements, integrating situated conversations into CRSs presents
untapped potential. It demands a deep understanding of user pref-
erences and item representations in specific contexts. Our work
incorporates situational factors into recommendation reasoning,
enabling the system to deliver more accurate, contextually relevant
recommendations that align with the user’s situational context and
preferences, potentially enhancing user engagement.

3 SCRS Dataset Construction

3.1 Problem Formulation
We consider a SCRS dataset D = {(S;, J;, Ui, C;)}V.., where N

is the total number of dialogues. In the i-th dialoglué, S, repre-
sents the situational information, which includes the user-system
co-observed scenario (e.g., scene snapshot), spatiotemporal infor-
mation (e.g., time), and environmental information (e.g., climate). Z;
represents all items in this situation S;. U; denotes the user’s per-
sonalized information (e.g., user profile, user state). C; = {Ci,t}lt\fl
is the dialogue content, with a total of Nt turns. The task of SCRS
is formalized as follows: given the situational information S, all
items 7 in this situation, a set of user’s personalized information U,
and a dialogue context C, the objective is to select and recommend
the most appropriate item in the scene S to the user and generate
a natural language response that matches the scene content. Com-
pared with traditional CRS, SCRS requires that the recommended
items and responses closely relate to the situational context.

This section describes a role-playing framework for constructing
an SCRS dataset by integrating multiple LLM agents, inspired by

Scene Information Pool Instruction Template:

Imagine yourself as a consumer viewing a scene screenshot. Several
boxes are drawn on the image, and each box encloses a piece of
clothing or furniture, marked with a corresponding number. Describe
them according to the number sign, focusing on the color, type, and
pattern. Below is the name of each piece of clothing or furniture. It is
auxiliary information to help you identify them:

1. <NAME_OF ITEM 1>

2. <NAME OF ITEM 2>

Figure 3: Instruction template for the scene pool generation.

[35]. As depicted in Figure 2, the framework comprises two key
components: generating a Scene Information Pool and establishing a
Role-Playing Environment. First, scene item metadata only describes
its intrinsic attributes, lacking the subjective descriptions common
in real-world user-salesperson interactions [25]. To address this, we
use multimodal LLMs to generate subjective descriptions, enriching
item information (e.g., describing a clothing item as “enthusiastic
and bold” rather than just “very red”). Second, the role-playing
environment includes three agents: user, system, and moderator,
each following meticulously designed instructions to facilitate ef-
fective communication and interaction. Our work leverages VR
snapshots from the SIMMC 2.1 dataset [16], encompassing diverse
scenes from 140 fashion and 20 furniture stores, with detailed meta-
data covering nine attributes per item, including type, color, pattern,
material, price, brand, size, sleeve length, and consumer reviews.

3.2 Scene Information Pool Generation

When making conversational recommendations in scenarios, users
often prioritize a product’s situational attributes (e.g., appearance
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and location) over intrinsic ones (e.g., price, brand), leading to more
intuitive decision-making. Users tend to prejudge products based
on these situational attributes, which can vary depending on the
scenario and be influenced by external factors like lighting or item
placement. For example, pants may appear more vibrant under soft
lighting than under bright lighting. While existing research typi-
cally describes products using specific referring expressions (e.g.,
“red clothes”), non-expert users often use subjective descriptions
(e.g., “clothes designed for young women”), which are generally
missing from conventional product meta-databases. To address this,
we enhance item metadata with situational attributes and subjec-
tive descriptors, providing a more nuanced item representation.
Leveraging recent advancements in multimodal LLMs, particularly
the Set-of-Mark technique [39], we improve item recognition and
description generation. Using spatial data from the SIMMC 2.1
dataset, which provides precise coordinates for products within
scene snapshots, we create bounding boxes and assign unique iden-
tifiers for each item. These annotated snapshots are processed by
GPT-4V (gpt-4-1106-vision-preview version), tasked with elu-
cidating situational attributes and subjective descriptions based on
the prompt shown in Figure 3. The output is integrated into existing
product metadata to form a comprehensive scene information pool.

3.3 Role-Playing Environment

Our role-playing environment is crafted to provide a global envi-
ronment description that prompts all LLM agents. To engender a
realistic and multifaceted setting, it incorporates three principal
dimensions: (1) Temporal phases, which are delineated into morning,
noon, afternoon, and evening; (2) Spatial settings, which encompass
both fashion and furniture retail spaces; and (3) Climate, which
is represented by the quartet of seasons: spring, summer, autumn,
and winter. To augment the diversity within the simulation, we
employ ChatGPT (gpt-3.5-turbo version) to generate succinct
narratives for each seasonal context. For example, in the scenario
“afternoon, fashion store, spring,” the ambiance is vividly depicted
as “It is the afternoon, and you find yourself in a fashion store. A
gentle breeze wafts through, heralding the arrival of spring.” Such
tailored descriptions are appended to the beginning of each agent’s
instructions, ensuring a coherent framework for interaction.

3.3.1 User Agent. The user agent primarily aims to simulate con-
sumers’ shopping behavior across diverse scenarios, generating
responses based on their preferences, profiles, and personalities. To
this end, we set user information through the following aspects:

User Preference. In the given scenario, we catalog the attributes
of all products and allocate user preferences (favor, aversion, or
neutrality) to each attribute randomly. This approach facilitates the
generation of a wide range of personalized preferences. To enrich
the expression of user preferences and inject it with a more natural
and diverse vocabulary, we employ ChatGPT to refine this struc-
tured information into fluent natural language. Figure 4 illustrates
the instruction template used for this transformation. Subsequently,
structured user preferences are described more naturally, such as,
“You exhibit a preference for red, an aversion to white, and display no
particular inclination towards purple;...”
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User Preference Instruction Template:

The following is a structured expression of user preference. Please
refine this structured information in natural and fluent language. Be
careful to start with “you," and the length should not exceed 50 words.
Color: red (favor), white (aversion), purple (neutral)...

Style: jacket (favor), shirt (favor), sweater (aversion)...

User Profile Instruction Template:

The following is a structured expression of a user profile. Please
refine this structured information into natural and fluent language. Be
careful to start with "you," and the length should not exceed 50 words.
Name: John; Age: 18 years old; Gender: Male; Profession: Doctor;
Emotional State: Joyful; Upper Body: White shirt; Lower Body:
Jeans; Hair Style: Short; ...

User Personality Instruction Template:

The following is a structured expression of a user's personality. Please
refine this structured information into natural and fluent language. Be
careful to start with "you," and the length should not exceed 50 words.
Openness: Intellectual; Conscientiousness: Efficient; ... )

Figure 4: Instruction template for the user preference, user
profile, and user personality generation.

User Profile. Leveraging the user information in the DuRecDial
dataset [23], we developed a structured pool of personal profile
attributes, including but not limited to name, age, gender, and pro-
fession. For instance, a typical user profile in this structured pool
might be described as follows: “Name: John; Age: 18; Gender: Male;
...”. Additionally, we enriched these profiles with emotional states
(e.g., joy, cheerfulness, excitement, sadness, worry, and grief) and
appearance descriptions based on items captured in another scene
snapshot to mirror real-user scenarios. An example could be “Emo-
tional State: Joyful; Upper Body: White shirt; Lower Body: Jeans; ...”.
It is crucial to highlight that, similar to how a salesperson makes
recommendations based on the user’s appearance in real life, the
system agent can also observe the user’s appearance to infer the
user’s preferences and make appropriate recommendations. We use
ChatGPT to refine this structured information into fluent natural
language similar to processing user preferences information. The
instruction template is shown in Figure 4.

User Personality. To further reflect the user’s personality and
increase the user agent’s diversity, we also use the Big Five per-
sonality traits [9, 41] to simulate user personalities. These traits
provide a framework for the assignment of attributes representing
positive and negative aspects along five dimensions: openness (O),
conscientiousness (C), extraversion (E), agreeableness (A), and neu-
roticism (N). Combining these characteristics allows for creating
a nuanced and comprehensive user personality model, enriching
diverse interactions. As shown in Figure 4, we leverage ChatGPT
to refine such structured information into fluent natural language,
similar to how user preferences are processed.

In the end, we use natural languages to express the simulated
user and prompt the user agent to play the role of a customer. Figure
5 shows the complete instruction template.
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User Agent Instruction Template:

Imagine yourself as a consumer shopping at a clothing store |
furniture store. This image is a snapshot of the store. Here are your
details:

1. <Generated User Preference>

2. <Generated User Profile>

3. <Generated User Personality>

You need to judge whether the system's recommendations align with
your criteria. Your response should be concise, no more than 50
words. You do not need to recommend anything but feel free to
express your interests.

System Agent Instruction Template:

Imagine yourself as a salesperson in a clothing store | furniture store.
This image is a snapshot of the store. The following is the
customer‘s appearance: <Generated User Appearance>.You have
metadata and subjective description for all items in the store: <Item
Metadata>; <Generated Item Subjective Description>. You need to
first choose one of the 6 actions (<Predefined Actions>) to decide
your next action, and generate a corresponding response based on
your action. Please output in the format of [Action]:[Reply]. Your
response should be concise, no more than 100 words.

Moderator Agent Instruction Template:

You are the moderator of a conversation. You need to decide
whether the conversation should end immediately. The conversation
should be terminated in the following three situations: (1) The
system completes the recommendation, the user accepts the
recommendation based on the preset preferences, and the system
action is not <Topic Transfer>. (2) The user rejects the system’s
recommendations multiple times (more than three times) (3) The
conversation between the user and the system reaches the maximum
number of rounds limit (30 rounds). Should the following dialogue

\<Ong0ing Conversation> be ended? Answer yes or no. Y,

Figure 5: Instruction template for different agents.

3.3.2 System Agent. The system agent aims to serve as a human-
like salesperson, such as a clothing salesperson in a fashion store.
Its primary objective is to recommend the most appropriate items
based on the user’s preferences expressed during the conversation.
To realize this vision, we design the system agent with predefined
actions: (1) Describe Item Information. The system agent proac-
tively offers the user comprehensive details of the items, including
intrinsic attributes, situational attributes, and subjective descrip-
tions. (2) Inquire About Preferences. The system agent gathers
user preferences by querying their opinions on specific items within
the scene or clarifying ambiguities in the user’s requests to ascer-
tain their needs accurately. (3) Address User Queries. The system
agent provides the requested information upon user inquiries about
an item, ensuring that user inquiries are promptly and effectively
addressed. (4) Topic Transfer. When the user accepts an item the
system agent recommends, the system agent determines whether to
introduce another item or to delve deeper into the current selection,
thus guiding the conversation strategically. (5) Make Recommen-
dations. When the system agent deems sufficient information on
user preferences has been collected, it will decide which item to
recommend. (6) Add to Cart. When the user accepts a recommen-
dation, the system agent inquires whether the user wishes to add
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the item to their shopping cart. It is worth noting that in each
interaction, the system agent is required to identify the action it
intends to execute initially. Subsequently, it generates a response
that aligns with the specified action.

In addition, similar to real-life shopping experiences, the sales-
person can observe the customer’s appearance but cannot obtain
the customer’s profile (e.g., name, profession). In the simulated
conversation between the user and the system, the system can get
the user’s appearance but not the user’s private profile. Therefore,
we convey information about the user’s appearance to the system
agent, aiding in understanding and capturing user preferences. In
practice, we further enhance system agents with self-augmented
instructions, where the agent’s prompts will be repeated in each
conversation round to avoid forgetting the items’ details. The spe-
cific system agent instruction template is shown in Figure 5.

3.3.3  Moderator Agent. The moderator agent is designed to au-
tomatically manage whether the conversation between the sys-
tem agent and the user agent should be terminated. It also tracks
whether the user agent accepts or rejects the recommended items
based on their preset preferences. To ensure that the constructed
data meets the desired characteristics, we set certain natural lan-
guage conditions to terminate the conversation. These conditions
are summarized as follows: (1) The system agent completes the
recommendation, the user agent accepts it, and the recommended
item aligns with the agent’s predefined preferences. In addition, the
system action is not topic transferred. (2) The user agent rejects the
recommended items by the system agent multiple times (e.g., more
than three times). (3) The interaction is deemed concluded once
the conversation between the system agent and the user agent hits
the maximum number of turns. Note that the synthesized conversa-
tion terminated under the first condition is accepted as valid data,
while those that end under the second and third conditions are
categorized as invalid and discarded. Figure 5 describes the specific
moderator agent instruction template.

3.4 Dataset Construction

In this study, the unique multimodal context of our conversational
scenario integrates both visual (i.e., scene snapshots) and textual
(including dialogue history and instructions) elements. To accom-
modate this complexity, the user and system agents are powered
by GPT-4V (gpt-4-1106-vision-preview version), a variant of
ChatGPT specially enhanced for multimodal tasks. Conversely,
the moderator agent, which functions without reliance on visual
cues, utilizes GPT-4 (gpt-4-1106-preview version) to navigate
its decision-making processes effectively. The dialogue initiation
occurs as the system agent greets the user agent, triggering a se-
quence of interactions that evolve through numerous dialogue
rounds. These interactions are concluded ultimately with an inter-
vention from the moderator agent. Collectively, these agents can
collaborate to construct large-scale, high-quality dialogues rapidly,
significantly reducing the need for human intervention.

Our role-playing framework is built upon the open-source li-
brary ChatArena [37]. We have standardized the response genera-
tion across all agents by setting a temperature of 0.8. The maximum
generation tokens are also tailored for each agent type, with limits
set at 120, 80, and 20 for the system, user, and moderator agents,
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Table 1: Comparison between our SCREEN dataset and other related datasets (SB: situation-based, SR: situated recommendation,

*: jtem images, ': scene snapshots).

Dataset Task Modality Participants SB SR Domains #Image #Dialogue
REDIAL [20] CRS Textual Crowd Workers X X Movie - 10,006
TG-REDIAL [46] CRS Textual Crowd Workers X X Movie - 10,000
INSPIRED [11] CRS Textual Crowd Workers X X Movie - 1,001
MMD [33] Multimodal CRS ~ Textual+Visual Crowd Workers X X Fashion 4,200* 105,439
SIMMC 2.0 [17] Situated Dialogue Textual+Visual Crowd Workers v X Fashion, Furniture 1, 566" 11,244
SURE [25] Multimodal CRS ~ Textual+Visual Crowd Workers v/ X Fashion, Furniture 1,566 12,180
SCREEN Situated CRS ~ Textual+Visual ~LLMagents v/ v  Fashion, Furniture 1,5667 20,112

Table 2: Statistics of the SCREEN dataset.

Total #dialogue(train/valid/test)
Total #utterances(train/valid/test)

16,089/2,011/2,012
172,152/20,713/21,528

Total #scene snapshots 1,566
Avg. #words per user turns 15.7
Avg. #words per assistant turns 20
Avg. #utterances per dialog 10.7
Avg. #objects mentioned per dialog 4.3
Avg. #objects in scene per dialog 19.7

respectively. This structured approach ensures a balanced and effi-
cient dialogue generation process, catering to the distinct needs of
each agent’s role in the conversational architecture.

4 SCREEN Dataset

Based on our dataset construction framework, we build a high-
quality SCRS dataset named SCREEN. Compared to related mul-
timodal CRS datasets, our SCREEN uniquely targets situated rec-
ommendations. We first provide a comprehensive overview of the
SCREEN dataset, then propose three essential sub-tasks to measure
SCRS, including the task formulation and evaluation metrics.

4.1 Dataset Statistics

Table 1 presents a comparative analysis between the SCREEN
dataset and other related datasets. To our knowledge, the SCREEN
dataset is the first dataset within the SCRS domain designed to
facilitate recommendations in distinct scenarios. In deviation from
conventional text-based CRS datasets, such as REDIAL, SCREEN
incorporates visual elements, thus enabling a more comprehensive
modeling of item representations. While datasets like MMD and
SURE also integrate visual information, they do not consider user
preferences and item representations in specific scenarios. SIMMC
2.0 serves as a task-oriented dataset geared towards situational
dialogues, while the SCREEN dataset distinguishes itself by con-
centrating on situated conversational recommendations. Moreover,
the SCREEN dataset’s inclusion of detailed, personalized informa-
tion—namely, the Big-5 personality traits—in creating user agents
ensures that the generated utterances are more natural and realistic.

Table 2 presents a comprehensive analysis of the SCREEN dataset.
As the table delineates, the dataset is divided into training, valida-
tion, and test sets, adhering to an 8:1:1 ratio. A notable observation

is that sentences generated by the system agent are longer than
those generated by the user agent. This discrepancy stems from
the system agent’s necessity to introduce detailed information re-
garding the items to the user. On average, each dialogue mentions
approximately four distinct objects, while each conversational scene
involves around 20 objects. A particular feature of the SCRS, as
opposed to traditional CRS, is that each dialogue within SCRS is
associated with a unique list of recommendation candidates, di-
verging from the conventional approach where all conversations
access a communal candidate list. Consequently, the SCRS frame-
work is required to model the representation of items within the
conversational scene to provide appropriate recommendations.

4.2 Task Formulation

We delineate three sub-tasks to explore the performance of SCRS:
system action prediction, situated recommendation, and system re-
sponse generation. These subtasks are essential to validate whether
an SCRS comprehends the situation, user intent, and conversational
history nuancedly, which are critical for delivering accurate and
contextually relevant recommendations. The system action pre-
diction measures the ability to generate guided actions to satisfy
user needs. The situated recommendation measures how well the
situational context is utilized to tailor recommendations to user
preferences. The system response generation focuses on crafting
natural, coherent, and context-aware responses crucial for sustain-
ing user engagement and satisfaction.

4.2.1 System Action Prediction. As delineated in Section 3.3.2, the
system agent determines its subsequent actions based on informa-
tion derived from the dialogue history and the contextual scenario
involving the user. This necessitates the system’s capability to
comprehend the user’s intent, capture the user’s preferences, and
incorporate the attributes of items present within the scenario to
decide the next step (e.g., make recommendations). The system’s
performance is quantitatively assessed by calculating the aggregate
precision, recall, and F1 scores of the system’s action predictions.

4.2.2  Situated Recommendation. Building upon the foundation laid
by [17], we extend the traditional tasks in CRS to encompass the
situated recommendation task as a principal task within SCRS. This
pivotal task requires the system to align items’ attributes with the
user’s situated preferences, leveraging the scenario, dialogue his-
tory, and detailed item information to deduce the aptest recommen-
dation for the user. It is important to note that a recommendation
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Table 3: Automatic evaluation results of representative baseline models on three proposed subtasks based on the SCREEN
dataset. The best results are highlighted in bold (¢-test with p-value < 0.05).

‘ System Action Prediction ‘ Situated Recommendation ‘

System Response Generation

Model | Precision | Recall | F1 | R@1 | R@2 | R@3 | PPL(]) | BLEU-2 | BLEU-3 | DIST-1 | DIST-2
SimpleTOD+MM [5] 0.715 0.736 0.725 | 0.085 | 0.161 0.244 19.3 0.089 0.041 0.028 0.114
Multi-Task Learning [18] 0.727 0.753 0.740 | 0.107 | 0.199 0.298 17.5 0.105 0.054 0.031 0.112
Encoder-Decoder [12] 0.838 0.856 | 0.847 | 0.148 | 0.277 0.425 12.7 0.140 0.071 0.038 0.178
Reasoner [26] 0.902 0.925 0.913 | 0.190 | 0.395 0.588 10.2 0.181 0.078 0.043 0.192
MiniGPT4 [47] 0.946 0.951 0.948 | 0.234 | 0.498 0.697 4.31 0.252 0.117 0.081 0.310
GPT-40 [13] 0.951 0.974 | 0.962 | 0.284 | 0.557 0.751 - 0.276 0.132 0.107 0.337
Table 4: Human evaluation results of baseline models on SCREEN Win SIMMC2.1 Win Tie
[(3 » “Qs . »
:IhefSCRJE(IiSN data:fzt.f SR (‘ienotes” Sjuatlon]:{elevance A Situation Relevance 520 229% _—
nform.” denotes "informativeness”, k denotes kappa. Personality 82% 8% 10%
User State 80% 10% 10%

Model ‘ SR K ‘ Fluency « ‘ Inform.

SimpleTOD+MM [5] 0.74 042 1.31 0.41 0.89 0.48
Multi-Task Learning [18] | 0.98 0.48 1.35 0.45 1.01 0.56
Encoder-Decoder [12] 1.04 0.51 1.57 0.47 1.17 0.51
Reasoner [26] 1.19 047 1.61 0.52 1.48 0.48
MiniGPT4 [47] 1.42  0.55 191 0.52 1.70 0.49
GPT-40 [13] 1.50 0.50 1.95 0.49 1.75 0.52

is not mandated at each interaction, as users might seek insights
into the item’s attributes or other related information. Recommen-
dations are thus made only when the system’s action is explicitly
to “make recommendations.”

Following existing studies [20, 46], we adopt a widely recognized
metric for assessing the performance of recommendations. The
automatic metric, Recall@k (R@k, where k= 1, 2, 3), evaluates the
accuracy of the top-k items recommended by the model against the
ground truth items provided by the system agent.

4.2.3 System Response Generation. The objective of this subtask is
to generate responses in natural language. The system is required
to generate responses based on its decided actions, the historical
context of the dialogue, snapshots of the scene, and information
of items within the given scenario. Similar to [17], our evaluation
metrics include Perplexity (PPL) [15], BLEU-2,3 [32], and Distinct
n-gram (DIST- n, n = 1, 2) [2], to assess the quality of the responses
generated by the system. Perplexity serves as an indicator of natu-
ral language fluency, wherein a lower Perplexity value signifies a
higher degree of fluency. The BLEU-2,3 metric evaluates the con-
cordance of word sequences between the generated responses and
the reference responses, with higher BLEU scores indicating closer
approximation to the reference responses. The DIST-n measures
the diversity of the generated responses at the sentence level, with
higher scores denoting a broader variety in sentence construction.

5 Experiments
5.1 Baseline Models

We implemented and assessed several multimodal baseline models
on our proposed SCREEN dataset: (1) SimpleTOD+MM Model [5]:
It is an extension of the SimpleTOD model on the SIMMC dataset,

Rec. Appropriateness 48% 20% 32%
Figure 6: Human evaluation results of dataset comparison.

“Rec” denotes “Recommendation”.

supporting multimodal inputs. It views system action prediction as
a causal language modeling task and finetunes the pretrained GPT2
language model to generate both system actions and responses.
(2) Multi-Task Learning [18]: It utilizes multitask learning tech-
niques to train a GPT2-based model, demonstrating robust perfor-
mance across all tasks on the SIMMC dataset. (3) Encoder-Decoder
[12]: It is an end-to-end encoder-decoder model based on BART
for generating outputs, achieving first place in the overall rank-
ing in the SIMMC competition. (4) Reasoner [26]: It employs a
multi-step reasoning method and performs exceptionally well in
the SIMMC 2.0 competition. (5) MiniGPT4 [47]: For this widely
used multimodal LLM, we concatenate the dialogue history and
scene snapshot as input for the model and view all three subtasks
as response generation tasks to generate results. (6) GPT-40 [30]:
It is a state-of-the-art multimodal LLM developed by OpenAl. To
ensure a fair comparison, we follow the same setting as MiniGPT4
and adopt official configurations during inference.

5.2 Automatic Evaluation

The automatic evaluation results for the three subtasks on the
SCREEN dataset are presented in Table 3, with the best metrics
highlighted in bold. GPT4o received the highest score, as expected.
Among the open-source models, MiniGPT4 outperformed other
models across all subtasks, benefiting from its advanced language
understanding and generation capabilities based on an LLM. In
contrast, SimpleTOD+MM and MultiTask Learning, based on GPT2,
showed weaker performance. The Encoder-Decoder and Reasoner
models performed similarly, though the Reasoner had a slight edge
due to its dual-system mechanism. Notably, all models struggled
with situated recommendations, underscoring the challenge of cap-
turing user preferences in specific scenarios. Even GPT-40, while
accurate in system action prediction, faced difficulties in recom-
mending items and generating responses, two critical tasks in SCRS.
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5.3 Human Evaluation

We engaged three well-educated annotators to manually evaluate
the system-generated responses. To assess the relevance of these
responses to the contextual scene, we introduced a novel metric,
Situated Relevance. This metric evaluates whether the responses
accurately reference items in the scene and consider the user’s
appearance and climate conditions. Additionally, we employed the
criteria from [43, 45] to assess Fluency and Informativeness. Each
indicator was scored on a scale from 0 to 2, where 0 indicates no
relevance, informativeness, or fluency, and 2 signifies high rele-
vance, rich information, and smooth fluency. To determine inter-
annotator agreement, we calculated Fleiss’s kappa [8] and aggre-
gated the scores to derive the average human-evaluated results.
The human evaluation results in Table 4 show that Fleiss’s kappa
scores are within the [0.4, 0.6] range, indicating moderate agreement
among annotators. These findings closely align with the results
from automatic evaluations, supporting the effectiveness of the
three designed subtasks in assessing SCRS performance. Notably,
GPT-40 and MiniGPT4 outperform other models in generating more
situation-relevant, fluent, and informative responses. Although the
Reasoner and the Encoder-Decoder models demonstrate compara-
ble levels of situation relevance and fluency, the Reasoner’s outputs
are more informative due to its multi-step reasoning process that
gathers necessary elements for generation.

We conducted a human evaluation to verify the reliability of the
SCREEN dataset. We randomly selected 50 dialogues each from
SCREEN and SIMMC 2.1, forming dialogue pairs, and asked five
human evaluators to assess these pairs based on the following
criteria: “Situation Relevance,” which determines which dialogue is
more relevant to the scene; “Personality,” which evaluates which
dialogue better reflects the user’s personality; “User State,” which
assesses which dialogue considers the user’s mood and appearance
more; and “Rec. Appropriateness,” which judges which dialogue’s
recommendation is more appropriate. The comparative results,
presented in Figure 6, indicate that the SCREEN dataset achieves
higher win percentages than the artificially generated SIMMC 2.1
dataset. This outcome demonstrates the reliability of our dataset.

5.4 Discussions

To demonstrate the quality of responses generated by those baseline
models on the SCREEN dataset, we present an illustrative case in
Figure 7. We observe that Reasoner and MiniGPT4 can successfully
utilize contextual information from the scene (e.g., climate: summer)
and conversational history (e.g., playing basketball) to make ap-
propriate recommendations. While SimpleTOD+MM also attempts
a recommendation, it fails to specify the clothing recommended.
The MultiTask Learning and Encoder-Decoder models limit their
outputs to mere descriptions, omitting recommendations. Signif-
icantly, MiniGPT4 demonstrates an enhanced ability to generate
responses enriched with informative content, underscoring the ad-
vanced capabilities of LLMs. Nonetheless, we draw a conclusion
that there is still a large room to improve these baseline models to
fully address situated recommendations, remaining huge research
potential in the future.

We also identify some limitations of this work as follows. Utiliz-
ing LLM agents to simulate predefined roles in developing SCRS

Dongding Lin, Jian Wang, Chak Tou Leong, and Wenjie Li

Situated Conversational Recommendation System

Situation

Time: Late afternoon Location: A clothing store
Climate: The weather is relatively dry, and the hot air indicates summer.
User Mood: The user is in an excited and joyful mood.
User The user wears a blue long-sleeved shirt and sports pants with
Appearance: a crew-cut hairstyle.

Conversation History
User: Hello, | want to buy a sportswear suitable for playing basketball. Do

you have any recommendations?

System: Of course, do you prefer long sleeves or
User: | usually prefer to wear long sleeves, but the weather is too hot, so |

want to buy a short-sleeved one this time.

Generated Responses
SimpleTOD+MM | will recommend this clothing to you.
Multi-Task Learning This brown pair of pants looks very good.

Encoder-Decoder Yes, it looks great.

Reasoner The weather is so hot. | believe you will like this

MiniGPT4 Of course, | recommend this to
you. It is very suitable for playing basketball.

Groundtruth Yes, the weather is hot. | would recommend this

with a flame pattern in the middle. It makes you look cool
and is suitable for playing basketball.

Figure 7: Case study for different baseline models on the
SCREEN dataset.

still poses some challenges. Despite efforts to increase variability
through controlled settings, LLMs occasionally generate responses
with hallucinations [1]. In the future, post-processing measures
such as verification and corrections by multiple moderators will be
designed to enhance dataset quality. Moreover, rigorous ethical con-
siderations are paramount, especially in preventing the generation
of harmful content and ensuring no sensitive and private infor-
mation should be involved. To some extent, this can be alleviated
through manual sampling inspection.

6 Conclusion

This work proposes a novel problem setting named Situated Conver-
sational Recommendation System (SCRS) that enhances traditional
multimodal conversational recommendations by integrating situa-
tional factors. To facilitate advancements in this field, we construct
a comprehensive, high-quality benchmark named SCREEN using an
efficient role-playing approach based on multiple LLM agents. Fur-
thermore, we define three essential subtasks for SCRS and evaluate
several representative baseline models, moving to a new research
direction that narrows the gap between traditional and real-world
conversational recommendations.
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