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ABSTRACT
Extensive pre-training with large data is indispensable for downstream geometry
and semantic visual perception tasks. Thanks to large-scale text-to-image (T2I)
pretraining, recent works show promising results by simply fine-tuning T2I dif-
fusion models for a few dense perception tasks. However, several crucial design
decisions in this process still lack comprehensive justification, encompassing the
necessity of the multi-step diffusion mechanism, training strategy, inference en-
semble strategy, and fine-tuning data quality. In this work, we conduct a thorough
investigation into critical factors that affect transfer efficiency and performance
when using diffusion priors. Our key findings are: 1) High-quality fine-tuning
data is paramount for both semantic and geometry perception tasks. 2) As a spe-
cial case of the diffusion scheduler by setting its hyper-parameters, the multi-step
generation can be simplified to a one-step fine-tuning paradigm without any loss
of performance. 3) Apart from fine-tuning the diffusion model with only latent
space supervision, task-specific supervision is beneficial to enhance fine-grained
details. These observations culminate in the development of GenPercept, an ef-
fective deterministic one-step fine-tuning paradigm tailored for dense visual per-
ception tasks exploiting diffusion priors. Different from the previous multi-step
methods, our paradigm offers a much faster inference speed, and can be seam-
lessly integrated with customized perception decoders and loss functions for task-
specific supervision, which can be critical for improving the fine-grained details
of predictions. Comprehensive experiments on a diverse set of dense visual per-
ceptual tasks, including monocular depth estimation, surface normal estimation,
image segmentation, and matting, are performed to demonstrate the remarkable
adaptability and effectiveness of our proposed method.

1 INTRODUCTION

Recent studies have explored the transferability of text-to-image (T2I) diffusion models to dense
visual perception tasks, such as geometry estimation (Ke et al., 2024; Lee et al., 2024; Fu et al.,
2024b; Gui et al., 2024; Ye et al., 2024), image segmentation (Van Gansbeke & De Brabandere,
2024; Lee et al., 2024), and inverse rendering (Chen et al., 2024; Kocsis et al., 2024; Zeng et al.,
2024). While these works have demonstrated impressive results by repurposing diffusion models
for estimating geometric and semantic dense prediction maps, the critical design choices made in
transferring diffusion models to other dense perception tasks still lack comprehensive justification.
This makes it challenging to determine the optimal strategy for achieving optimal performance.

For example, Ke et al. (2024) align the visual perception process with the denoising process of Stable
Diffusion by fine-tuning all U-Net parameters. They highlight the significance of “multi-resolution
noise” in the forward diffusion process during training, aiming to obtain clean predictions by grad-
ually removing Gaussian noise. On the other hand, Lee et al. (2024) modify the forward diffusion
process by interpolating perception annotations with RGB images instead of using Gaussian noise,
and only train the low-rank adaptation (LoRA) (Hu et al., 2022) parameters while keeping the U-Net
frozen. To our knowledge, the effective components of these approaches have not been thoroughly
investigated, and it is unclear which design choices contribute most to the success.

In this work, we examine the design space of repurposing diffusion models for dense visual percep-
tion tasks, and attempt to answer the key question: What are the important design choices when
adapting diffusion models for general dense perception tasks?
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To answer this question, we rethink the importance of both fine-tuning protocols and fine-tuning
data. From the perspective of fine-tuning protocols, we categorize recent methods into two main
groups: stochastic multi-step generation and deterministic multi-step generation. We explore several
critical design choices, including the diffusion mechanism, key architectural components, training
methodologies, and data quality. Our key observations are as follows: 1) By setting the hyperparam-
eters of the diffusion scheduler to particular values, the multi-step generation can be simplified to
a one-step fine-tuning paradigm without any loss of performance. 2) Strict adherence to traditional
diffusion processes appears to be unnecessary. Single-step inference provides similar performance
with significantly faster execution. 3) High-quality synthetic fine-tuning data is crucial for sev-
eral perception tasks. From the perspective of fine-tuning data quality, we conduct comprehensive
dataset ablation studies on both synthetic datasets and real-world datasets.

Based on the aforementioned observations, we propose GenPercept (see Fig. 1), a deterministic
fine-tuning paradigm featuring a remarkably simple one-step inference pipeline, an optional cus-
tomized decoder, and an easily adaptable pixel-wise loss. We conduct extensive quantitative and
qualitative experiments on a wide range of visual dense perception tasks, including monocular depth
estimation, surface normal estimation, image segmentation, and matting to demonstrate the effec-
tiveness and generalization capability of our method.

In conclusion, our contributions can be summarized as follows: 1) We systematically analyze the
design space of fine-tuning protocols, considering both model architecture and dataset selection,
through comprehensive ablation studies. 2) Based on these insights, we propose GenPercept, a
simple paradigm that harnesses the power of the pre-trained UNet from diffusion models for gener-
alizable dense visual perception tasks.
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Figure 1: Comparisons of three different pipelines. Our GenPercept enables one-step inference and
supports pixel-wise losses and customized decoders to replace the cumbersome VAE decoder. We
also extend GenPercept to five dense perception tasks including monocular depth estimation, surface
normal estimation, dichotomous image segmentation, semantic segmentation, and image matting.

2 PRELIMINARY

We take the latent diffusion model as an example. To model the data distribution, the idea of the
diffusion model (Rombach et al., 2022; Chen et al., 2023; Song et al., 2020; Ho et al., 2020) is to
randomly sample a noise z(y)T ∼ N(0, I) and sequentially denoise it into a z(y)0 , which is distributed
according to the data. In the forward diffusion process, z(y)t is sampled by z

(y)
t =

√
ᾱtz

(y) +√
1− ᾱtϵ, where ϵ ∼ N(0, I), and ᾱt =

∏t
s=1 (1− βs). The variance schedule {βt ∈ (0, 1)}Tt=1 is

interpolated between βstart and βend with T steps, where larger values of (βstart, βend) correspond
to smaller ᾱt values, i.e., smaller proportion of noise. In the reverse process, Salimans & Ho (2021)
use a “v-prediction” objective, where a denoiser vθ minimizes the following:

L = Ez(y),ϵ∼N(0,I),t∼U(T )

∥∥∥(√ᾱtϵ−
√
1− ᾱtz

(y))− vθ(zt, t)
∥∥∥2
2
. (1)
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Figure 2: Illustration of different noise forms and proportions in the forward diffusion process. (a)
Visualization of interpolating ground-truth labels with Gaussian noise and RGB noise. (b) The re-
lationship between the noise proportion

√
ᾱt and the (βstart, βend) hyperparameters. (c) Small

(βstart, βend) values during the training of deterministic multi-step generation tend to lead to un-
clean estimation, which contains some RGB information. Enlarging them may alleviate this issue.

To fully leverage the pre-trained prior of the diffusion models for dense prediction tasks, previous
works have reformulated these tasks as a multi-step denoising process, especially on monocular
depth estimation. Given a data pair (z(x), z(y)) where z(x) is the observation and z(y) is the pre-
diction target, stochastic multi-step generation methods (Ke et al., 2024; Fu et al., 2024b; Gui et al.,
2024) such as Marigold (Ke et al., 2024) add z(x) as an additional input to the denoiser vθ, and use
vθ(z

(y)
t , z(x), t) to predict z(y). By contrast, deterministic multi-step generation methods such as

DMP (Lee et al., 2024) take the observation z(x) as a deterministic noise and compose z
(y)
t as a

blend between z(x) and z(y):

zt = z
(y)
t =

√
ᾱtz

(y) +
√
1− ᾱtz

(x), t = [1, ..., T ], (2)

The denoising process and forward diffusion process of these two categories are illustrated in Fig. 1
and Fig. 2 (a). We offer detailed formulations in the supplementary material.

3 DIFFUSION MODELS FOR VISUAL PERCEPTION TASKS

In this section, we explore the necessity and highlight the findings of the multi-step diffusion mech-
anism, the architectural components, training strategy, and fine-tuning data quality. We select the
stochastic method Marigold (Ke et al., 2024) and the deterministic method DMP (Lee et al., 2024)
as our baseline methods. The default experimental setting here is similar to Ke et al. (2024) and can
be found in the supplementary material.

3.1 THE FORM AND PROPORTION OF NOISE IN THE FORWARD DIFFUSION PROCESS

For the training process of Marigold and DMP, the timestep t is sampled to control the proportion
of noise added to the ground truth, and the network is trained to recover a clean ground truth from
a noisy latent. For smaller timesteps such as “t = 200”, as illustrated in Fig. 2(a), the input to the
network retains significant ground truth information (e.g., the purple color of the normal). Therefore,
we hypothesize that a certain level of ground-truth label information being part of the input makes
the network comparatively be easier to recover the clean ground truth latent than the case of the
absence of any ground truth information during training. This can limit the network’s capacity to
learn comprehensive knowledge and lead to unsatisfactory performance, as it is known that networks
can become lazy that tend to exploit “shortcuts”—the ground truth labels in the input in our case.
On the other hand, for inference there is no such ground truth available, causing disparity of input
signals between inference and training. We note that T2I tasks may suffer less due to their stochastic
nature, namely, converting a text prompt to a generated image is one-to-many mapping process.

To alleviate this issue, we attempt to control the blending proportion by changing the (βstart, βend)
values of the diffusion model’s DDPM scheduler. As shown in Fig. 2(b) and Fig. 2 of the supplemen-
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Table 1: Comprehensive quantitative comparisons about the impact of noise forms and proportions
in the forward diffusion process on monocular depth estimation. Visualizations of different noise
forms and the effect of (βstart, βend) values are shown in Fig. 2. The performance of DMP improves
steadily, while Marigold shows initial improvements followed by a decline. When βstart and βend

are equal to 1, the inference process can be reduced to one step without compromising performance.
“Rank” means the average rank of ten evaluation performance (smaller is better).

Type Noise Multi-res Steps (βstart, βend) KITTI NYU ScanNet DIODE ETH3D Rank↓Form Noise AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑
Marigold Gaussian ✓ 10 (0.0002125, 0.003) 0.358 0.462 0.297 0.555 0.246 0.625 0.494 0.565 0.267 0.640 7.0
Marigold Gaussian ✓ 10 (0.000425, 0.006) 0.122 0.854 0.106 0.887 0.136 0.829 0.345 0.716 0.086 0.927 5.8

baseline Marigold Gaussian ✓ 10 (0.00085, 0.012) 0.099 0.909 0.063 0.956 0.075 0.937 0.316 0.764 0.075 0.947 3.6
Marigold Gaussian ✓ 10 (0.0034, 0.048) 0.100 0.906 0.057 0.963 0.063 0.957 0.308 0.768 0.074 0.948 2.3
Marigold Gaussian ✓ 10 (0.1360, 0.192) 0.119 0.861 0.058 0.963 0.061 0.961 0.315 0.760 0.073 0.950 2.8
Marigold Gaussian ✓ 10 (0.5440, 0.768) 0.124 0.852 0.060 0.961 0.064 0.958 0.322 0.749 0.079 0.943 4.7
Marigold Gaussian ✓ 10 (1.0, 1.0) 0.104 0.897 0.055 0.965 0.059 0.962 0.312 0.762 0.069 0.955 1.7
Marigold Gaussian ✓ 1 (1.0, 1.0) 0.104 0.897 0.055 0.965 0.059 0.962 0.312 0.762 0.069 0.955 -
Marigold Gaussian × 10 (0.0002125, 0.003) 0.587 0.255 0.337 0.490 0.257 0.604 0.600 0.469 0.372 0.503 7.0
Marigold Gaussian × 10 (0.000425, 0.006) 0.536 0.289 0.313 0.527 0.248 0.621 0.565 0.499 0.328 0.575 6.0

baseline Marigold Gaussian × 10 (0.00085, 0.012) 0.153 0.807 0.162 0.802 0.187 0.737 0.411 0.641 0.157 0.826 5.0
Marigold Gaussian × 10 (0.0034, 0.048) 0.101 0.907 0.058 0.963 0.066 0.954 0.309 0.765 0.074 0.950 2.4
Marigold Gaussian × 10 (0.1360, 0.192) 0.115 0.870 0.056 0.965 0.060 0.961 0.313 0.763 0.072 0.953 2.3
Marigold Gaussian × 10 (0.5440, 0.768) 0.124 0.848 0.059 0.963 0.063 0.958 0.318 0.752 0.077 0.946 3.7
Marigold Gaussian × 10 (1.0, 1.0) 0.102 0.901 0.054 0.966 0.059 0.962 0.312 0.762 0.071 0.955 1.5
Marigold Gaussian × 1 (1.0, 1.0) 0.102 0.901 0.054 0.966 0.059 0.962 0.312 0.762 0.071 0.955 -

DMP RGB × 10 (0.0002125, 0.003) 0.476 0.336 0.267 0.601 0.216 0.677 0.457 0.588 0.185 0.757 6.9
DMP RGB × 10 (0.000425, 0.006) 0.265 0.630 0.201 0.072 0.195 0.717 0.386 0.674 0.116 0.880 6.1

baseline DMP RGB × 10 (0.00085, 0.012) 0.134 0.837 0.117 0.871 0.147 0.808 0.353 0.721 0.093 0.919 5.0
DMP RGB × 10 (0.0034, 0.048) 0.107 0.890 0.077 0.939 0.087 0.923 0.318 0.766 0.078 0.940 3.8
DMP RGB × 10 (0.1360, 0.192) 0.107 0.890 0.063 0.959 0.068 0.955 0.305 0.773 0.073 0.948 2.2
DMP RGB × 10 (0.5440, 0.768) 0.106 0.897 0.061 0.959 0.066 0.952 0.309 0.768 0.075 0.945 2.3
DMP RGB × 10 (1.0, 1.0) 0.100 0.902 0.053 0.966 0.059 0.961 0.309 0.768 0.068 0.956 1.2

Our baseline RGB × 1 (1.0, 1.0) 0.100 0.902 0.053 0.966 0.059 0.961 0.309 0.768 0.068 0.956 -

tary, training with a (βstart, βend) value of (1.0, 1.0) achieves the best rank performance for both
Gaussian noise and RGB noise, which is demonstrated in Table 1. Rather than achieving consis-
tent performance improvement while increasing the noise proportion, we observed that Marigold’s
performance begins to be slightly unstable when the (βstart, βend) values are sufficiently high. Ex-
periments of varying the random seed during both the training and inference process are conducted
to rule out the influence of randomness. The results show that we may not be able to exactly find
a set of unique values for (βstart, βend) to achieve the best accuracy, as the final accuracy can be
affected by a few other factors besides the aforementioned one.

Additionally, when (βstart, βend) are equal to 1, the noise proportion
√
ᾱt is equal to 0, and the

formulation of DMP can be derived from Eq. (1) and Eq. (2) as follows.

zt = z
(y)
t =

√
ᾱtz

(y) +
√
1− ᾱtz

(x) = z(x), t = [1, ..., T ],

L = Ez(y),ϵ∼N(0,I),t∼U(T )

∥∥∥−z(y) − vθ(zt, t)
∥∥∥2
2
.

(3)

In this case, the output of the denoiser vθ(·, ·) is enforced to learn the negative value of the ground
truth latent for each step, and the multi-step denoising is equivalent to the single-step denoising. We
propose to reduce the DDIM steps of DMP to one and call it “deterministic one-step perception”.
The resulting inference can be significantly faster, with performance remaining almost unchanged.
We name this as “our baseline” for the subsequent analysis.

Finding 1. By setting the (βstart, βend) values to 1, the multi-step generation is simplified
to a one-step fine-tuning paradigm without any loss of performance in both stochastic and de-
terministic methods, e.g., Marigold (Ke et al., 2024) and DMP (Lee et al., 2024) respectively.

3.2 WHERE DOES THE RICH VISUAL KNOWLEDGE RESIDE IN DIFFUSION MODELS?

Based on the baseline we proposed in §3.1, we conduct detailed ablation studies to thoroughly
investigate the necessity of each component of Stable Diffusion. Results are reported in Table 2.

Denoiser. We reinitialize the U-Net parameters and train the network from scratch on the same
datasets. Without prior knowledge of large data from LAION-5B, the network performs poorly and
loses the generalization capability. This indicates that most of the prior knowledge is stored in the
U-Net module.

VAE AutoEncoder. The VAE encoder’s original architecture is kept intact to maintain the consis-
tency of the encoding process. For the VAE decoder, we train it from scratch with image pixel MSE
loss. Without pre-trained parameters of the VAE decoder, it still performs well.
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Table 2: Explorations on the impact of the Stable Diffusion components on depth estimation. Cus-
tomized decoders and losses can also enable inference acceleration and performance improvement.

Setting Loss KITTI NYU ScanNet DIODE ETH3D
AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑

Our baseline MSE (Latent) 0.100 0.902 0.053 0.966 0.059 0.961 0.309 0.768 0.068 0.956
Train U-Net from scratch MSE (Latent) 0.219 0.650 0.186 0.736 0.183 0.729 0.426 0.614 0.185 0.741

Train VAE decoder from scratch MSE (Image) 0.096 0.916 0.055 0.964 0.058 0.964 0.302 0.759 0.071 0.950
Baseline + Image MSE loss MSE (Image) 0.097 0.915 0.054 0.964 0.059 0.964 0.305 0.760 0.071 0.953

Baseline + Image customized loss MSE + SSI + 0.094 0.923 0.052 0.966 0.056 0.965 0.302 0.767 0.066 0.967Grad. (Image)
Train DPT decoder from scratch MSE (Image) 0.099 0.912 0.055 0.964 0.058 0.963 0.302 0.759 0.069 0.956

Customized Head and Loss. The deterministic one-step perception pipeline enables customized
heads and loss functions. By utilizing a DPT decoder (Ranftl et al., 2021) and the loss functions
of DepthAnythingv2 (Yang et al., 2024b), we can implement a lightweight decoder that supervises
pixel-wise information at a higher resolution rather than latent features at 1/8 resolution. This
approach can accelerate inference times and enhance the acquisition of fine-grained details.

Finding 2. The primary perceptual prior knowledge of diffusion models is encapsulated
within the U-Net of the diffusion model. Customized heads and loss functions offers flexibil-
ity and may lead to faster inference speed and improved results.

3.3 WHAT ABOUT THE TIMESTEPS AND TEXT PROMPTS?

The timesteps and text prompts are crucial elements in utilizing the Stable Diffusion model to gen-
erate diverse images. We conducted ablation studies to investigate their significance. The results
reported in Table 3 indicate a negligible difference between various settings. Owing to the inherent
certainty associated with visual perception tasks, the diversity typically offered by the textual inputs
appears to be unnecessary. Similarly, the utility of timesteps is reduced, as the single-step paradigm
does not require progressive denoising.

Table 3: Quantitative comparisons among different timesteps and text prompts on depth estimation.
Setting Text Prompt Train / Infer KITTI NYU ScanNet DIODE ETH3D

Timesteps AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑
Our baseline “” Random / 1 0.100 0.902 0.053 0.966 0.059 0.961 0.309 0.768 0.068 0.956

Valid text input “A high quality RGB image” Random / 1 0.101 0.900 0.053 0.967 0.058 0.964 0.312 0.762 0.070 0.954
Random text input “F3@qV!k2*#Zpˆn%1Lz” Random / 1 0.099 0.904 0.054 0.965 0.059 0.963 0.311 0.763 0.069 0.955

Timestep1 “” 1 / 1 0.100 0.906 0.054 0.965 0.060 0.961 0.304 0.769 0.069 0.956
Timestep500 “” 500 / 500 0.102 0.897 0.053 0.966 0.059 0.961 0.307 0.765 0.068 0.956
Timestep900 “” 900 / 900 0.105 0.891 0.054 0.966 0.058 0.964 0.309 0.762 0.068 0.953

Finding 3. The timesteps and text prompts of diffusion models are negligible for the per-
formance of visual perception tasks.

3.4 HOW TO LEVERAGE THE U-NET’S PRIOR KNOWLEDGE?

The significance of the denoiser cannot be overstated. However, the strategies for its utilization are
worth a careful study. Should we freeze the denoiser, utilize its intermediate features, and merely
fine-tune the decoder for specific tasks? Alternatively, can we employ LoRA (Hu et al., 2022)
instead of extensively fine-tuning the entire denoiser? Unfortunately, the evidence suggests that
neither approach is ideal. As illustrated in Table 4, freezing the denoiser significantly compromises
performance. Although incorporating LoRA offers some advantages, it may not fully leverage the
potential of denoiser, especially with regular LoRA ranks of 4 and 16. This limitation likely stems
from the substantial differences between the noise-to-image denoising process and the image-to-
perception prediction task.

Finding 4. Fine-tuning the denoiser appears to be preferable for achieving better results,
compared to either merely utilizing its intermediate features or training a LoRA.
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Table 4: Explorations on the paradigms to leverage U-Net’s prior knowledge on depth estimation.
Setting LoRA KITTI NYU ScanNet DIODE ETH3D

Rank AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑
Our baseline - 0.100 0.902 0.053 0.966 0.059 0.961 0.309 0.768 0.068 0.956

Freeze U-Net + Train DPT decoder - 0.144 0.803 0.086 0.931 0.097 0.911 0.309 0.768 0.068 0.956
Train U-Net with LoRA 4 0.211 0.644 0.095 0.914 0.100 0.902 0.372 0.689 0.121 0.864
Train U-Net with LoRA 16 0.166 0.746 0.085 0.931 0.087 0.927 0.352 0.712 0.104 0.901
Train U-Net with LoRA 64 0.138 0.817 0.077 0.944 0.079 0.940 0.336 0.734 0.089 0.930
Train U-Net with LoRA 256 0.133 0.827 0.069 0.952 0.073 0.947 0.325 0.745 0.088 0.933
Train U-Net with LoRA 1024 0.125 0.849 0.067 0.955 0.074 0.947 0.324 0.747 0.084 0.939

Table 5: Investigations into the impact of training data quality on depth estimation.
Data Quality Datasets KITTI NYU ScanNet DIODE ETH3D

AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑
Synthetic Data Hypersim (50K) + Virtual KITTI (40K) 0.100 0.902 0.053 0.966 0.059 0.961 0.309 0.768 0.068 0.956

Real Data Taskonomy (50K) + Cityscapes (40K) 0.123 0.857 0.055 0.966 0.062 0.958 0.293 0.762 0.074 0.947

3.5 IS THE TRAINING DATA QUALITY ESSENTIAL?

The quality of annotations in real datasets is often lower compared to synthetic datasets, where data
is precisely rendered via simulators. In Table 5, we explore the impact of data quality on the fine-
tuning process. We sample the same distribution of real data, consisting of 90% from approximately
50K indoor images from the Taskonomy dataset (Zamir et al., 2018) and 10% from about 40K
outdoor images from the Cityscapes dataset (Cordts et al., 2016). With lower annotation quality, the
model achieves slightly worse performance. Also, the visualization in the supplementary material
indicates that noisy data significantly influences detailed predictions in visual perception tasks.

Finding 5. Data quality affects the fine-grained details of dense predictions significantly.

3.6 SUMMARY OF THE OBERVATIONS

Based on the preceding analysis, an effective approach to leveraging the prior knowledge of diffu-
sion models is to use them as single-step deterministic perception estimators. This can be done with
either a VAE decoder or a customized lightweight decoder. Additionally, employing pixel-specific
customized losses can further enhance detail and overall performance. We compare our determin-
istic single-step perception method with previous multi-step paradigms in Fig. 1. In the following
section, we extend these findings to a broader set of visual perception tasks, including surface normal
estimation, semantic image segmentation, dichotomous image segmentation, and image matting.

4 EXPERIMENTS ON VARIOUS DENSE VISUAL PERCEPTUAL TASKS

In this section, we empirically show the robust transfer ability of our GenPercept on diverse visual
tasks. Unless specified otherwise, we freeze the VAE AutoEncoder and fine-tune the U-Net of
Stable Diffusion v2.1 to estimate the ground-truth label latent for 30000 iterations, with a resolution
of (768, 768), a batch size of 32, and a learning rate of 3e-5. Different customized loss functions are
utilized to improve the performance further on dense visual perception tasks.

4.1 GEOMETRIC ESTIMATION

For geometry evaluation, the ensemble size, inference resolution, valid evaluation depth range (spe-
cific for depth estimation), and evaluation average paradigm (average by pixels or average by the
number of images) can be different for each method. To compare these approaches fairly, we follow
the open-source evaluation code of Marigold (Ke et al., 2024) for depth and DSINE (Bae & Davison,
2024) for surface normal, and evaluate the performance of partial existing SOTA methods with their
officially released model weights. They are labeled with † in the Table.

Monocular Depth Estimation. The monocular depth estimation aims to predict the vertical dis-
tance between the observed object and the camera from an RGB image. The estimated depth is
formulated as affine-invariant depth (Yin et al., 2021; Ranftl et al., 2020; 2021), and should be re-
covered by performing least square regression with the ground truth. The evaluation is performed
on five zero-shoft datasets including KITTI (Geiger et al., 2013), NYU (Silberman et al., 2012),
ScanNet (Dai et al., 2017), DIODE (Vasiljevic et al., 2019), and ETH3D (Schops et al., 2017). We
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Table 6: Quantitative comparison of affine-invariant depth estimation on five zero-shot datasets. Part
of the reported results (†) are evaluated following the evaluation protocol of Marigold by ourselves.

Method Training KITTI NYU ScanNet DIODE ETH3D
Samples AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑

MiDaS (Ranftl et al., 2020) 2M 0.236 0.630 0.111 0.885 0.121 0.846 0.332 0.715 0.184 0.752
Omnidata (Eftekhar et al., 2021) 12.2M 0.149 0.835 0.074 0.945 0.075 0.936 0.339 0.742 0.166 0.778

DPT-large (Ranftl et al., 2021) 1.4M 0.100 0.901 0.098 0.903 0.082 0.934 0.182 0.758 0.078 0.946
DepthAnything† (Yang et al., 2024a) 63.5M 0.080 0.946 0.043 0.980 0.043 0.981 0.261 0.759 0.058 0.984

DepthAnything v2† (Yang et al., 2024b) 62.6M 0.080 0.943 0.043 0.979 0.042 0.979 0.321 0.758 0.066 0.983
Metric3D v2† (Hu et al., 2024) 16M 0.052 0.979 0.039 0.979 0.023 0.989 0.147 0.892 0.040 0.983
DiverseDepth (Yin et al., 2020) 320K 0.190 0.704 0.117 0.875 0.109 0.882 0.376 0.631 0.228 0.694

LeReS (Yin et al., 2021) 354K 0.149 0.784 0.090 0.916 0.091 0.917 0.271 0.766 0.171 0.777
HDN (Zhang et al., 2022) 300K 0.115 0.867 0.069 0.948 0.080 0.939 0.246 0.780 0.121 0.833

GeoWizard (Fu et al., 2024b) 280K 0.097 0.921 0.052 0.966 0.061 0.953 0.297 0.792 0.064 0.961
DepthFM (Gui et al., 2024) 63K 0.083 0.934 0.065 0.956 - - 0.225 0.800 - -
Marigold† (Ke et al., 2024) 74K 0.099 0.916 0.055 0.964 0.064 0.951 0.308 0.773 0.065 0.960

DMP Official† (Lee et al., 2024) - 0.240 0.622 0.109 0.891 0.146 0.814 0.361 0.706 0.128 0.857
GeoWizard† (Fu et al., 2024b) 280K 0.129 0.851 0.059 0.959 0.066 0.953 0.328 0.753 0.077 0.940

DepthFM† (Gui et al., 2024) 63K 0.174 0.718 0.082 0.932 0.095 0.903 0.334 0.729 0.101 0.902
Our GenPercept (Depth) 90K 0.094 0.923 0.052 0.966 0.056 0.965 0.302 0.767 0.066 0.957

Our GenPercept (Disparity) 90K 0.080 0.934 0.058 0.969 0.063 0.960 0.226 0.741 0.096 0.959
Our GenPercept (Disparity + DPT head) 90K 0.078 0.935 0.059 0.967 0.064 0.961 0.228 0.740 0.094 0.961

Table 7: Quantitative comparison of surface normal estimation on three zero-shot datasets. We eval-
uate mean error↓, median error ↓ (med.), and the percentages of pixels ↑ with five thresholds. Part
of the reported results (†) are evaluated following the evaluation protocol of DSINE by ourselves.

Method Training NYU v2 ScanNet Sintel
Samples mean med. 5.0◦ 7.5◦ 11.25◦ 22.5◦ 30◦ mean med. 5.0◦ 7.5◦ 11.25◦ 22.5◦ 30◦ mean med. 5.0◦ 7.5◦ 11.25◦ 22.5◦ 30◦

Omnidata v1 (Eftekhar et al., 2021) 12.2M 23.1 12.9 21.6 33.4 45.8 66.3 73.6 22.9 12.3 21.5 34.5 47.4 66.1 73.2 41.5 35.7 3.0 5.8 11.4 30.4 42.0
Ominidata v2 (Kar et al., 2022) 12.2M 17.2 9.7 25.3 40.2 55.5 76.5 83.0 16.2 8.5 29.1 44.9 60.2 79.5 84.7 40.5 35.1 4.6 7.9 14.7 33.0 43.5
Metric3D v2† (Hu et al., 2024) 8.8M 13.5 6.7 40.1 53.5 65.9 82.6 87.7 11.8 5.5 46.6 60.7 71.6 85.4 89.7 22.8 14.2 18.4 28.5 41.6 66.7 75.8

Geowizard (Fu et al., 2024b) 280K 17.0 - - - 56.5 - - 15.4 - - - 61.6 - - - - - - - - -
DINSE† (Bae & Davison, 2024) 160K 16.4 8.4 32.8 46.3 59.6 77.7 83.5 16.2 8.3 29.8 45.9 61.0 78.7 84.4 34.9 28.1 8.9 14.1 21.5 41.5 52.7

Geowizard† (Fu et al., 2024b) 280K 19.8 11.2 18.0 32.7 50.2 73.0 79.9 21.1 11.9 15.9 29.7 47.4 70.7 77.8 36.1 28.4 4.1 8.6 16.9 39.8 52.5
Our GenPercept (Latent MSE loss) 90K 17.4 9.5 23.3 40.0 56.3 76.8 83.0 16.3 8.9 25.8 42.7 59.6 79.4 84.8 44.4 31.6 3.4 7.5 15.0 37.0 48.0

Our GenPercept (Image angular loss) 90K 16.4 8.0 33.3 47.8 60.9 78.3 83.7 15.2 7.4 33.9 50.7 65.0 80.9 85.7 34.6 26.2 5.2 9.8 18.4 43.8 55.8

compute the absolute relative error (AbsRel↓) and percentage of accurate valid depth pixels (δ1↑).
Invalid regions are filtered out and the metrics are averaged on all images.

Surface Normal Estimation. The surface normal estimation aims to predict a vector perpendicular
to tangent plane of the surface at each point P, which represents the orientation of the object’s surface.
For evaluation, we compute the angular error on three zero-shot datasets including NYU (Silberman
et al., 2012), ScanNet (Dai et al., 2017), and Sintel (Butler et al., 2012). The mean ↓, median ↓, and
the percentages of pixels ↑ with error below thresholds [5◦, 7.5◦, 11.25◦, 22.5◦, 30◦] are reported.
Invalid regions are filtered out and the metrics are averaged on all images.

Quantitative Evaluation. Quantitative results on monocular depth estimation and surface normal
estimation are shown in Table 6 and Table 7, respectively. Even trained on limited synthetic datasets
only, our GenPercept shows much robustness and achieves promising performance on diverse un-
seen scenes. For monocular depth models, we train them with pixel-wise MSE loss, scale-shift-
invariant loss (Ranftl et al., 2020), and gradient loss (Ranftl et al., 2020). Furthermore, our disparity
model (inverse of the depth) shows much better performance on datasets with outdoor scenes, such
as KITTI and DIODE, but less performance on indoor datasets. Therefore, we suggest adopting
the depth model for indoor scenes and the disparity model for outdoor scenes experimentally. By
replacing the VAE decoder with a lightweight DPT head (Ranftl et al., 2021), GenPercept can infer
faster without bearing the performance penalty. For surface normal estimation, the image angular
loss brings significant performance improvement thanks to our one-step estimation paradigm.

Qualitative Results. Qualitative visualizations are shown in Fig. 3. We observe excellent general-
ization of our models in that they can estimate accurate geometric information and promising details
not only on diverse real and synthetic scenes, but also on comics, color drafts, and even sketches.

4.2 IMAGE SEGMENTATION

Dichotomous Image Segmentation. This is a category-agnostic, high-quality object segmentation
task that accurately separates the object from the background in an image. Consistent with previous
methods, we use the six evaluation metrics specified in the DIS task, which include maximal F-
measure (maxFβ ↑) (Achanta et al., 2009), weighted F-measure (Fw

β ↑) (Margolin et al., 2014),
mean absolute error (M ↓) (Perazzi et al., 2012), structural measure (Sα ↑) (Fan et al., 2017),
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RGB Pred. Depth Pred. Normal RGB Pred. Depth Pred. Normal RGB Pred. Depth Pred. Normal

Figure 3: Qualitative results of monocular depth and surface normal estimation. The model works
surprisingly well on out-of-domain images (sketch and cartoon images).

mean enhanced alignment measure (Em
ϕ ↑) (Fan et al., 2018; 2021b) and human correction efforts

(HCEγ ↓) (Qin et al., 2022). We choose DIS5K (Qin et al., 2022) as the training and testing dataset.
We utilize DIS-TR for training and evaluate our model on DIS-VD and DIS-TE subsets. The pixel-
wise MSE loss is utilized during training.

Quantitative results of dichotomous image segmentation are shown in Table 8. We only show partial
results due to paper page limitations, full comparisons are accessible in the supplementary material.
GenPercept outperforms methods like HySM (Nirkin et al., 2021) and IS-Net (Qin et al., 2022) on
this challenging dataset across most evaluation metrics, but there exists room for further improve-
ment compared to SoTA methods like MVANet (Yu et al., 2024). As shown in Fig. 5, our approach
provides a detailed foreground mask. For thin lines and meticulous objects that are difficult for
previous methods to process, our method can also output accurate segmentation results.

Semantic Image Segmentation. This is a fundamental computer vision task that involves classi-
fying each pixel in an image into a specific category or class. For training, we utilized the indoor
synthetic dataset, HyperSim (Roberts et al., 2021), which comprises 40 semantic segmentation class
labels. We encode different classes into 3-channel colormaps, treat the task as a regression problem,
and fine-tune the original Stable Diffusion with the pixel-wise MSE loss. As demonstrated in Fig. 4,
the model generalizes well to classes within the HyperSim annotations, such as chairs and desks,
but struggles with unrecognized categories such as cats and cars.

Another choice involves using a customized segmentation head. We incorporate a custom segmen-
tation head, namely UperNet (Xiao et al., 2018), onto the multi-level features extracted by UNet.
For the UperNet segmentation head, we follow the traditional semantic segmentation format to use
n-channel output, where n is the number of categories. The quantitative results are presented in
Table 9, we test the model’s performance on Hypersim (Roberts et al., 2021) and zero-shot ability
on a subset of the ADE20k (Zhou et al., 2017) validation set, which contains overlapping classes.
Besides, we compare with Mask2Former (Cheng et al., 2022) by training on ADE20K. GenPercept
outperforms ResNet50 (He et al., 2016) and Swin-T (Liu et al., 2021) of Mask2Former but achieves
lower performance than Swin-L (Liu et al., 2021).

4.3 IMAGE MATTING

Task Definition. Image matting aims to extract the foreground, background, and alpha mask from
an image. Traditional approaches depend on supplementary inputs that delineate foreground, back-

Table 8: Quantitative results of dichotomous image segmentation on DIS5K validation and testing
sets. Additional cross-dataset evaluation is provided in the supplementary material.

Dataset DIS-VD DIS-TE4 Overall DIS-TE (1-4)
Metric maxFβ ↑ Fw

β ↑ M ↓ Sα ↑ Em
ϕ ↑ HCEγ ↓ maxFβ ↑ Fw

β ↑ M ↓ Sα ↑ Em
ϕ ↑ HCEγ ↓ maxFβ ↑ Fw

β ↑ M ↓ Sα ↑ Em
ϕ ↑ HCEγ ↓

U2Net (Qin et al., 2020) 0.748 0.656 0.090 0.781 0.823 1413 0.795 0.705 0.087 0.807 0.847 3653 0.761 0.670 0.083 0.791 0.835 1333
SINetV2 (Fan et al., 2021a) 0.665 0.584 0.110 0.727 0.798 1568 0.699 0.616 0.113 0.744 0.824 3683 0.693 0.608 0.101 0.747 0.822 1411
HySM (Nirkin et al., 2021) 0.734 0.640 0.096 0.773 0.814 1324 0.782 0.693 0.091 0.802 0.842 3331 0.757 0.665 0.084 0.792 0.834 1218

IS-Net (Qin et al., 2022) 0.791 0.717 0.074 0.813 0.856 1116 0.827 0.753 0.072 0.830 0.870 2888 0.799 0.726 0.070 0.819 0.858 1016
MVANet (Yu et al., 2024) 0.904 0.861 0.035 0.909 0.937 878 0.911 0.857 0.041 0.903 0.944 2301 0.916 0.855 0.035 0.905 0.938 790

Our Genpercept 0.857 0.835 0.04 0.87 0.934 1511 0.848 0.829 0.049 0.854 0.938 3799 0.863 0.839 0.039 0.872 0.936 1364
Our Genpercept (infer. at 1024px) 0.877 0.859 0.035 0.887 0.941 1262 0.874 0.858 0.041 0.874 0.947 3321 0.875 0.856 0.036 0.885 0.939 1176
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Dataset RGB GT Seg. In-the-wild RGB Pred. Seg. In-the-wild RGB Pred. Seg.In-the-wild RGB Pred. Seg.

Dataset GT In-the-wild Example Failed on unseen categories

Figure 4: Quanlitative results of semantic segmentation in the wild. Trained on the synthetic indoor
Hypersim dataset, GenPercept shows much robustness on the trained categories of complex in-the-
wild images, e.g., yellow chairs, green floor, and light blue wall. Due to the limited annotation
categories and little negative label of “unknown category”, it sometimes fails in outdoor scenes and
unseen categories such as cats and cars.

GTImage Ours IS-Net HySMSINetV2U2NetMVANet

Figure 5: Qualitative comparison of dichotomous image segmentation.

ground, and ambiguous areas to reduce uncertainty. Automatic image matting seeks to remove this
dependency by directly estimating these components from the image alone. The implementation
details can be found in the supplementary material.

Quantitative and Qualitative Results. We evaluate metrics including the sum of absolute differ-
ences (SAD), mean squared error (MSE), mean absolute difference (MAD), gradient (Grad.), and
Connectivity (Conn.) on the P3M-500-NP test set. SAD and MAD measure the mean L1 distance
between predictions and ground truth labels. MSE and CONN focus on L2 distance and connectivity
that better reflects human intuition. As shown in Table 10, our GenPercept is less accurate compared
with the state-of-the-art methods. However, when transferring the human image matting ability to
general image matting tasks, GenPercept achieves much better performance. It proves the robustness
brought by the prior knowledge of diffusion models pre-trained on the LAION dataset. Quantitative
results of image matting are shown in Fig. 6. Please see supplementary for more visualization.

5 RELATED WORK

Vision Pre-Training. Models pretrained on large-scale datasets possess powerful feature extraction
capabilities, enabling them to be effectively transferred to a wide range of visual tasks. For instance,
the ResNet (He et al., 2016) model pretrained on ImageNet (Russakovsky et al., 2015) can be fine-
tuned and applied to perception tasks. By means of contrastive learning, MoCo (He et al., 2020)
and CLIP (Radford et al., 2021) acquire rich visual and semantic representations, leveraging their
advantages in joint visual and semantic modeling to enhance the performance of multimodal tasks.
DINO (Caron et al., 2021), through self-distillation, endows Vision Transformer and convolutional

Table 9: Quantitative results of semantic
segmentation on Hypersim and ADE20k.

Method Training mIoU↑ mIoU↑
Dataset (Hypersim) (ADE20K)

GenPercept (Train UperNet) Hypersim 46.0 34.1
GenPercept (Train U-Net + UperNet) 52.9 38.3

Mask2Former R50

ADE20K

- 47.2
Mask2Former Swin-T - 47.7
Mask2Former Swin-L - 56.4

GenPercept (Train U-Net + UperNet) - 50.2

Table 10: Quantitative comparisons of image
matting on the P3M-500-NP and AIM500.

Method Test Dataset SAD ↓ MAD ↓ MSE ↓ CONN ↓
HATT (Qiao et al., 2020)

P3M-500-NP

30.35 0.0176 0.0072 27.42
SHM (Chen et al., 2018) 20.77 0.0122 0.0093 17.09

MODNet (Ke et al., 2022) 16.70 0.0097 0.0051 13.81
P3M-Net (Li et al., 2021) 11.23 0.0065 0.0035 12.51

ViTAE-S (Ma et al., 2023) 7.59 0.0044 0.0019 6.96
Our GenPercept 12.77 0.0074 0.0027 10.46

ViTAE-S (Ma et al., 2023) AIM500 112.52 0.0608 0.0602 43.18
Our GenPercept (Zero-shot) 75.5 0.0444 0.0242 36.74
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Image Pred GT Pred GTImage ViTAE-SViTAE-S

Figure 6: Visualization of image matting on the P3M-500-NP test set.

networks with comparable visual representation quality and demonstrates that self-supervised ViT
representations contain explicit semantic segmentation information. DINOv2 (Oquab et al., 2024)
leverages self-supervised learning on a large curated dataset and exhibits remarkable zero-shot gen-
eralization capabilities across computer vision tasks at both image and pixel levels, including clas-
sification, semantic segmentation, and depth estimation. In our work, we leverage Stable Diffusion
(Rombach et al., 2022) as a prior for scene understanding and transfer it to various perception tasks.

Diffusion Priors for Dense Prediction. Several works explore to use the priors of generative models
for perceptual tasks. Some works (Bhattad et al., 2024; Du et al., 2023) demonstrate that generative
models encode property maps of the scene. By finding latent variable offsets, using LoRA (Hu et al.,
2022), etc., generative models can directly produce intrinsic images like surface normals, depth,
albedo, etc. LDMSeg (Van Gansbeke & De Brabandere, 2024) devises an image-conditioned sam-
pling process, enabling diffusion models to directly output panoptic segmentation. UniGS (Qi et al.,
2023) proposes location-aware color encoding and decoding strategies, allowing diffusion models
to support referring segmentation and entity segmentation. Marigold (Ke et al., 2024) fine-tunes
diffusion model on limited synthetic data, enabling it to support affine-invariant monocular depth
estimation and exhibit strong generalization performance. However, Marigold is time-consuming
due to the need for multiple iterations of denoising. Additionally, the Gaussian noise leads to incon-
sistent results across inferences, requiring aggregation over multiple inferences. Xiang et al. (2023)
train a denoising auto-encoder for image classification. The difference of their method compared
with traditional denoising auto-encoder is that input images are encoded into a latent code and de-
noising is performed in the latent space rather than the pixel space. They show good results on very
small-scale datasets (CIFAR and ImageNet-tiny) to prove the concept and no results were reported
on larger datasets. Furthermore, GeoWizard (Fu et al., 2024a) extends the generative capabilities of
Marigold, achieving better performance in joint depth and normal estimation, which enhances ap-
plications like 3D reconstruction and novel view synthesis. Moreover, DepthFM (Gui et al., 2024)
addresses the speed challenge of Marigold by employing flow matching, offering a fast and efficient
monocular depth estimation model.

6 CONCLUSION

In this work, we introduce GenPercept, an embarrassingly straightforward yet powerful approach
to re-use the off-the-shelf UNet trained using diffusion processes. GenPercept demonstrates the ca-
pability to effectively leverage pre-trained diffusion models across a range of downstream dense
perception tasks. We contend that our proposed methodology provides an efficient and potent
paradigm for harnessing the capabilities of pre-trained diffusion models in dense visual percep-
tion tasks. For future research, we recommend investigating the impact of scaling up the volume
of fine-tuning data and exploring the key components of pre-training by applying alternative self-
supervised pre-training methods on the LAION dataset, such as Masked Autoencoders (MAE) or
Contrastive Language-Image Pretraining (CLIP). It will be helpful to clarify whether the highly de-
tailed visual predictions produced by existing diffusion models are primarily driven by the extensive
LAION dataset or the diffusion pretraining paradigm itself.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Radhakrishna Achanta, Sheila Hemami, Francisco Estrada, and Sabine Susstrunk. Frequency-tuned
salient region detection. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2009.

Gwangbin Bae and Andrew J Davison. Rethinking inductive biases for surface normal estimation.
In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2024.

Anand Bhattad, Daniel McKee, Derek Hoiem, and David Forsyth. Stylegan knows normal, depth,
albedo, and more. Proc. Advances in Neural Inf. Process. Syst., 2024.

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical
flow evaluation. In A. Fitzgibbon et al. (Eds.) (ed.), Proc. Eur. Conf. Comp. Vis., Part IV, LNCS
7577, pp. 611–625. Springer-Verlag, October 2012.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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Oğuzhan Fatih Kar, Teresa Yeo, Andrei Atanov, and Amir Zamir. 3d common corruptions and data
augmentation. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2022.

Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and Konrad
Schindler. Repurposing diffusion-based image generators for monocular depth estimation. In
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2024.

Zhanghan Ke, Jiayu Sun, Kaican Li, Qiong Yan, and Rynson W.H. Lau. Modnet: Real-time trimap-
free portrait matting via objective decomposition. In Proc. AAAI Conf. Artificial Intell., 2022.

Peter Kocsis, Vincent Sitzmann, and Matthias Nießner. Intrinsic image diffusion for indoor single-
view material estimation. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pp. 5198–5208, 2024.

Hsin-Ying Lee, Hung-Yu Tseng, Hsin-Ying Lee, and Ming-Hsuan Yang. Exploiting diffusion prior
for generalizable dense prediction. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2024.

Jizhizi Li, Sihan Ma, Jing Zhang, and Dacheng Tao. Privacy-preserving portrait matting. In Proc.
ACM Int. Conf. Multimedia, 2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proc. IEEE Int.
Conf. Comp. Vis., pp. 10012–10022, 2021.

Sihan Ma, Jizhizi Li, Jing Zhang, He Zhang, and Dacheng Tao. Rethinking portrait matting with
privacy preserving. Int. J. Comput. Vision, 131(8):2172–2197, 2023.

Ran Margolin, Lihi Zelnik-Manor, and Ayellet Tal. How to evaluate foreground maps? In Proc.
IEEE Conf. Comp. Vis. Patt. Recogn., 2014.

Yuval Nirkin, Lior Wolf, and Tal Hassner. Hyperseg: Patch-wise hypernetwork for real-time seman-
tic segmentation. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2021.
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