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SUPPLEMENTARY MATERIALS OF
WHAT MATTERS WHEN REPURPOSING DIFFUSION
MODELS FOR GENERAL DENSE PERCEPTION TASKS?

Guangkai Xu Yongtao Ge Mingyu Liu Chengxiang Fan
Kangyang Xie Zhiyue Zhao Hao Chen Chunhua Shen

1 THE FORMULATION OF THREE DIFFERENT PIPELINES

1.1 STOCHASTIC MULTI-STEP GENERATION

For the training process, the RGB image x and ground-truth label y are encoded into the latent space
with the VAE encoder z(x) = E(x), z(y) = E(y). The Gaussian noise ϵ is added to the ground-truth
label latent z(y), and the noisy label latent z(y)t is concatenated with the clean image latent z(x) as
U-Net input zt for each timestep:

z
(y)
t =

√
ᾱtz

(y) +
√
1− ᾱtϵ, t = [1, ..., T ],

zt = concat(z(y)t , z(x)),
(1)

where ᾱt =
∏t

s=1 (1− βs), and βs is sampled from a variance scheduler {βt ∈ (0, 1)}Tt=1. The
scheduler is parameters with two hyperparameters βstart and βend, which defines the βt values of
t=0 and t=1000, respectively. For a casual timestep s, βs is computed by linearly interpolating
between

√
βstart and

√
βend, then squaring each interpolated value. The formulation is as follows.

βs = (
√

βstart +
s

T
(
√
βend −

√
βstart))

2, s = [1, ..., T ] (2)

Then, the denoiser vθ(·, ·) is enforced to learn the “v-prediction” (Salimans & Ho, 2021) from a
timestep t and the corresponding input zt. During training, the parameters of VAE are frozen, and
only the denoiser vθ is fine-tuned. The timestep is uniformly sampled from 1 to T .

L = Ez(y),ϵ∼N(0,I),t∼U(T )

∥∥∥(√ᾱtϵ−
√
1− ᾱtz

(y))− vθ(zt, t)
∥∥∥2
2
. (3)

For inference, a Gaussian noise ϵt is randomly sampled and denoised step by step with the denoiser
vθ(·, ·).

ẑ
(y)
T = ϵ, zt = concat(ẑ(y)t , z(x)), t = [T, ..., 1],

ẑ
(y)
t→0 =

√
ᾱt · ẑ(y)t −

√
1− ᾱt · vθ(zt, t), ϵ̂t =

√
ᾱt · vθ(zt, t)−

√
1− ᾱt · ẑ(y)t ,

ẑ
(y)
t−1 =

√
ᾱt−1 · ẑ(y)t→0 +

√
1− ᾱt−1 · ϵ̂t, ŷ = D(ẑ

(y)
1→0).

(4)

where the denoising process first computes the estimated noise ϵ̂t and the predicted clean latent code
ẑ
(y)
t→0 of timestep t from the current latent code ẑ

(y)
t and the predicted velocity vθ(zt, t). Then, it

adds the computed noise ϵ̂t back to ẑ
(y)
t→0 to get the latent code of timestep t− 1. After repeating it

for T times, the predicted clean latent code ẑ
(y)
1→0 is computed and sent to the VAE decoder D and

estimate the target label ŷ. During inference, m randomly sampled noises are introduced to estimate
m different predictions, and they are averaged with an ensemble process (Ke et al., 2024) to reduce
the randomness of prediction and improve performance.

1.2 DETERMINISTIC MULTI-STEP GENERATION

The inherent random nature of diffusion models makes them challenging to apply to perceptual
tasks, which typically aim for accurate results. As a result, existing works have replaced the original
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Table 1: Runtime comparison of three diffusion for perception pipelines on an RTX 4090 GPU.
Experimental Setting Ensemble Denoise Steps Inference Time GPU Memory

Stochastic Multi-step Generation (w. ensemble) 10 10 ∼5.74s 16GB
Stochastic Multi-step Generation (w/o ensemble) 1 10 ∼0.79s 6.95GB

Deterministic Multi-step Generation 1 10 ∼0.79s 6.95GB
Deterministic One-step Inference (Ours) 1 1 ∼0.34s 6.95GB

Deterministic One-step Inference + DPT head (Ours) 1 1 ∼0.24s 6.32GB
Metric3Dv2 (Hu et al., 2024) 1 1 ∼0.25s 2.63GB

DepthAnythingv2 (Yang et al., 2024) 1 1 ∼0.07s 2.82GB
DSINE (Bae & Davison, 2024a) 1 1 ∼0.18s 2.23GB

Marigold (Ke et al., 2024) 1 10 ∼0.79s 6.95GB
GeoWizard (Fu et al., 2024) 1 1 ∼1.32s 6.81GB
DepthFM (Gui et al., 2024) 1 2 ∼0.41s 6.97GB

Our GenPercept (DPT head) 1 1 ∼0.24s 6.32GB

Table 2: The impact of training data volume on affine-invariant monocular depth estimation.

Amount of Data KITTI NYU ScanNet DIODE ETH3D
AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑

90K (1/1) 0.100 0.902 0.053 0.966 0.059 0.961 0.309 0.768 0.068 0.956
45K (1/2) 0.101 0.902 0.056 0.964 0.058 0.963 0.311 0.764 0.070 0.955

22.5K (1/4) 0.109 0.884 0.056 0.963 0.059 0.963 0.322 0.754 0.073 0.950
11.2K (1/8) 0.117 0.866 0.060 0.962 0.065 0.957 0.324 0.753 0.076 0.943
5.6K (1/16) 0.117 0.868 0.063 0.958 0.068 0.952 0.331 0.744 0.084 0.932

Gaussian noise with the target image as RGB noise (Bansal et al., 2024; Lee et al., 2024). Techni-
cally, rather than introducing the random Gaussian noise ϵ , we blend the ground-truth label latent
z(y) = E(y) with the RGB image latent z(x) = E(x), which is formulated as:

zt = z
(y)
t =

√
ᾱtz

(y) +
√
1− ᾱtz

(x), t = [1, ..., T ], (5)

Furthermore, the input latent has been modified to the latent code of input image z(x) instead of
random Gaussian. Consequently, the learning objective function and the inference process are re-
formulated as follows.

L = E(z(x),z(y)),t∼U(T )

∥∥∥(√ᾱtz
(x) −

√
1− ᾱtz

(y))− vθ(zt, t)
∥∥∥2
2
. (6)

ẑ
(y)
T = z(x), t = [T, ..., 1],

ẑ
(y)
t→0 =

√
ᾱt · ẑ(y)t −

√
1− ᾱt · vθ(ẑ

(y)
t , t), ẑ

(x)
t =

√
ᾱt · vθ(ẑ

(y)
t , t)−

√
1− ᾱt · ẑ(y)t ,

ẑ
(y)
t−1 =

√
ᾱt−1 · ẑ(y)t→0 +

√
1− ᾱt−1 · ẑ(x)t , ŷ = D(ẑ

(y)
1→0).

(7)

where ẑ
(x)
t denotes the predicted RGB noise of timestep t.

1.3 GENPERCEPT: DETERMINISTIC ONE-STEP PERCEPTION

In the main paper, We set the (βstart, βend) values to 1, and ᾱt =
∏t

s=1 (1− βs) = 0, the formula-
tion of Eq. (5) to Eq. (7) can be greatly simplified as follows.

zt = z
(y)
t = z(x), L = E(z(x),z(y)),t∼U(T )

∥∥∥−z(y) − vθ(zt, t)
∥∥∥2
2
,

ẑ
(y)
T = z(x), ẑ

(y)
t−1 = −ẑ

(y)
t , ẑ

(y)
1→0 = −vθ(ẑ

(y)
1 , t = 1), ŷ = D(ẑ

(y)
1→0).

(8)

One-step prediction. The input of the U-Net is an RGB latent code, and the output becomes the
negative value of the ground-truth latent code, with no relationship to the timestep t. Therefore, we
set the number of timesteps T to 1 while preserving the same performance.

L = E(z(x),z(y))

∥∥∥−z(y) − vθ(z
(x), t = 1)

∥∥∥2
2
,

ẑ
(y)
1→0 = −vθ(z

(x), t = 1), ŷ = D(ẑ
(y)
1→0).

(9)
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Figure 1: Qualitative visualization of ablation study.

2 A DIFFERENCE BETWEEN IMAGE GENERATION AND VISUAL PERCEPTION

In text-guided image generation, a single textual input can correspond to an immense variety of
potential images. This inherent uncertainty makes generating a high-quality image directly from
random noise in a single step extremely challenging. Therefore, the multi-step generation enables
the model to incrementally remove noise, progressively refining details and textures at each stage,
which effectively simplifies the task. However, visual perception tasks conditioned on an RGB im-
age are deterministic without any randomness, and such an easy injective mapping can be estimated
with a one-step inference process, as most of the traditional visual perception methods do.

While Marigold series algorithms aim to leverage diffusion models’ ability of generating highly
detailed images to enhance visual perception with precise details, reformulating straightforward
deterministic tasks as a denoising process can further simplify this problem, enforcing the network
to exploit ”shortcuts”, as described in Section 3.1 of the main paper and illustrated in Fig. 2.

3 RUNTIME ANALYSIS

In this section, we quantitatively analyze the inference times of the three aforementioned pipelines,
as summarized in Table 1. The runtime is evaluated by averaging the inference times over 100
images with a resolution of 768× 768, using an RTX 4090 GPU. For ”Stochastic Multi-step Gener-
ation” methods (Ke et al., 2024; Fu et al., 2024; Gui et al., 2024), such as Marigold (Ke et al., 2024),
they rely on an ensemble process where multiple inferences are performed with varying random
noise inputs to mitigate uncertainties introduced by Gaussian noise. Consequently, this approach
is computationally expensive. On the other hand, ”Deterministic Multi-step Generation” methods
(Lee et al., 2024) involve multiple denoising steps, which significantly reduce inference efficiency.

In contrast, our proposed one-step inference paradigm demonstrates a runtime that is 94% and 57%
less than those of multi-step methods with ensemble and without ensemble, respectively. Further-
more, by incorporating a customized head, such as the DPT head (Ranftl et al., 2021), both runtime
and GPU memory requirements are further reduced by 27% without compromising performance,
maintaining a competitive level of accuracy and robustness.

Compared to existing state-of-the-art diffusion-based methods, our proposed GenPercept achieves
a notable improvement in inference speed, attributed to the innovative one-step inference paradigm
and the customized head. While our method demonstrates inference speeds comparable to Met-
ric3Dv2 (Hu et al., 2024) and DSINE (Bae & Davison, 2024a), it falls behind DepthAnythingV2
(Yang et al., 2024). Note that the superior performance of DepthAnythingV2 is facilitated by its
training on a relatively lightweight model, bolstered by extensive labeled and unlabeled datasets,
and supported by substantial computational resources distributed across multiple GPUs.

4 THE IMPACT OF DATA VOLUME

With only around 50K Hypersim (Roberts et al., 2021) and 40K Virtual KITTI (Cabon et al., 2020)
fine-tuning data, GenPercept can generalize well to diverse tasks and datasets. How much data is
needed for transferring at least? We gradually reduce the amount of training data. As shown in
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Figure 2: Visualization of different noise forms and proportions in the forward diffusion process.

Table 2, less training data results in slightly worse performance, but GenPercept still shows much
robustness to the data volume.

5 MORE VISUALIZATION ANALYSIS

Quantitative Comparisons of Ablations. Visualization of the ablation study experiments in the
main paper §2 is shown in Fig. 1. The estimated depth detail remains comparable with a cus-
tomized “DPT head” (Ranftl et al., 2021). Models trained with lower-quality data like “Taskonomy
+ Cityscapes” or without the pre-trained VAE decoder parameters suffer from a decline in the abil-
ity to predict details. We attribute them to the low-quality annotation and the oversized decoder,
respectively.

Forward Diffusion Process. More detailed visualization of different noise forms and proportions
in the forward diffusion process is shown in Fig. 2. With larger (βstart, βend) values of the DDIM
scheduler, the proportion of noise will be much higher during the forward diffusion process. When
(βstart, βend) reaches (1.0, 1.0), the noisy latent will be pure noise latent, which is Gaussian noise
and RGB latent for (a) and (b), respectively.

Quantitative Comparisons of Generalization. We compare the generalization performance of
models trained on synthetic (50K Hypersim (Roberts et al., 2021) + 40K Virtual KITTI (Cabon
et al., 2020)) and real data (50K Taskonomy (Zamir et al., 2018) + 40K Cityscapes (Cordts et al.,
2016)) for out-of-distribution scenarios. As illustrated in Fig. 3, the robustness of GenPercept trained
on real data is comparable to that trained on synthetic data in challenging scenes, such as underwater
environments, non-realistic renderings, and evening settings. Notably, models trained on synthetic
data demonstrate superior accuracy in estimating transparent objects and capturing geometric de-
tails, owing to the high-quality and densely labeled synthetic ground truth.
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Figure 3: Quantitative comparisons of generalization for models trained on synthetic and real data.

6 AN EXTRA ATTEMPT ON HUMAN POSE ESTIMATION

Task Definition Human Pose Estimation is a task aimed at determining the spatial configuration of a
person or object in a given image or video. This involves identifying and predicting the coordinates
of particular keypoints.

Implementation Details For human keypoint detection, we use Simple Baseline (Xiao et al., 2018)
for person detection and conduct training on the COCO training set with 15K training samples.
Performance is evaluated on the COCO (Lin et al., 2014) validation set. As shown in Fig. 4, it is
generalizable to unseen objects in the training set. To evaluate the performance on COCO, we use
the customized keypoint head of ViTPose (Xu et al., 2022) for decoding the output. The quantitative
results compared with a generalist model, Painter(Wang et al., 2023) is shown in Table 3.

Table 3: Pose estimation on COCO.
Metrics AP ↑ AP .5 ↑ AP .75 ↑ AP (M) ↑ AP (L) ↑

Painter (Wang et al., 2023) 0.721 0.900 0.781 0.686 0.786
GenPercept 0.752 0.907 0.824 0.691 0.778

Figure 4: Generalized test results of keypoint detection.
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7 IMPLEMENTATION DETAILS

Implementation Details of Exploration Experiments in Section 3 of the Main Paper. Unless
specified otherwise, we follow Marigold’s training setting and train for 30000 iterations to estimate
the affine-invariant monocular depth. The training dataset contains 50K Hypersim (Roberts et al.,
2021) images and 40K Virtual KITTI (Cabon et al., 2020) images, and these images are sampled with
a sampling rate of 90% for Hypersim and 10% for Virtual KITTI. We freeze the VAE AutoEncoder
and fine-tune the U-Net of Stable Diffusion v2.1 to estimate the ground-truth label latent, with a
resolution of (480, 640), a batch size of 32, and a learning rate of 3e-5. The multi-resolution noise
(Ke et al., 2024) is employed for Gaussian noise and not used for RGB noise (Lee et al., 2024)
by default. For inference, the ensemble size and denoising steps are set to 1 and 10, respectively.
Evaluation results of absolute relative error (AbsRel) and δ1 are reported on five unseen monocular
depth datasets, including KITTI (Geiger et al., 2013), NYU (Silberman et al., 2012), ScanNet (Dai
et al., 2017), DIODE (Vasiljevic et al., 2019), and ETH3D (Schops et al., 2017).

8 MORE QUANTITATIVE AND QUALITIVE EXPERIMENTS

8.1 MONOCULAR DEPTH ESTIMATION

More Qualitative Evaluation. We show the robustness of the monocular depth estimation model in
diverse scenes in Fig. 5. Compared to DPT (Ranftl et al., 2021), our Genpercept performs better on
estimating details and shows much better robustness even on some sketches. Compared to Marigold
(Ke et al., 2024), our method achieves better relative depth visualization.

8.2 SURFACE NORMAL ESTIMATION

More Qualitative Evaluation. In Fig. 6, we showcase more qualitative results for the surface
normal estimation. DSINE (Bae & Davison, 2024b) is trained on 160K images of 10 datasets,
including both real and synthetic data. Our GenPercept is only trained on one synthetic dataset
(Hypersim (Roberts et al., 2021)), and can estimate much more detailed surface normal maps.

8.3 DICHOTOMOUS IMAGE SEGMENTATION

More Quantitative Evaluation. To conduct a comprehensive evaluation, we compare our approach
with numerous previous models including models for medical image segmentation (Ronneberger
et al., 2015), salient object detection (Qin et al., 2019; Zhao et al., 2020; Wei et al., 2020; Chen
et al., 2020; Qin et al., 2020), camouflaged object detection (Fan et al., 2021a; Mei et al., 2021),
semantic segmentation (Zhao et al., 2017; Chen et al., 2018; Wang et al., 2020; Yu et al., 2018; Zhao
et al., 2018; Howard et al., 2019; Fan et al., 2021b; Nirkin et al., 2021) and models like IS-Net (Qin
et al., 2022) and MVANet (Yu et al., 2024) specifically trained for DIS.

As shown in Table 4, our proposed model significantly outperforms methods like IS-Net across most
evaluation metrics on this challenging dataset. Compared with MVANet, which inferences with a
resolution of 1024 × 1024, our GenPercept achieves slightly lower performance, but the results
remains competitive and can highlight the effectiveness of our approach for DIS.

More Qualitative Evaluation. As shown in Fig. 8, our method yields refined segmentation results,
providing cleaner foreground masks. It also can produce precise outputs for intricate lines.

Cross Dataset Evaluation. To test the generalization ability of our model, we randomly select
some images from other datasets(Agustsson & Timofte, 2017; Lin et al., 2014; Shao et al., 2019)
and in-the-wild images for experiments. As shown in Fig. 7, compared to IS-Net and IS-Net-
General-Use(Qin et al., 2022), our approach exhibits finer segmentation quality across diverse im-
ages, providing cleaner foreground masks. Compared to MVANet (Yu et al., 2024), GenPercept
exhibits enhanced robustness when applied to in-the-wild images. This improvement can be at-
tributed to its large-scale pre-training on the LAION dataset and the extensive parameterization of
the diffusion model. In contrast, the backbone of MVANet is pre-trained on the ImageNet dataset
(Deng et al., 2009), which may limit its performance in more diverse environments.
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Table 4: Quantitative results on DIS5K validation and testing sets.
Dataset Metric UNet BASNet GateNet F3Net GCPANet U2Net SINetV2 PFNet PSPNet DLV3+ HRNet BSV1 ICNet MBV3 STDC HySM IS-Net MVANet Ours Ours (1024px)

DIS-VD

maxFβ ↑ 0.692 0.731 0.678 0.685 0.648 0.748 0.665 0.691 0.691 0.660 0.726 0.662 0.697 0.714 0.696 0.734 0.791 0.904 0.857 0.877
Fw
β ↑ 0.586 0.641 0.574 0.595 0.542 0.656 0.584 0.604 0.603 0.568 0.641 0.548 0.609 0.642 0.613 0.640 0.717 0.861 0.835 0.859
M ↓ 0.113 0.094 0.110 0.107 0.118 0.090 0.110 0.106 0.102 0.114 0.095 0.116 0.102 0.092 0.103 0.096 0.074 0.035 0.040 0.035
Sα ↑ 0.745 0.768 0.723 0.733 0.718 0.781 0.727 0.740 0.744 0.716 0.767 0.728 0.747 0.758 0.740 0.773 0.813 0.909 0.870 0.887
Em

ϕ ↑ 0.785 0.816 0.783 0.800 0.765 0.823 0.798 0.811 0.802 0.796 0.824 0.767 0.811 0.841 0.817 0.814 0.856 0.937 0.934 0.941
HCEγ ↓ 1337 1402 1493 1567 1555 1413 1568 1606 1588 1520 1560 1660 1503 1625 1598 1324 1116 878 1511 1262

DIS-TE1

maxFβ ↑ 0.625 0.688 0.620 0.640 0.598 0.694 0.644 0.646 0.645 0.601 0.668 0.595 0.631 0.669 0.648 0.695 0.740 0.893 0.841 0.850
Fw
β ↑ 0.514 0.595 0.517 0.549 0.495 0.601 0.558 0.552 0.557 0.506 0.579 0.474 0.535 0.595 0.562 0.597 0.662 0.823 0.814 0.827
M ↓ 0.106 0.084 0.099 0.095 0.103 0.083 0.094 0.094 0.089 0.102 0.088 0.108 0.095 0.083 0.090 0.082 0.074 0.037 0.038 0.036
Sα ↑ 0.716 0.754 0.701 0.721 0.705 0.760 0.727 0.722 0.725 0.694 0.742 0.695 0.716 0.740 0.723 0.761 0.787 0.879 0.868 0.878
Em

ϕ ↑ 0.750 0.801 0.766 0.783 0.750 0.801 0.791 0.786 0.791 0.772 0.797 0.741 0.784 0.818 0.798 0.803 0.820 0.911 0.918 0.919
HCEγ ↓ 233 220 230 244 271 224 274 253 267 234 262 288 234 274 249 205 149 103 204 165

DIS-TE2

maxFβ ↑ 0.703 0.755 0.702 0.712 0.673 0.756 0.700 0.720 0.724 0.681 0.747 0.680 0.716 0.743 0.720 0.759 0.799 0.925 0.876 0.880
Fw
β ↑ 0.597 0.668 0.598 0.620 0.570 0.668 0.618 0.633 0.636 0.587 0.664 0.564 0.627 0.672 0.636 0.667 0.728 0.874 0.852 0.859
M ↓ 0.107 0.084 0.102 0.097 0.109 0.085 0.099 0.096 0.092 0.105 0.087 0.111 0.095 0.083 0.092 0.085 0.070 0.03 0.035 0.034
Sα ↑ 0.755 0.786 0.737 0.755 0.735 0.788 0.753 0.761 0.763 0.729 0.784 0.740 0.759 0.777 0.759 0.794 0.823 0.915 0.884 0.892
Em

ϕ ↑ 0.796 0.836 0.804 0.820 0.786 0.833 0.823 0.829 0.828 0.813 0.840 0.781 0.826 0.856 0.834 0.832 0.858 0.944 0.938 0.938
HCEγ ↓ 474 480 501 542 574 490 593 567 586 516 555 621 512 600 556 451 340 246 480 410

DIS-TE3

maxFβ ↑ 0.748 0.785 0.726 0.743 0.699 0.798 0.730 0.751 0.747 0.717 0.784 0.710 0.752 0.772 0.745 0.792 0.830 0.936 0.885 0.898
Fw
β ↑ 0.644 0.696 0.620 0.656 0.590 0.707 0.641 0.664 0.657 0.623 0.700 0.595 0.664 0.702 0.662 0.701 0.758 0.89 0.862 0.879
M ↓ 0.098 0.083 0.103 0.092 0.109 0.079 0.096 0.092 0.092 0.102 0.080 0.109 0.091 0.078 0.090 0.079 0.064 0.031 0.035 0.032
Sα ↑ 0.780 0.798 0.747 0.773 0.748 0.809 0.766 0.777 0.774 0.749 0.805 0.757 0.780 0.794 0.771 0.811 0.836 0.92 0.883 0.896
Em

ϕ ↑ 0.827 0.856 0.815 0.848 0.801 0.858 0.849 0.854 0.843 0.833 0.869 0.801 0.852 0.880 0.855 0.857 0.883 0.954 0.951 0.954
HCEγ ↓ 883 948 972 1059 1058 965 1096 1082 1111 999 1049 1146 1001 1136 1081 887 687 512 973 809

DIS-TE4

maxFβ ↑ 0.759 0.780 0.729 0.721 0.670 0.795 0.699 0.731 0.725 0.715 0.772 0.710 0.749 0.736 0.731 0.782 0.827 0.911 0.848 0.874
Fw
β ↑ 0.659 0.693 0.625 0.633 0.559 0.705 0.616 0.647 0.630 0.621 0.687 0.598 0.663 0.664 0.652 0.693 0.753 0.857 0.829 0.858
M ↓ 0.102 0.091 0.109 0.107 0.127 0.087 0.113 0.107 0.107 0.111 0.092 0.114 0.099 0.098 0.102 0.091 0.072 0.041 0.049 0.041
Sα ↑ 0.784 0.794 0.743 0.752 0.723 0.807 0.744 0.763 0.758 0.744 0.792 0.755 0.776 0.770 0.762 0.802 0.830 0.903 0.854 0.874
Em

ϕ ↑ 0.821 0.848 0.803 0.825 0.767 0.847 0.824 0.838 0.815 0.820 0.854 0.788 0.837 0.848 0.841 0.842 0.870 0.944 0.938 0.947
HCEγ ↓ 3218 3601 3654 3760 3678 3653 3683 3803 3806 3709 3864 3999 3690 3817 3819 3331 2888 2301 3799 3321

Overall
DIS-TE (1-4)

maxFβ ↑ 0.708 0.752 0.694 0.704 0.660 0.761 0.693 0.712 0.710 0.678 0.743 0.674 0.711 0.729 0.710 0.757 0.799 0.916 0.863 0.875
Fw
β ↑ 0.603 0.663 0.590 0.614 0.554 0.670 0.608 0.624 0.620 0.584 0.658 0.558 0.622 0.658 0.628 0.665 0.726 0.855 0.839 0.856
M ↓ 0.103 0.086 0.103 0.098 0.112 0.083 0.101 0.097 0.095 0.105 0.087 0.110 0.095 0.085 0.094 0.084 0.070 0.035 0.039 0.036
Sα ↑ 0.759 0.783 0.732 0.750 0.728 0.791 0.747 0.756 0.755 0.729 0.781 0.737 0.758 0.770 0.754 0.792 0.819 0.905 0.872 0.885
Em

ϕ ↑ 0.798 0.835 0.797 0.819 0.776 0.835 0.822 0.827 0.819 0.810 0.840 0.778 0.825 0.850 0.832 0.834 0.858 0.938 0.936 0.939
HCEγ ↓ 1202 1313 1339 1401 1395 1333 1411 1427 1442 1365 1432 1513 1359 1457 1426 1218 1016 790 1364 1176

It is noteworthy that IS-Net-General-Use is fine-tuned on extra datasets to enhance generalization,
which indicates that our method has a stronger generalization ability.

8.4 IMAGE MATTING

Implementation Details. We utilize P3M10K (Li et al., 2021), the largest portrait matting dataset
with high-resolution portrait images along with high-quality alpha masks to train our model. The
training set contains 9,421 high-quality images and annotations and the test set P3M-500-NP is
composed of 500 public images from the Internet. We train our GenPercept with the pixel-wise
MSE loss to further improve the final performance.

Fig. 9 shows some results on the P3M test dataset.

More Qualitative Evaluation. In Fig. 10, we showcase more qualitative results for the image
matting task. It is worth noting that our model works well in various resolutions, light environments,
human poses, and human orientations. More importantly, our GenPercept model trained on human
matting images shows much more robustness to other objects compared to existing P3M10K (Li
et al., 2021) SOTA method ViTAE-S (Ma et al., 2023), as illustrated in Fig. 11. It shows that the
ViTAE-S overfits the human matting task, while GenPercept preserves the generalization ability.
Besides, we also train GenPercept on a more general image matting task on the Composition-1K
(Xu et al., 2017) dataset. As shown in Fig. 12, GenPercept shows robustness on more types of
objects such as semi-transparent objects, hollow objects, etc.

8.5 IMAGE SEGMENTATION

More Qualitative Evaluation. In Fig. 13, we showcase more qualitative results for the image
segmentation task. Our method shows much robustness on the trained categories of complex in-
the-wild images. Due to the limited annotation categories and little negative label of “unknown
category”, it sometimes fails in outdoor scenes and unseen categories such as cats and cars. Please
zoom in for better visualization and more details.

8.6 HUMAN POSE ESTIMATION

More Qualitative Evaluation. In Fig. 14, we showcase more qualitative results for the human
pose estimation. We conduct experiments on MHP dataset (Li et al., 2017), and we use mmpose
(Contributors, 2020) to render the human pose following the setting of (Bai et al., 2023).
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Figure 5: More qualitative results for monocular depth estimation.
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Figure 6: More qualitative comparisons of surface normal estimation. Our GenPercept can achieve
more detailed results, even compared to the competitive CVPR2024 method DSINE (Bae & Davi-
son, 2024b). Note that these two visualization coordinate systems are slightly different.
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Figure 7: Cross dataset comparison of our model and other models.
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Figure 8: Qualitative results of dichotomous image segmentation.
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Figure 9: Visualization of image matting on the P3M-500-NP test set.

Figure 10: More qualitative results for image matting.
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Figure 11: Generalization ability of the human matting model to general image matting images.
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Figure 12: More types of image matting such as semi-transparent objects.
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Figure 13: More qualitative results for image segmentation.
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Figure 14: More qualitative results for human pose estimation. (Left: original Image, Mid: predic-
tion, Right: ground truth)
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