Data Poisoning Attacks on Off-Policy Policy Evaluation Methods

Abstract

Off-policy Evaluation (OPE) methods are crucial
to evaluating policies in high-stakes domains such
as healthcare where exploration is often infeasible
or expensive. However, the extent to which such
methods can be trusted under adversarial threats
to data quality is largely unexplored. In this work,
we make the first attempt at investigating the sen-
sitivity of OPE methods to marginal adversarial
perturbations in the data. We design a generic data
poisoning attack framework leveraging influence
functions from robust statistics to carefully con-
struct perturbations that maximize error in the pol-
icy value estimates. We carry out extensive exper-
imentation with multiple healthcare and control
datasets. Our results demonstrate that many of the
existing OPE methods are highly prone to generat-
ing value estimates with large errors when subject
to data poisoning attacks, even for small adver-
sarial perturbations. To combat this problem, we
suggest ways to identify and improve the robust-
ness of OPE methods.

1 INTRODUCTION

In reinforcement learning (RL), off-policy evaluation (OPE)
methods are popularly used to estimate the value of a policy

high-stakes decision problems such as medicine and finance,
where exploration is often infeasible or too expensive ??.
In such cases, one must estimate the value of a policy by
only using a batch of transition data collected using a fixed
behavior policy. In addition, the exact behavior policy is of-
ten unknown too 2. If the value corresponding to a policy as
estimated by the OPE methods is sufficiently high, the stake-
holders will deploy the policy, and otherwise, they reject it.
It is therefore essential that the OPE methods do not severely

overestimate values of bad policies ? or underestimate the
values of good policies.

The sensitivity of OPE methods to adversarial contamination
is not well understood yet. The complexity of OPE methods
can enable an attacker to introduce large errors in OPE
estimates with only small perturbations. For example, since
the value of a policy at a given state is dependent on its
value in all other future states, even small errors in the value-
estimates of these later states can accumulate and result
in large errors in the value estimates at the initial states,
where important strategic decisions are often made. Thus,
an attacker can design an effective attack model that exploits
this property to make a significant impact.

Importance sampling methods for OPE are also suscepti-
ble to errors in the importance sample weights. Some OPE
methods ??? use importance-sampling weights to correct
for the shift in the data observed when evaluating a given
policy with data collected using a different policy. These
weights are highly dependent on the behavior policy prob-
abilities. The attacker can thus perturb the data so that the
agent wrongly estimates the behavior policy and hence, in-
troduce large errors in the value estimate of a given policy.
Therefore, these vulnerabilities warrant a thorough analysis
of the effect of data-poisoning attacks on OPE methods.
Although several prior works have investigated the effect
of adversarial attacks on policy learning ??? in online and
batch RL settings, they mainly work focus on teaching an
agent to learn an adversarial policy or driving the agent to
an adversarial state ??? and does not specifically investigate
the effect of these attacks on OPE methods.

In this paper, we answer the following question: Can we
add small perturbations to training data that significantly
change the estimate of the value of a given policy? We pro-
pose a generic data poisoning attack framework for OPE
methods. The framework constructs strong adversarial per-
turbations by leveraging the influence function tool from

larly in Machine Learning and Robust statistics to estimate
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the effect of small perturbations in the data on an empirically
learned estimator ??. However, they have not been widely
explored in the context of RL. To the best of our knowledge,
our work is the first to study data-poisoning attacks on a
wide range of OPE methods.

As our main contribution, we formalize the problem of data-
poisoning attacks on five OPE methods - Bellman Residual
Minimization (BRM) ?, Weighted Importance Sampling
(WIS), Weighted Per-Decision IS (WPDIS) ?2??, Consistent
Per-Decision IS (CPDIS) ?, and Weighted Doubly Robust
methods (DR) ?. We propose a generic adversarial attack
framework and show how it can be used to attack diverse
model-free OPE methods. We empirically evaluate our at-
tack framework on two medical domains, one synthetic
domain, and two control domains. Through experiments,
we demonstrate that by corrupting only 3%-5% of the ob-
served states, we can achieve more than 900% and 180%
error in the estimate of the value function of the optimal
policy in the Cartpole and MountainCar domains, respec-
tively. Our experimental results also show that out of the
five OPE methods, DR is the least robust, and CPDIS is the
most robust to such train-time adversarial attacks. Finally,
our results question the reliability of policy values derived
using OPE methods and strongly suggest the need for devel-
oping OPE methods that are statistically robust to train-time
data-poisoning attacks.

2 PRELIMINARIES

We model a sequential decision-making problem as a
Markov Decision Process (MDP). A MDP is a tuple of
the form (S, A, R, P, po,y) representing the set of states,
set of actions, reward function, transition probability model,
initial state distribution, and discount factor respectively.
When taking action a € A in state s € S and transitioning
to state ' € S, the scalar R(s,a,s’) denotes the reward
received by the agent and P(s, a, s’) denotes the probability
of transitioning to state s’ on taking action a in state s.

A randomized policy w : S — Al prescribes the proba-
bility of taking each action from .4 in a state s. The value
function of a policy v™ : § — R at state s is the expected
discounted returns of the policy starting from state s and
is given by v™(s) = E [>;2 0 v R(s¢, ar, $41)|m, s|. The
value of a policy is computed as pl v™. The state-action
value function (also termed as the Q-value function) of a
policy ¢" : § x A — R at state s and action « is the ex-
pected discounted returns obtained by taking action a in
state s and following policy 7 thereafter. The state-action
value function is the unique fixed point of the Bellman oper-
ator 7™ : S x A — RS*A defined as

(T"q)(s,a) := R(s,a,s") +~ Z P(s,a,s)m(a’|s)q(s',a).
(1)

We assume the standard batch RL setting (?), where the

agent is given a batch of n = N x T transition tuples
D:((sé, a;‘», r§)JT:1)£\;1, observed on simulating a behav-
ior policy 7, for N episodes of length 7. The goal of OPE
is to use D to evaluate the value of the evaluation policy 7.
Let Dy be a set of initial states sampled from distribution py.
For all states s, we denote by £(s) € R? the features of state
s. To ease notation in ??, we define the state-action feature
vector ¢(s,a) € R4 as a vector containing state features
&(s) at the indices corresponding to a and zero elsewhere,
ie. ¢(s,a)[ad : (a+1)d] < &(s). Then, @ € R"*4 denotes
the sample feature matrix where the rows correspond to the
state-action features ¢(s, a) for the n state-action pairs in
D. Similarly, ®, € R"*? denotes the sample feature ma-
trix for the next states such that each row corresponds to
@(s, me(s})) for the next states s; in D. We use r € R™*1
to represent the sample reward matrix.

OPE methods are broadly classified into three categories:
Direct, Importance Sampling, and Hybrid Methods ?.

Direct Methods estimate the value of the evaluation pol-
icy by solving for the fixed point of the Bellman Equation
(??) with an assumed model for the state-action value func-
tion ¢ or the transition model P. We illustrate our attack
on one of the most popular Direct Methods, namely the
Bellman Residual Minimization (BRM) method ??. This
method solves a sequence of supervised learning problems
with state-action features ¢(s, a) as as the predictor and
the 1-step Bellman update (77)q = r + yPgq as the target
response. 7™ : RS — RS is commonly referred to as the
Bellman operator. The objective optimized in BRM is the
Mean Squared Bellman residual (MSBR),

MSBR(1) = llay — (T7)ay|l?- )
where the Q-value function ¢ is parameterized by param-

eters 7). U = diag[u™] where p € [0,1]° represents the
stationary state distribution of policy 7. The value of a
policy can then be computed as vpry = ) cp, Po(8) -

ZaEA ZaeA 71—(57 a) : qn(sa a)'

Importance Sampling Methods (IS) ?? are based on Monte-
Carlo techniques and compute unbiased but high-variance
value estimates. The key idea is to compute the value of
policy 7 as the weighted average of the returns of the tra-
jectories in D, where each trajectory is re-weighted by its
probability of being observed under evaluation policy .
We focus on attacking three popular variants of importance
sampling methods namely the Weighted Per-Decision, Con-
sistent Per-Decision, and Weighted 1S methods (WPDIS,
CPDIS, WIS) ??2. Let g4 = Z?:o v!ri represent the re-
turns observed for the i*” trajectory in the dataset D and as-
sume that that the behavior policy is parameterized by 6 and
estimated from data D using Maximum Likelihood Estima-
tion (MLE)?. Further, let pi., = []},_, ' ai/lsi)/xC" (ai,|5,)
where Vs € S,a € A, 7" (a|s) = eV /53, et
represent the importance sampling weights for time step ,



then the WIS, PDIS and CPDIS value-function estimates
are defined as,

Vis = Z Po LgTa 3)
Zz 1 pOT i=1
Updis ZV L P07t “)
i=1 t=1
T
1 ri
Vepdis = ~ Z,Yt 1Zz 1 Pot t (5)
t=1 Z 1p0t

Doubly Robust Estimator Hybrid Methods combine both
Direct and IS methods to generate value estimates with low
bias and variance. The Doubly Robust (DR) estimator ?,
for example, decreases the variance in the IS estimate by
using the estimate from a Direct method like BRM as a
control variate. Further, the DR estimator is guaranteed to
be consistent under relaxed assumptions. The DR estimator
given by

N
dr Z Z (Po:et — Po-ado, (1 at) + Po.gve, (s1)).

t=0

| (©)
where vy, (s7) = > ,c 4 7(5,a) - qo, (s, a). Here the param-
eters of the value function g is estimated using Direct OPE
methods like BRM.

Based on empirical studies, there are no clear winners
among the three methods (?). Therefore, we illustrate our
attack on representative methods from each type.

3 DOPE FRAMEWORK

We first present our attack framework called DOPE for
Data poisoning attacks on Off-Policy Evaluation. Then we
demonstrate how to use the framework to attack the three
types of OPE methods discussed in ??. The objective and
scope of the attacks considered in DOPE are as follows.

Scope: The attacker has access to the batch D and evaluation
policy 7 and the value of the discount factor ~ . For the
attack to be unnoticeable, the attack can only perturb «
fraction of the transitions in D while conforming to some
perturbation budget € > 0 to be defined later.

Objective: The goal of the attacker is to add small adversar-
ial perturbations to a subset of transitions in D such that it
maximizes the error in the value estimate of a given policy
in the desired direction. This means that for the policy being
evaluated the attacker may choose to decrease or increase
its estimated value such that a good evaluation policy is
rejected or a bad evaluation policy is approved.

Components: The DOPE framework for a given OPE
method has four major components: (a) Features (J) :
the part of the transitions targeted by the attack. (b) Value

estimation function (p) : function used by OPE method
for computing the value of the policy. (c) Estimator (0)

model parameters learned by the OPE method from
the data. We formally define each component in detail
in _methods@cref_methods @cref_methods @cref??. (d)
Loss function ( L) : loss optimized by the OPE method for
model-fitting.

We can now formulate our attack model as

rnaxnmze p(0,0 + A) — p(0, )
AER"*Q
subjectto 6 € argmin L(6', ¥ + A) (7a)
6’eRF
I6:l, < e i=1,....,N  (7b)

> sz < an. (7¢)

The DOPE objective in (??) increases the value estimate of
the policy 7 to increase the error in the same. Alternatively,
if the attacker desires to decrease the value function esti-
mate of the given policy, he may do so by simply changing
the sign of the objective. The constraint (??) estimates the
optimal parameter 6 from D after replacing ¥ with ¥ 4+ A.

The constraint (??) ensures that the perturbation added to
the W is limited to the user-defined perturbation budget e.
This prevents the attack framework from generating adver-
sarial transitions that can be easily detected as anomalous.
And, finally, the constraint (??) limits the number of transi-
tions that the attacker can perturb. Finally, note that p(f, ¥)
in (??) is a constant and can be ignored while solving the
optimization problem.

Next, we discuss how to adapt this framework to attack a
variety of off-policy policy evaluation methods.

3.1 ATTACKING OPE METHODS USING THE
DOPE FRAMEWORK

In this section, we first formally define the four components
of the DOPE framework. Then, we show how our DOPE
framework can be adapted to attack five distinct OPE meth-
ods discussed in 2?.

We denote by (s, a,r,s') € R, an arbitrary component
of the transition tuple (s, a,r, ') in D, that is selected for
perturbation by the attacker. We note that ¢)(s, a, r, s") could
either be the state features £(s) or the reward r vector. We
use U € R™*@ represent the corresponding sample ma-
trix constructed from D. We denote by 6(¥) € R” the
parameter of interest for a given OPE method, that is empir-
ically estimated from the data D. It is important to note that
the parameter é(ql) could represent different components in
different OPE methods, for example, 6 represents the param-
eters of the value-function ¢, in BRM and the parameters of
the estimated behavior policy 6y, in IS. We use L(6, ¥) with



L(;) : RF xR"*% — R to represent the empirical loss func-
tion used by the OPE method to derive the optimal parameter
9(0), ie., O(V) € argming cpr L(#', ¥). L in BRM and
DR is the MSBR whereas in IS methods, L represents the
M LFE loss optimized for finding the behavior policy param-
eters. We use p(0(¥), ¥) with p : RP x R"*Q — R to
represent the function used by the OPE method to compute
the mean value of the evaluation policy 7 at the initial states.
For example, p in BRM represents vy, .

We will interchangeably use the shorthand p(¥) :=
p(0(W), V). Further, it is worth noting that L(#, ¥) and
p(0, ) may also depend on other components of D which
remain fixed throughout the attack and hence, they are ex-
cluded from the definitions of functions p and L. It is impor-
tant to note that L (6, ¥) is required to be twice continuously
differentiable and linearly separable with respect to the tran-
sitions in D and p(6, ¥) is required to be continuously dif-
ferentiable with respect to 6 and 1. These assumptions, as
we see in ??, are important for computation of influence-
functions 2.

Using the afforementioned definitions, we summarize our
attack on the five methods discussed in ?? in ??.

4 OPTIMIZING THE DOPE OBJECTIVE

There are two major challenges that make the optimization
problem in (??) difficult. First, the third constraint in (??)
is non-differentiable and requires the attacker to select a set
of at most an transitions which we denote by S,,, such that
perturbing these transitions results in maximum change in
the value of the policy, in the desired direction. We denote
this set of transitions by S, . It is important to realize that
finding this set requires perturbing all possible subsets of
data W whose size is not greater than an and computing the
optimal parameter 6 for each perturbation. Thus, the number
of such subsets is much larger than (;n) and therefore com-
puting this set is computationally expensive and practically
infeasible ?. Second, the inner-level optimization problem
in ?? is often non-linear for OPE methods which makes
the bilevel-attack formulation an NP-Hard problem ?. We
address these two problems by deriving an approximation
of the bilevel optimization problem in ?? using the Taylor
expansion ?? and show that the resultant problem is simpler
to optimize and has a closed form solution. In ??, we em-
pirically demonstrate the effectiveness of our approximate
solution on several domains.

We being by defining the influence score of the i*" data
point I'y, g w = V5,p(¥) as the approximate influence of
perturbing the é-th data point by ¢; on p(¥). Then, using the
Taylor expansion of p(¥ + A), we can approximate the net
error in the value-function estimate as the weighted sum of
the influence-scores of individual data points. p(¥ + A) —

p(¥) as

p(U+A) = p(¥) = Y (Vs p(1)) 7. ®)

i=1

Substituting ?? in ??, our problem boils down to

n
max max E Si - L;,r_ 0.7 0k
s€{0,1}" {6, }}_, eRnxQ P L

" 9
subject to Z Sp = - n, ©

k=1
10k, <& sk, k=1,...0.

Here, s € {0,1}" is a vector of binary indicators such that
s; = 1 indicates that the i*" transition is amongst the an
transitions selected for perturbation. We can now compute
an approximately optimal set of perturbations in polynomial
time, as we show in 2?2.

Proposition 4.1. Let (s*, A*) be the optimal solution to the
problem in (??). Define the Approximate Influential Set S,
as So ={i:sf =1,Yie[l,...,nl]}. Then,

1. S, can be constructed by choosing the set of an tran-
sitions with the largest q-norm of their influence scores
wa)?q;.

2. Forall k € [1,...n], the optimal 6} forp = 1,2, 00
can be computed as

Ifp=1,Vj€[1,Q],

= {eifj € argmax;c g Iy, 0,9(j)
g =

0 otherwise (10)

If p = 0o, then 0 = € x Sign(I‘I’kﬂa‘I’)

I
Ifp =2, then 6k:6-M.
[1w,.0,vl2

We remark that the optimal perturbations A** for the ap-
proximate problem in ??, when substituted in the objective
of ?? gives us a lower bound on the maximum error that can
be achieved in the value-function estimate while constrain-
ing to the specified budget, i.e., p(¥ + A*) — p(¥), where
A* is the optimal solution to 2?. This simply follows from
the construction of our original problem ( ??).

err = p(¥ 4+ A™) — p(¥)

= U+ A) - p(U
Jmax  p(¥+A4) —p(¥) (11)

> p(W + A") — p(¥)

Finally, it remains to discuss how to compute the influence
scores of each transition in D, i.e., Iy, 9,v = Vi, p(¥).

Recall that p( ) is not only a function of ¥, but also §()
which is also a function of ;. Hence, using chain rule in



DOPE Attack Templates
Method Estimator ¢ Features ¥ Value Estimation Function | Loss L(6, )
p(¥)
BRM ? tq dorr Vbrm MSBR
WIS ?? 0y dorr Vwis MLE
WPDIS ? 0y dorr Vuwpdis MLE
CWPDIS ? Gb Porr Vewpdis MLE
DR? Oy, 04 dorr UDR MLE + MSBR /
MSBR

Figure 1: DOPE Attack Templates for OPE Methods.

calculus, we get

op(6,V
ViE[l...n},I\pi,(g’\p% (,0(7)

96;
00()
oy 90 .

Ip(8, )
00

The partial derivative 89(\?) is the effect of perturbing U;

by a small §; on the parameter ¢, which can be approxi-
mately computed using the influence-function in (2?) as
20(%) /95, = H-L 0L(,¥; N 5 =

W)/os;, = Hé(q;) (0:%:)/000w, 8(w) where Hj )
O?L(0,%) /502 | i) For more details on the influence func-
tions, please see Influence functions in 2?.

Thus to compute Iy, ¢ v in 22, we require that L(6, ¥) is
required to be twice continuously differentiable and linearly
separable with respect to the transitions in D and p(6, ¥)
to be continuously differentiable with respect to 6 and v
Although, these conditions may seem restrictive, they hold
true for many of the OPE methods we discuss.

The derivatives in (??) can be easily computed using Python
automatic-differentiation software like Pytorch, Tensor-
flow ??. The hessian-inverse vector product 6;(31,) can be
approximately computed in O(N P) time using Pearlmut-
ter’s method ? for fast Hessian-vector product and Taylor
approximation of the inverse of Hessian matrix as shown
in 2.

S ALGORITHM

Input: Batch of data D, attack budget €, % of corrupt tran-
sitions «, norm-type p, threshold p

Construct ¥ from D
Set W «— W
Sa ¢ ]
Compute || Iy, g w|qforallk € [1,...,n]s.t. %Jr é =1
Set S, ¢ Indices of top an transitions with the largest
w09 llq

repeat
0 < argming cpr L(§, U°)
for k € S, do
Compute ycor g geor using (22).
Compute oF €
arg Max;sepe Ig;zm,@’q,wr(; st [Py — (5" +
0)|lp <€

Use line-search to find step-size [ such
that p(6, U*™P) — pk(g, W) < 0 where
UimP is constructed by replacing W§°" with
(1— B)WE + BTy, + 57) in 0"

Set Weor «— yimp

end

until |pk’+1(\I,co7") _ pk'(\I,cm“)| < 1

return D’

We outline our DOPE framework in ??. To summarize, our
algorithm for approximately solving (??) consists of two
main steps. In the first step, we compute an approximation
of the optimal set of transitions to perturb S, by choosing
an transitions in ¥ with the largest g-norm of their influ-
ence scores || Iy o.w||4. In the second step, we compute the
steepest feasible descent direction § for all transitions in
S'a and use line-search to update the transitions in S’a. The
second step may be repeated until no further perturbation to
transitions in S,, decreases Ap.

6 ADDITIONAL RESULTS

Next, we show how to avoid expensive influence function
computational costs for BRM method by deriving closed
form expressions for the influence score of data points in
linear BRM method, under two settings a) when the adver-
sary perturbs only the state features b) When the adversary
perturbs the reward features.

Proposition 6.1. If the attacker only perturbs the reward
vector r constructed from batch of transition tuples D. Then,
the influence score of the it data point I, 0w for the FQE



method can be computed as

Lpw = 427 (2 —79%) [Epra)-1-

(13)
o ((o72) ' (o7® — 2T D),))
Proposition 6.2. If the attacker only perturbs the state
feature matrix ®. Then, the influence score of the i'" data
point Ly, a,),0,9 for the FOE method can be computed as

7 EXPERIMENTS

In this section we conduct numerous ablation studies to iden-
tify the strengths and weaknesses of our attack framework.
Specifically, we aim to answer the following key questions
through our experiments.

* What should be the range of the attacker’s budget for
an effective attack?

Do the perturbed data points have to be outliers to
introduce large errors in the value function estimate?

What percentage of data points need to be perturbed
for an effective attack?

What effect does the discount factor have on the impact
of the attack?

How does the attack impact the importance sampling
weights?

Can deletion of influential data points be an effective
defence mechanism against data poisoning attacks?

¢ How does a random perturbation perturbation attack
compare to our data poisoning attack?

Is there an advantage of perturbing influential data
points over perturbing randomly selected data points?

8 RELATED WORK
9 CONCLUSION AND FUTURE WORK
A NOTATION

We will use A = (8;)¥; to denote the perturbation matrix
where §; € R¥ is a vector of perturbations added to ;.

B PROOFS

C EXPERIMENTAL RESULTS

Cancer: The cancer domain models the growth of tumors
in cancer patients subject to chemotheraphy. The domain
consists of 4-dimensional states that represent the growth-
dynamics of the tumor in the patient ad 2 actions that indi-
cates if a given patient is to be administered chemotheraphy

or not at a given time step. Each episode is of length 30. The
dataset D comprises of 80 trajectories collected using the
behaviour policy.

HIV: The HIV domain has 6-dimensional states represent-
ing the state of the patient anf 4 actions that represent 4
different types of treatments. Each episode is of a fixed
length 7" = 50. The dataset D comprises of 80 trajectories
collected using the behaviour policy.

Mountain Car: In the Mountain Car domain, the task is
to drive a car positioned between two mountains to the top
of the mountain on the right in the shortest time possible.
The 2-dimensional state represent the current position of
the car and the current time-step and 3 actions represent -
drive forward, drive backward and don’t move. The average
length of the episodes is 150. We collect 80 trajectories by
simulating the behavior policy.

Cartpole: The cartpole domain models a simple control
problem where the goal is to apply +1/-1 force to keep a pole
attached to a moving cart from falling. The 2-dimensional
state represents the cartpole dynamics and 2- actions repre-
sent the force applied to the pole. We construct D with 50
trajectories collected using the behavior policy.

C.1 WHAT SHOULD BE THE RANGE OF
ATTACKER’S BUDGET?

In this experiment, we investigate how much budget should
the attacker be allotted to observe a significant change in the
value of the optimal policies in the 4 domains listed above.
For this, we fix the percentage of transitions perturbed to
0.05 across all domains. We vary the perturbation budget
from 0.01 to 0.25 in steps of size 0.04. Since the objective
optimized by our framework is non-convex, we found that
it often gets stuck in local optima which makes it difficult
to observe a clear trend in the percentage change in the
value estimates with change in the perturbation budget. To
resolve this issue, we warm start each optimization with the
solution obtained using a lower budget value. Further, in
FQE, we allow the attacker to perturb transitions in a way
that does not result in large train-errors. We set a threshold
of 100 on the mean projected Bellman error. ?? shows how
the change in the value-function varies with the attacker’s
budget.

C.2 DO THE PERTURBED TRANSITIONS LOOK
ANOMALOUS?

A natural question that arises is whether the perturbed transi-
tions have to be outliers to make a significant impact on the
value-function estimate. ??, ??, ?? shows the transitions of
a subset of trajectories before and after the data-poisoning
attack on FQE, Importance Sampling and Doubly Robust
method respectively. The attack budget € is set to 0.05 and



Percentage error in value function

Domain Most Affected Method | Percentage Error in Value function
Cancer FQE/DR 22%
Custom DR 7%
HIV DR 2500%
Cartpole DR 900%
MountainCar DR 180%
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Figure 2: ??,??, 2? shows the relationship between the errors in the value estimates given by FQE, IS and DR (left to right) and attacker’s

budget €. On an average, the percentage of error in the value function estimate increases with increase in the budget.
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Figure 3: ??,??, ?? compares the effect of random perturbations to adversarial perturbations constructed using the DOPE framework on

the error in the value function estimates of FQE, IS and DR methods (left to right).
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Figure 4: ??, 22, ?? shows the relationship between the errors in the value estimates given by FQE, IS and DR (left to right) and
percentage of corrupt data points a.

the percentage of corrupt transitions « is set to 0.05. No-

tice that across all 4 domains and all 3 OPE methods, most
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Cartpole domains (left to right).
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Figure 6: 2?,??, 22, ?? compares the effect of DOPE attack on FQE, IS, PDIS and CPDIS methods in Cancer, HIV, Custom, Cartpole

domains (left to right).

of the perturbed transitions do not look resemble outliers.

However, these perturbed transitions results in astonishingly

large change in the value-function estimate as shown in ??.

Overall, these experimental results reveal that weak outlier
detection methods are likely to not detect the adversarial
transitions in the dataset D.

C.3 WHAT PERCENTAGE OF TRANSITIONS
SHOULD THE ATTACKER PERTURB?

In this experiment, we vary the percentage of transitions
that the attacker is allowed to corrupt in D. ?? shows that,

overall in FQE and DR method, corrupting x% of the points
is sufficient to observe a large change in the value-function
estimate. On the other hand, IS methods require much larger
the attacker to corrupt much larger percentage of transitions
to observe a significant difference in the value estimates.

C.4 EFFECT OF DISCOUNT FACTOR/HORIZON

A large discount-factor value indicates that the value-
function at a given state has a larger dependence on fu-
ture rewards as compared to when the discount-factor has a
smaller value. We can thus expect the impact of the attack
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to be larger for larger values of discount-factor especially in
FQE and Doubly Robust methods. To empirically validate
this conjecture, we set o to 0.05 and vary the budget e from
0.0 to 0.25 in steps of size 0.04. ?? shows that, overall, the
impact of attack does indeed increase with increase in the
value of the discount-factor. This means that the our attack
model correctly exploits this vulnerability of RL to have a
larger impact on the value-function.

C.5 IMPACT OF ATTACK ON IMPORTANCE
SAMPLING WEIGHTS

Next, we evaluate if our attack model correctly corrupts
the behavior policies to introduce large errors in the value
estimate of the evaluation policy. For this, we plot the
importance-sampling weights before and after the attack
on IS method in the Cancer and Mountain Car domains. We
focus only on these two domains since the rewards in the
Cancer domain is always positive and the rewards in the
Mountain Car domain is always negative. Hence, it is easier
to predict the direction of change in weights in both of these

domains. In the Mountain Car domain, we can expect the
attack model to achieve a significant decrease in the value-
function estimate by lowering the behavior probabilities for
the observed samples. We set a threshold equal to 0.01 on
the behavior probabilities to avoid any suspicion. We can
thus expect the importance-sampling weights to increase
after the attack in both the domains. To observe this effect,
we set = 0.5 and € = 0.25 and solve for maximizing
the value in the case of Cancer domain and minimizing the
value in the case of Mountain Car domain. The results in ??
demonstrate that the weights indeed increase significantly af-
ter the attack indicating that our attack-framework correctly
exploits the behavior policy to achieve its objective.

C.6 DEBUGGING ADVERSARIAL ATTACKS

Recently, leave-one-out error also known as influence of
deleting a data point on the value-function estimate was
proposed as a diagnostic tool for identifying adversarial
transitions ?. We investigate if deleting a% of the transi-
tions with the largest leave-one-out error can serve as a



naive defence-mechanism against data-poisoning attacks. In
??, we provide a histograms of the leave-one-out error com-
puted on datasets with «% corrupt data points. Note that
deleting transitions in IS methods is not feasible as it would
make the trajectories containing those transitions redundant
for the value-function estimation. Hence, we only consider
this defence mechanism for FQE method. ?? displays the
value of the policy before the attack, after the attack and
after deleting an transitions with the largest g-norm of their
influence.

C.7 INFLUENCE ATTACK VS RANDOM ATTACK

In this experiment, we compare our DOPE attack with a
Random Attack, wherein the attacker adds random perturba-
tions to randomly selected an transitions. We fix the value
of a to 0.05 and vary the budget ¢ from 0.0 to 0.25 with
step size 0.04. For each value of the budget €, we average
the percentage change in the value estimate of the policy
observed in a random attack over 100 trials. The experimen-
tal results in ?? demonstrates that in contrast to the DOPE
attack, the Random Attack fails to make a significant change
in the value-function estimate and therefore, can be used as
an alternative to our attack model.

C.8 RANKING OPE METHODS BY THEIR
SENSITIVITY TO DATA-POISONING
ATTACKS

In this experiment we evaluate and compare the robust-
ness of FQE, IS, PDIS, CPDIS and DR methods. We judge
the robustness of each method by comparing the average
of the percentage change in the value estimates observed
after the attack, computed over N trials. ?? shows the av-
erage percentage change in the value estimates observed in
all 5 methods for different values of the budget. These re-
sults demonstrate that, as expected, DR is least robust while
CPDIS is most robust to the data-posioning attacks. We con-
jecture that the robustness of CPDIS is due to the weights
at any time-step ¢ being similar across trajectories. And
thus, normalizing the weights across trajectories basically
neutralises the effect of the data-poisoning attack.

C.9 CHOOSING RANDOM POINTS TO PERTURB

One might conjecture if there is any benefit to computing the
influence of all transitions and then greedily select points
with the largest influence instead of randomly selecting
an transitions to perturb. To investigate this, we randomly
select an transitions to perturb in each experiment and vary
the budget € from 0.0 to 0.25 in step size of 0.4. We set
a = 0.05 for all the domains. The selected transitions are

change change in the value-function estimate with change
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in the budget €.

D APPROXIMATELY OPTIMAL
PERTURBATIONS

It thus follows that Vk € [1,... N], the optimal perturba-
tion ¢;, can be independently computed by solving d; €
argmax, Iy, 4 g s.t. x|, < e This is easy to compute
for p = 1,2, 00 as we show in ??.

Next, we need to solve for the optimal value of s. From
the theory of convex optimization, we know that the p-
norm of any vector z € RM ||z||, can be expressed as
|zl = maxzTxs.t. ||2]|, < 1 where % + % = 1. q might
be confused with q function? Hence, given the optimal-
perturbation d;Vk € [1,...n], the problem in ?? boils
down to solving reference to be edited

n

max Z HI‘Pkﬁ,‘I’”q
se{0,1}N
k=1 (14)
Z S = Q- "N.

k

lot of white space around equations needs to be fixed It
is now easy to see that the optimal set of transitions for
the approximate attack problem in ?? is simply the set of
an transitions with the largest value of the g-norm of their
influence scores. We formally state these results in 2?.

E IMPLEMENTATION DETAILS

Implementation Details: For each domain, we generate
Radial Basis features for each observed state s and next-state
s’ in the transition tuples (s, a,r, s") € D. For simplicity, we
assume that every (s, s’) pairin (s, a,r,s") € D is unique.
We note that,in our experiments, the attacker only perturbs
original features of observed states s in the transition tuples
and these perturbations do not affect the observed next-
states s’ in (s, a,r,s") € D. Further, we use Regularized
Ridge Regression to estimate the parameters of the q-value
function in FQE and Regularized Logistic Regression to
estimate the behavior policies in IS and DR methods. For
simplicity, we assume that the behavior policy in DR is
provided by the experts and not learned from D. Inspite of
this assumption, the attacker can still exploit the importance-
sampling weights to construct We provide the details of the
hyperparameter used, in the Appendix.
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* With e value as small as 0.5std(x; — 3), we can

I ADDITIONAL PRELIMINARIES

Influence Functions Influence function is a popular tool
used to quantify the change in an empirically learned
estimator with small changes in data. Consider a super-
vised learning problem with input space X and output
space ), a batch of data (z)?, where z; = (x;,y;) €
(X x Y) and an unknown prediction function f : X — )
where f is parameterized by § € ©O. Given a convex
and doubly differentiable loss function L(6, z) such that
L : ©® x X — R notation for map L can be omitted
and 6 € argming cg + Y1 | L(#', z;) is the empirical risk
minimizer, then, the effect I, g p of perturbing a data point
z — zs = (x+9, y) on the parameter # can be approximated
via Taylor expansion as

0,s—0 00
Lo ==5—~ 5 (15)
1 0%L(0,2) 0?L(6,D)
~ | — 17 Z\D =) _ A\
= ( H, 09 ) where Hy 570

where 0, 5 are the new optimal parameters learned from
the training data point after replacing z by zs5. We refer the
readers to ? for more details.

11



