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Multi-view Self-Supervised Contrastive Learning for Multivariate
Time Series
Anonymous Authors

ABSTRACT
Learning semantic-rich representations from unlabeled time series
data with intricate dynamics is a notable challenge. Traditional con-
trastive learning techniques predominantly focus on segment-level
augmentations through time slicing, a practice that, while valuable,
often results in sampling bias and suboptimal performance due to
the loss of global context. Furthermore, they typically disregard the
vital frequency information to enrich data representations. To this
end, we propose a novel self-supervised general-purpose framework
called Temporal-Frequency and Contextual Consistency (TFCC).
Specifically, This framework first performs two instance-level aug-
mentation families over the entire series to capture nuanced repre-
sentations alongside critical long-term dependencies. Then, TFCC
advances by initiating dual cross-view forecasting tasks between
the original series and its augmented counterpart in both time and
frequency dimensions to learn robust representations. Finally, three
specially designed consistency modules —temporal, frequency, and
temporal-frequency— aid in further developing discriminative rep-
resentations on top of the learned robust representations. Extensive
experiments on multiple benchmark datasets demonstrate TFCC’s
superiority over the state-of-the-art classification and forecasting
methods and exhibit exceptional efficiency in semi-supervised and
transfer learning scenarios. Code, data, and model checkpoints will
be released after the review period.

CCS CONCEPTS
• Computing methodologies→Unsupervised learning; Learn-
ing latent representation.

KEYWORDS
Time series analysis, Time-frequencymining,Multi-view self-supervised
learning, Contrastive learning

1 INTRODUCTION
Time series analysis plays a vital role in real-world scenarios such
as healthcare, financial markets, and energy. These data are typi-
cally collected by Internet of Things (IoT) sensors and capture the
dynamics of variables over time. However, acquiring such label
data often entails significant time and financial investment. The
label sparsity hampers traditional supervised learning approaches
owing to insufficient training data and impacts the downstream
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tasks [22]. The endeavor to derive generalized representations from
such constrained time series data presents an intricate challenge;
thus, unsupervised representation learning in time series analysis
paves the way for label-scarce scenarios. Lately, numerous studies
[5, 9, 10, 26] have utilized contrastive loss to uncover the intrinsic
patterns of time series, but they still face some notable limitations.

First, segment-level representations introduce sampling
bias. Previous efforts, such as TNC [18], CPC [15], TS-TCC [5],
and CA-TCC [6], have yielded charming contributions, driving sig-
nificant strides in representation learning. These methods mainly
apply segment-level sampling policy and create contrastive pairs
along the temporal axis, which may fall short of capturing the
global context and undermine the preservation of temporal depen-
dencies within time series [25]. Segment-level methods are highly
dependent on the way to construct contrastive pairs, which usually
assume neighboring segments as positive pairs and distant ones
as negative, may not perform well in long-term scenarios and may
not be able to capture the complete semantic information, thus
affecting the stability and effectiveness of downstream tasks [22].

Next, frequency domain information is not fully explored.
The aforementioned approaches have exhibited their strong ability
for self-supervised representation learning, but they all overlook
the frequency properties and the temporal-spectral affinities in time
series, limiting the discriminative and expressive representation
learning. CRT [25], CoST [20], and BTSF [22] provided valuable
insights for mining frequency information, but only implemented
augmentations in the time domain. The time domain focuses on
sequential order and continuity, whereas the frequency domain
emphasizes periodic patterns. Solely focusing on time-domain infor-
mation often neglects important features, which can significantly
hinder model performance, particularly in complex and noisy se-
ries. TF-C [26] considered the time and frequency augmentations,
yet it lacks considerations for phase augmentation and sequence
context information, indicating it was not fully mining frequency
patterns and ill-suited for prediction tasks. Exploring frequency in-
formation can unearth vital insights and improve the effectiveness
and generalizability of learned representations. However, how can
we fully capture frequency domain information? Extracting robust
information through prediction has been proven effective in the
time domain [6], but what about the frequency domain?

To address these challenges, we present TFCC, a novel multi-
view self-supervised contrastive learning framework that enhances
time series representation learning through three aspects. First, we
applied instance-level augmentations to create contrastive pairs
in both time and frequency domains, especially perturbating the
frequency spectrum, which would not alter the raw properties of
the entire series and effectively reduce false negatives and false
positives. Additionally, we designed two cross-view forecasting
modules in the time and frequency domains to encourage the model
to learn robust representation using the past augmented samples
to predict the future of the original samples without data loss and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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vice versa, which may differ from TS-TCC. To our knowledge,
this is the first work that explores phase perturbation augmen-
tation and performs prediction to capture spectrum patterns in the
frequency domain. Last, we leverage three consistency modules
in latent space: two contextual consistencies and one temporal-
frequency consistency. Contextual consistency aims to maximize
intra-sequence similarity and minimize inter-sequence similarity in
the same domain, fostering discriminative representation learning.
Temporal-frequency consistency is designed to pull together the
time-based and frequency-based representations of the same series
and push away the representations of different series in the shared
latent space, achieving mutual learning from cross-domain inter-
actions. As a result, TFCC utilizes multiple views to empower the
exploration and extraction of generalizable time series represen-
tations and capture the embeddings invariant in various temporal
dynamics and semantic meaning, leading to superior performance
in downstream tasks, and serving as a vehicle for semi-supervised
classification domain adaption and label-scarce scenarios.

In summary, the contributions of our work are as follows.

• A novel multi-view contrastive learning framework is pro-
posed for unsupervised general-purpose representation learn-
ing in time series data.

• Two novel instance-level augmentation families in the time
and frequency domains especially the phase perturbations,
are first proposed to preserve global context and capture
long-term dependencies.

• TFCC aims to learn universal representations. Two novel
cross-view forecasting tasks are designed to learn robust rep-
resentations. To our knowledge, we are the first to conduct
predictions to learn robust representations in the frequency
domain. TFCC promotes discriminative learning with two
contextual consistencies and a temporal-frequency consis-
tency that aligns time-based and frequency-based embed-
dings through cross-domain interactions in the latent space.

• Extensive experiments demonstrate that TFCC surpasses
existing state-of-the-art methods in classification and fore-
casting tasks, and prove its effectiveness in semi-supervised
learning and transfer learning settings.

2 RELATEDWORK
Self-supervised Learning for Time Series. Self-supervised rep-
resentation learning for time series has gained significant growth,
but there remains considerable scope for improvement in this area.
Inspired by the well-established self-supervised learning methods
in computer vision and natural language processing, recent studies
primarily utilize contrastive learning frameworks for time series
representation learning. For instance, TST [24] adopted masked
signal prediction as an auxiliary task for transformer model pre-
training. TS-TCC [5] constructed a cross-view prediction on weak
and strong augmentations in the temporal module to learn ro-
bust representations and proposes a context consistency module to
learn discriminative representations. TNC [18] maintains tempo-
ral consistency by distinguishing between neighboring and non-
neighboring signals. TS2Vec [23] optimizes hierarchical contrast
learning at multiple scales. However, these time-based methods are
often inadequate for long time series, failing to capture long-term

dependencies effectively [22]. Besides, the effectiveness will sig-
nificantly diminish when applied to downstream tasks involving
periodic time series [25].

Temporal and Frequency Contrasting. Exploring the fre-
quency domain can yield extra insights, and few studies have con-
sidered transformation invariance and investigated this area, but
they may still have some aspects that could be improved. CoST [20]
proposed contrastive learning in time and frequency domains to
learn disentangled seasonal-trend representations for time series
forecasting. BTSF [22] and CRT [25] also included the frequency
domain, but they only perform augmentations in the time domain.
Similarly, TF-C [26] and TS-TFC [11] incorporate frequency fea-
tures. Nevertheless, TF-C failed to consider phase perturbation and
contextual invariance, while TS-TFC overlooks the use of augmen-
tations, which may affect their model’s generalization. In this work,
we first present two instance-level augmentation families to en-
rich the pre-trained models, and two cross-view forecasting tasks
to learn robust representations, especially by introducing spectral
perturbations and prediction strategy in the frequency domain. Be-
sides, we propose contextual consistency and temporal-frequency
consistencymodules to capture discriminative information by cross-
domain correlations.

3 METHOD
Our proposed TFCC framework is shown in Figure 1.

3.1 Time Series Data Augmentation
Data augmentation is vital in contrastive learning for enhancing
data diversity [3, 5, 12]. Contrastive learning aims to maximize
the similarity between different views of the same sample while
minimizing similarity with other different samples, making similar
instances grouped and dissimilar instances separated. We create
positive pairs by matching the original series with its augmented
counterpart, treating other samples as negative pairs. Wen [19]
thoroughly reviewed time series augmentation techniques. Data
augmentation usually introduces synthetic disturbances that reflect
the complexity of time series, which mitigates overfitting risks and
improves model robustness and generalization. However, current
methods often lose global semantic information and fail to capture
long-term dependencies due to segment-level sampling bias.[22].

This work presents a novel data augmentation strategy designed
to maintain data’s raw properties and capture global context. We
leverage various invariant transformations to build a time-based
augmentation family (TAF) and a frequency-based augmentation
family (FAF), enriching the representation learning during pre-
training. For TAF, we utilize instance-level temporal augmentations,
including scaling, jittering, and dropout mask to generate diverse
data while keeping the entire series integrity, all well-recognized in
[17, 22, 26]. Given a sample 𝑥 , we input the sequence 𝑥𝑇 into TAF to
produce positive samples 𝑥𝑇𝑝𝑜𝑠 . Negative samples 𝑥𝑇𝑛𝑒𝑔 are generated
by randomly selecting other variables. For the FAF, we introduce
perturbations to the spectrum by adding or removing frequency
components and phase and amplitude perturbations. 𝑥𝐹 is derived
through the Fast Fourier Transformation (FFT) [14] and then create
𝑥𝐹𝑝𝑜𝑠 by applying FAF. Negative samples 𝑥𝐹𝑛𝑒𝑔 are obtained from
other variables’ frequency. In experiments, the model will randomly
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Figure 1: The diagram of our universal self-supervised representation learning framework TFCC for multivariate time series.

Figure 2: Positive pair

select one time-based augmentation from TAF and one frequency-
based augmentation from FAF to increase data diversity to enhance
the model’s ability to learn time series representations.

3.2 Cross-view prediction
Temporal domain Inspired by [5], we developed our temporal
contrasting module to capture the latent temporal features. For a
given input sample 𝑥𝑖 , 𝑖 is the timestamp of a time series sample, we
generate an augmentation set𝑋𝑇

𝑖
using TAF: 𝑥𝑇

𝑖
→ 𝑋𝑇

𝑖
. Each mem-

ber 𝑥𝑇
𝑖
∈ 𝑋𝑇

𝑖
is augmented from 𝑥𝑇

𝑖
. We randomly select a member

𝑥𝑇
𝑖
to generate a positive pair with the original sample, and expose

the model to complex, missing, and unstable temporal dynamics to
derive more robust embeddings. The original and the augmented
views are all passed through an encoder consisting of three convo-
lutional layers to obtain the latent embeddings: ℎ𝑇

𝑖
= Encoder

(
𝑥𝑇
𝑖

)
,

ℎ̃𝑇
𝑖

= Encoder
(
𝑥𝑇
𝑖

)
. Transformer as an autoregressive model is

utilized to yield contextual vectors 𝑧𝑇𝑡 = Transformer
(
ℎ𝑇0≤𝑖≤𝑡

)
,

𝑧𝑇𝑡 = Transformer
(
ℎ̃𝑇0≤𝑖≤𝑡

)
.

We introduce a challenging cross-view prediction task employ-
ing a bilinear prediction model that utilizes the context of 𝑧𝑇𝑡 to
predict the future M timestamp-augmented sample ℎ̃𝑇𝑡+𝑚 (1 ≤
m ≤ M), and use 𝑧𝑇𝑡 to predict ℎ𝑇𝑡+𝑚 , which means the mutual
information learning between the input 𝑥𝑡+𝑚 and 𝑧𝑡 , f (ht+m, zt) =
exp

(
(Gm (zt))T ht+m

)
, where G𝑚 is a linear function that maps 𝑧𝑡

back into the same dimension as ℎ𝑡 . Two contrastive losses 𝐿𝑇 and
�̃�𝑇 are designed to maximize the dot product between the original
and the predicted of the same sample while minimizing the dot
product with other samples N𝑡,𝑚 in the batch, computed as:

𝐿𝑇 = − 1
𝑀

∑𝑀
𝑚=1 log

exp
(
(G𝑚 (𝑧𝑇𝑡 ))𝑇ℎ𝑇𝑡+𝑚

)
∑

𝑛∈N𝑡,𝑚 exp
(
(G𝑚 (𝑧𝑇𝑡 ))𝑇ℎ𝑇𝑛

) (1)
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�̃�𝑇 = − 1
𝑀

∑𝑀
𝑚=1 log

exp
(
(G𝑚 (𝑧𝑇𝑡 ))𝑇ℎ𝑇𝑡+𝑚

)
∑

𝑛∈N𝑡,𝑚 exp
(
(G𝑚 (𝑧𝑇𝑡 ))𝑇ℎ𝑇𝑛

) (2)

Figure 3: Architecture of the Transformer in our framework.
The token 𝑧 in the output is sent to the non-linear 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛
used in temporal and frequency contrasting modules.

Figure 3 showcases the architecture of the Transformer used in
our work, which is the same as that in [5]. It mainly consists of
consecutive Multi-Head Attention (MHA) blocks and an MLP block.
The MLP consists of two fully connected layers with a nonlinear
ReLU function and filter, as well as two Dropout in the middle. Our
Transformer employs pre-normalized residual connectivity, which
produces more stable gradients. We add a token 𝑧 into the module
and then output its state as a representation context. The Trans-
former operation begins by taking the features ℎ≤𝑡+𝑚 and passing
them through a linear projection layer, which transforms these fea-
tures into a hidden dimension, represented as 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛 : R𝑑→𝑘 .
The result of this linear projection is then fed into the Transformer,
resulting in 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛, ℎ′ ∈ R𝑘 . Subsequently, we combine the
context vector with the feature vector ℎ′, resulting in the input
features becoming 𝜙0 = [𝑧;ℎ′], where the subscript 0 signifies that
it serves as the input to the first layer. Following this, we propagate
𝜙0 through the Transformer layers using the equations below:

𝜙 ′ℓ = MHΛ (Norm (𝜙ℓ−1)) + 𝜙ℓ−1, 1 ≤ ℓ ≤ 𝐿 (3)

𝜙ℓ = MLP
(
Norm

(
𝜙 ′ℓ
) )
+ 𝜙 ′ℓ , 1 ≤ ℓ ≤ 𝐿 (4)

Frequency domain Time and frequency domains are two dif-
ferent views of the same sequence, and the latter can offer another
perspective for uncovering spectral characteristics in time series
[25]. Recent studies like CoST, BTSF, TFDNet, and TS-TFC [11]
have examined frequency but missed out on frequency augmen-
tations. Our work is one of the few to explore frequency-based
augmentations and the first to perturb phase and amplitude. When
perturbing the phase of 𝑥 , we first extract its original phase, then
generate a random perturbation controlled by perturb_ratio, and
sum them up to get the final perturbed spectrum. For sample 𝑥𝑖 ,
the frequency spectrum 𝑥𝐹

𝑖
is generated from 𝑥𝑇

𝑖
through FFT.

For 𝑥𝐹
𝑖
, an augmentation set 𝑋 𝐹

𝑖
is built using FAF: 𝑥𝐹

𝑖
→ 𝑋 𝐹

𝑖
.

We utilize the same encoder and Transformer to map 𝑥𝐹
𝑖

to a
frequency-based embeddings 𝑧𝐹

𝑖
= 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 (𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑥𝐹

𝑖
)),

𝑧𝐹
𝑖
= 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 (𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑥𝐹

𝑖
)). We are the first to design cross-

view prediction to capture frequency patterns in the frequency
domain, the process of which is similar to that in the time domain,
𝐿𝐹 and �̃�𝐹 are computed by:

𝐿𝐹 = − 1
𝑀

∑𝑀
𝑚=1 log

exp
(
(G𝑚 (𝑧𝐹𝑡 ))𝐹ℎ𝐹

𝑡+𝑚

)
∑

𝑛∈N𝑡,𝑚 exp
(
(G𝑚 (𝑧𝐹𝑡 ))𝐹ℎ𝐹

𝑛

) (5)

�̃�𝐹 = − 1
𝑀

∑𝑀
𝑚=1 log

exp
(
(G𝑚 (𝑧𝐹𝑡 ))𝐹ℎ𝐹

𝑡+𝑚

)
∑

𝑛∈N𝑡,𝑚 exp
(
(G𝑚 (𝑧𝐹𝑡 ))𝐹ℎ𝐹

𝑛

) (6)

3.3 Contextual Consistency
Prior studies have delved into contextual consistency [4, 5] but lack
exploration of frequency consistency, which is complemented by
our work.

Temporal Consistency. A batch consisting of N input samples,
each has two contexts — one is from the original and the other is
from the augmented, and thus get 2N contexts

[
𝑐𝑇
𝑖
, 𝑐𝑇
𝑖
, 𝑐𝑇

𝑗
, 𝑐𝑇

𝑗
, · · · , 𝑐𝑇

𝑁
, 𝑐𝑇
𝑁

]
.

For sample 𝑥𝑖 , 𝑐𝑇𝑖 and 𝑐𝑇
𝑖
are nonlinearly transformed by 𝑐𝑇

𝑖
=

𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑧𝑇𝑡 ), 𝑐𝑇𝑖 = 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑧𝑇𝑡 ). 𝑐𝑇𝑖 and 𝑐𝑇
𝑖
are treated as

a positive pair (Figure 2 (a)), while the remaining 2(N-1) contexts
within the batch are categorized as negative pairs, collectively form-
ing 𝑐𝑛𝑒𝑔 : 𝑐− ∈ 𝑐𝑛𝑒𝑔 . As such, in this context, we employ D as the
distance function to maximize the similarity between positive pairs
while minimizing the similarity between negative pairs, enabling
the representations to be discriminative. The temporal contextual
consistency loss is defined as:

𝐿𝑇𝐶 = D(𝑐𝑇𝑖 , 𝑐
𝑇
𝑖 ) = −

𝑁∑︁
𝑖=1

log
exp

(
sim

(
𝑐𝑇
𝑖
, 𝑐𝑇
𝑖

)
/𝜏
)

exp
(
sim

(
𝑐𝑇
𝑖
, 𝑐𝑇
𝑖

)
/𝜏
)
+∑

𝑐−∈𝑐𝑛𝑒𝑔 exp
(
sim

(
𝑐𝑇
𝑖
, 𝑐−

)
/𝜏
) (7)

where sim(𝒖, 𝒗) = 𝒖𝑇 𝒗/∥𝒖∥∥𝒗∥ is the cosine similarity, 𝜏 is the
degree of pull and push as the temperature parameter and shares
the same value throughout all experiments.

Frequency Consistency. We implement frequency consistency
between the original and its augmented views to learn underlying
patterns that the time domain might miss. We assume the model
can learn similar features from the original spectrum 𝑥𝐹

𝑖
and a

perturbed spectrum 𝑥𝐹
𝑖
, thus the embeddings 𝑐𝐹

𝑖
= 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑧𝐹

𝑖
)

and 𝑐𝐹
𝑖
= 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑧𝐹

𝑖
), i.e., (𝑐𝐹

𝑖
, 𝑐𝐹

𝑖
) can be denoted as a positive

pair (Figure 2 (b)), similar to temporal consistency, 𝑐𝑛𝑒𝑔 : 𝑐− ∈
𝑐𝑛𝑒𝑔 , total 2(N-1) within the same batch. The frequency contextual
consistency loss can be calculated as:

𝐿𝐹𝐶 = D(𝑐𝑇𝑖 , 𝑐
𝑇
𝑖 ) = −

𝑁∑︁
𝑖=1

log
exp

(
sim

(
𝑐𝐹
𝑖
, 𝑐𝐹
𝑖

)
/𝜏
)

exp
(
sim

(
𝑐𝐹
𝑖
, 𝑐𝐹
𝑖

)
/𝜏
)
+∑

𝑐−∈𝑐𝑛𝑒𝑔 exp
(
sim

(
𝑐𝐹
𝑖
, 𝑐−

)
/𝜏
) (8)

3.4 Temporal-Frequency Consistency
In the latent space, time and frequency embeddings from the same
sample intuitively should be closer than other different samples.
Inspired by this, we propose the temporal and frequency consis-
tency, shown in Figure 2(c). For each sample 𝑥𝑖 , we generate four
embeddings: time-based original 𝑐𝑇

𝑖
, frequency-based original 𝑐𝐹

𝑖
,

and their augmented version 𝑐𝑇
𝑖
and 𝑐𝐹

𝑖
. These embeddings, derived

from the data’s temporal and frequency characteristics, emphasize
both aspects’ importance in time series analysis. Hence, we input
both time and frequency domains into the model to strengthen the
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cross-domain interactions and enhance the learning of temporal
and spectral details.

To maintain consistency in time-frequency space, we introduce
a consistency loss, 𝐿𝑇𝐹

𝐶
, to measure the distance between time and

frequency embeddings. We utilize D𝑇𝐹
𝑖

= D(𝑐𝑇
𝑖
, 𝑐𝐹
𝑖
) to represent

the distance between 𝑐𝑇
𝑖
and 𝑐𝐹

𝑖
. Similarly, we define D𝑇𝐹

𝑖
, D𝑇𝐹

𝑖
,

D𝑇𝐹
𝑖

. Notably, we only focus on cross-domain distances and exclude
within-domain distances (i.e., the distance between 𝑐𝑇

𝑖
and 𝑐𝑇

𝑖
, the

distance between 𝑐𝐹
𝑖
and 𝑐𝐹

𝑖
), which we have already calculated in

𝐿𝑇
𝐶
and 𝐿𝐹

𝐶
.

Then, from D𝑇𝐹
𝑖

and D𝑇𝐹
𝑖

, we can observe they involve 𝑐𝑇
𝑖
,

𝑐𝐹
𝑖
, 𝑐𝑇

𝑖
three embeddings. 𝑐𝑇

𝑖
and 𝑐𝐹

𝑖
are from the same original

sample 𝑥𝑖 , while 𝑐𝑇𝑖 is from the time-augmented 𝑥𝑇
𝑖
, thus 𝑐𝐹

𝑖
should

be closer to 𝑐𝑇
𝑖
than 𝑐𝑇

𝑖
. Therefore, we prompt the model to learn

smallerD𝑇𝐹
𝑖

thanD𝑇𝐹
𝑖

. Similarly,D𝑇𝐹
𝑖

should also be smaller than
D𝑇𝐹

𝑖
andD𝑇𝐹

𝑖
. Triplet loss widely used in [8, 16] is designed as the

temporal-frequency consistency loss, enabling the model to learn
smaller D𝑇𝐹

𝑖
. We calculate the consistency loss 𝐿𝑇𝐹

𝐶
by:

𝐿𝑇𝐹𝐶 =

𝑁∑︁
𝑖=1

(
∑︁
D𝑝𝑎𝑖𝑟

(𝜀 + D𝑇𝐹
𝑖 − D𝑝𝑎𝑖𝑟

𝑖
)),D𝑝𝑎𝑖𝑟 ∈ (D𝑇𝐹

𝑖 ,D𝑇𝐹
𝑖 ,D𝑇𝐹

𝑖 ) (9)

where 𝜀 is a constant and set to 1. D𝑝𝑎𝑖𝑟 denotes the distance
between the time embeddings 𝑐𝑇

𝑖
, 𝑐𝑇
𝑖
and the frequency embeddings

𝑐𝐹
𝑖
, 𝑐𝐹

𝑖
. Each pair has at least one embedding from the augmented

views. The 𝐿𝑇𝐹
𝐶

loss motivates the pre-training model to learn the
consistency between the time and frequency embeddings during
model optimization.

3.5 Overall Loss Function
Our self-supervised pre-training process has a total of seven losses.
First, 𝐿𝑇 , �̃�𝑇 , 𝐿𝐹 , �̃�𝐹 are introduced for the cross-view prediction
to acquire robust representations. Second, 𝐿𝑇

𝐶
and 𝐿𝐹

𝐶
are used to

capture embedded information that is invariant to augmentations
and extract discriminative representations. Last, the time-frequency
consistency loss, 𝐿𝑇𝐹

𝐶
, ensures consistency between time and fre-

quency latent embeddings. In summary, the overall loss is:

𝐿𝑇𝐹𝐶𝐶 = 𝜆1 · (𝐿𝑇 + �̃�𝑇 + 𝐿𝐹 + �̃�𝐹 ) + 𝜆2 · (𝐿𝑇𝐶 + 𝐿𝐹𝐶 ) + 𝜆3 · 𝐿𝑇𝐹𝐶 (10)

where 𝜆1, 𝜆2, and 𝜆3 are fixed hyperparameters indicating the
relative weight of each loss.

4 EXPERIMENTS
4.1 Experimental Setup
We conducted extensive experiments to assess TFCC’s performance
and performed ablation studies to highlight each component’s con-
tribution to the outcome. More detailed descriptions of augmenta-
tion methods and experiments are in Supplementary Materials.

Datasets. Classification (1) Epilepsy was conducted preprocess-
ing following previous works[5, 22]. The original dataset featured
5 classes, but 4 did not contain epileptic seizures. Therefore, we

merged them into a single class and treated it as a binary classifi-
cation problem. (2) HAR contains six human activities: walking,
walking upstairs, walking downstairs, standing, sitting, and lying
down collected by smartphones [1]. They use a waist-mounted
Samsung Galaxy S2 device to record the sustained activity of each
subject, with a 50Hz sampling rate. (3) Sleep-EDF records multi-
sleep modes, utilized a single EEG channel, sampled at a rate of 100
Hz[7], which is designed to categorize the input EEG signals into
one of the following categories: wake (W), non-rapid eye movement
(N1, N2, N3), and rapid eye movement.

Forecasting (1) ETT1 comprises two distinct granularities: two
hourly-level datasets (ETTh) and one 15-minute-level dataset (ETTm).
The data was collected from separated countries in China for long-
sequence time series forecasting. Each dataset contains target values
of 6 load features and "oil temperature" from July 2016 to July 2018.
(2) Weather2 contains 11 local climatological features focusing on
1600 locations in the U.S. over 4 years from 2010 to 2013.

ImplementationDetails.We run all experiments on oneGeForce
RTX 3090 Ti GPU, running 64-bit Linux 5.15.0-56-generic, and per-
form a 60/20/20 train/validation/test split. We set the epoch size
to 50, the batch size to 128, Adam optimizer, a learning rate of
3e-4, weight decay of 1e-4, and dropout to 0.2, 𝛽1 = 0.5, 𝛽2 = 0.55.
For temporal augmentations, the drop_mask ratio is 0.2, while
the scale ratio and jitter ratio are different according to different
datasets(𝑠𝑐𝑎𝑙𝑒𝐸𝑝=0.001, 𝑗𝑖𝑡𝑡𝑒𝑟𝐸𝑝=0.001, 𝑠𝑐𝑎𝑙𝑒𝐸𝐷𝐹=1.5, 𝑗𝑖𝑡𝑡𝑒𝑟𝐸𝐷𝐹=2,
𝑠𝑐𝑎𝑙𝑒𝐻𝐴𝑅=1.1, 𝑗𝑖𝑡𝑡𝑒𝑟𝐻𝐴𝑅=0.8). For frequency augmentations, the
pertub_ratio is 0.1. The number of heads in the Transformer is 8.

4.2 Comparison with Baseline Approaches
Baselines. Classification: Random Init.: A linear classifier on a
randomly initialized encoder. Supervised: Supervised training of
both encoder and classifier. CPC [15]. SimCLR [4]. MHCCL [13].
TS-TCC [5]. TSTCC-Floss [21]. TF-C [26]. BTSF [22]. CA-TCC [6].

Forecasting: 1) Representation learning: TNC[18]. TS-TCC. TS2Vec
[23]. CoST[20]. BTSF [22]. 2) End-to-end models: TCN [2]. Informer
[27].

Results. Classification: We evaluate the performance of these
methods on three widely used datasets. For a fair comparison, we
adhere to previous linear benchmark evaluation models [4, 6] and
measure how well the learned representations are used to classify
hidden states with two metrics: accuracy=ACC = TP+TN

TP+TN+FP+FN ,
and the macro-averaged F1-score MF1= 2×PR

P+R . Before training the
linear classifier, we froze the self-supervised pre-trained encoder.
Table 1 summarized the results, with the best results in bold and
the second-best underlined. Our TFCC outperforms all baselines in
all datasets, including the supervised method. This superior perfor-
mance is ascribed to the instance-level augmentations and multi-
view contrasting strategy, helping to capture the long-term depen-
dencies and the learned transformation-invariant representations.
Additionally, our TFCC surpasses three TS-TCC-based methods
(TS-TCC, TSTCC-Floss, CA-TCC), especially in the HAR dataset,
with improvements of 2.36%, 1.87%, and 1.05%, and outperforms
the TF-C and BTSF by 4.58% and 7.29%, which illustrates TFCC’s
effectiveness and superiority.

1https://github.com/zhouhaoyi/ETDataset
2https://www.ncei.noaa.gov/data/local-climatological-data/

https://github.com/zhouhaoyi/ETDataset
https://www.ncei.noaa.gov/data/local-climatological-data/
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Table 1: Classification results. Best results are highlighted in bold, while the second-best is underlined

Methods
Epilepsy HAR Sleep-EDF

Accuracy MF1 Accuracy MF1 Accuracy MF1

Random Init. 90.26±1.77 81.12±4.22 57.89±5.13 55.45±5.49 35.61±6.96 23.80±7.96
Supervised 96.66±0.24 94.52±0.43 90.14±2.49 90.31±2.24 83.41±1.44 74.78±0.86

CPC 96.61±0.43 94.44±0.69 83.85±1.51 83.27±1.66 82.82±1.68 73.94±1.75
SimCLR 96.05±0.34 93.53±0.63 80.97±2.46 80.19±2.64 78.91±3.11 68.60±2.71
MHCCL 97.85±0.49 95.44±0.82 91.60±1.06 91.77±1.11 /// ///
TS-TCC 97.23±0.10 95.54±0.08 90.37±0.34 90.38±0.39 83.00±0.71 73.57±0.74
TSTCC-Floss 97.41±0.17 97.75±0.00 90.86±0.34 90.56±0.35 83.70±0.45 73.53±0.39
TF-C 96.21±0.25 95.23±0.21 88.15±1.32 88.75±0.52 78.82±0.64 72.48±0.56
BTSF 95.46±0.35 94.85±0.16 85.44±0.26 85.51±1.13 73.94±0.23 71.62±0.74
CA-TCC 97.74±0.38 97.01±0.13 91.68±0.46 91.79±0.24 84.04±0.42 74.42±0.68
TFCC(ours) 98.15±0.17 97.92±0.35 92.73±0.57 92.52±0.59 84.35±0.52 75.60±0.45

Forecasting: We conduct a comprehensive linear evaluation to
access the performance on four benchmarks across a range of fore-
casting lengths 𝑇 ∈ {24, 48, 168, 336, 720} using two metrics: the
mean square error (MSE) and themean absolute error (MAE). Specif-
ically, we designed a linear regression model with an L2 paradigm
penalty, trained on top of a fine-tuned self-supervised pre-trained
encoder. The training phase includes two stages: (1) learning repre-
sentations through the TFCC framework, and (2) training a linear
regressor for each 𝑇 on top of the learned representations. Table 2
shows that TFCC excels in multivariate forecasting, outperforming
all baselines across varying datasets and lengths. Notably, TFCC’s
performance improves with increasing sequence length compared
to the baselines, indicating our model can better use global context
information and is more capable of capturing long-term dependen-
cies in time series than other baseline models. More forecasting
results compared to other baselines are in Supplementary Materials.

4.3 Ablation study
To assess the effectiveness of each component in TFCC, we con-
ducted ablation studies by comparing TFCC and its different vari-
ants. Table 3 shows the ablation study on four datasets. We can see
the temporal cross-view forecasting task boosts feature robustness,
leading to ∼2% improvement in Epilepsy and ∼6% in HAR, ∼10% in
ETTh1 and 3% in Weather (in Accuracy and MSE). Additionally, in-
troducing contextual consistency (temporal, frequency) further en-
hances performance by strengthening feature discriminability with
∼1% boost in Epilepsy and 16.6% in ETTh1. Performance improve-
ments are observed when adding frequency cross-view forecasting,
with further 0.59% and 1.11% improvement in Epilepsy and HAR,
30.9% and 20.6% in ETTh1 and Weather, meaning frequency can
help to learn periodic features of time series. Furthermore, incor-
porating temporal-frequency consistency in our TFCC framework
demonstrates the best performance, further enhancing the model’s
ability to capture discriminative representations. Last, our TFCC
with both T-Aug and F-Aug is superior to only using T-Aug or F-
Aug. These findings suggest that each self-supervised contrasting
view contributes significantly to learning more useful and valuable
representations.

4.4 Transfer learning
We further validate the transferability of our proposed method by
designing transfer learning experiments to verify whether it learns
general representations that can be applied to different domains.We
evaluate the transferability using the Fault Diagnosis (FD) datasets
from four different domains, denoted as domains A, B, C, and D. we
select one domain (source domain) for training and test it on the
other three domains (target domains). Our experiment performs
two steps on the source domain: (1) self-supervised training to get a
pre-trained encoder, and (2) fine-tuning on the pre-trained encoder.
Finally, we utilize the fine-tuned model to obtain accuracy on the
test set in each target domain. Table 4 shows the performance of
supervised, TS-TCC, and TFCC in 12 cross-domain scenarios. The
representations of our fine-tuned method on the source domain can
be well adapted to the target domains. TFCC achieves best in 9 out
of 12 cross-domain scenarios. Notably, TFCC has 100% accuracy
in B→ D and D→ B. Overall, TFCC improves the transferability
of the learned representations over the supervised, TS-TCC, and
CA-TCC training, by ∼8%, ∼4%, and ∼2% in terms of accuracy in
12 scenarios, respectively.

4.5 Semi-supervised Analysis
To evaluate the effectiveness of TFCC in a semi-supervised setting,
we fine-tuned the pre-trained encoder with 1%, 5%, 10%, 50%, 75%,
and 100% of randomly selected instances of training data. Figure 4
presents the results of our fine-tuned TFCC (i.e., blue curves) com-
pared to supervised training on the three classification datasets
under the above settings. The results indicate our model performs
significantly better than supervised training with limited labeled
data. For example, with only 1% labeled data, TFCC fine-tuning
still achieves 76.04% in HAR and 90.74% in Epilepsy. Especially
for the unbalanced Sleep-EDF, our method can also reach 65.25%,
while supervised training is only 32.24%. Moreover, TFCC’s perfor-
mance steadily improves as the percentage of labeled data increases,
proving its applicability to label-scarce environments.

4.6 Sensitivity Analysis
TFCC incorporates several hyperparameters requiring careful tun-
ing. To achieve optimal performance, we conducted a sensitivity
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Table 2: Multivariate forecasting results. Best results are highlighted in bold, while the second-best is underlined.

Methods
Representation Learning End-to-end Forecasting

TFCC TNC TS-TCC CoST TS2Vec BTSF TCN Informer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Th

1

24 0.271 0.428 0.708 0.592 0.653 0.610 0.386 0.429 0.590 0.534 0.541 0.519 0.583 0.547 0.577 0.549
48 0.417 0.452 0.749 0.619 0.720 0.693 0.437 0.464 0.624 0.555 0.613 0.524 0.670 0.606 0.685 0.625
168 0.575 0.524 0.884 0.699 1.129 1.044 0.643 0.582 0.762 0.639 0.640 0.532 0.811 0.680 0.931 0.752
336 0.789 0.677 1.020 0.768 1.492 1.076 0.812 0.679 0.931 0.728 0.864 0.689 1.132 0.815 1.128 0.873
720 0.923 0.711 1.157 0.830 1.603 1.206 0.970 0.771 1.063 0.790 0.993 0.712 1.165 0.813 1.215 0.896

ET
Th

2

24 0.312 0.458 0.612 0.595 0.883 0.747 0.447 0.502 0.423 0.489 0.663 0.557 0.935 0.754 0.72 0.665
48 0.618 0.636 0.840 0.716 1.701 1.378 0.699 0.637 0.619 0.605 1.245 0.897 1.300 0.911 1.457 1.001
168 1.161 0.838 2.359 1.213 3.956 2.301 1.549 0.982 1.845 1.074 2.669 1.393 4.017 1.579 3.489 1.515
336 1.218 0.862 2.782 1.349 3.992 2.852 1.749 1.042 2.194 1.215 1.954 1.093 3.460 1.456 2.723 1.340
720 1.209 0.938 2.753 1.394 4.732 2.345 1.971 1.092 2.636 1.373 2.566 1.276 3.106 1.381 3.467 1.473

ET
Tm

1

24 0.312 0.359 0.522 0.472 0.473 0.490 0.246 0.329 0.453 0.436 0.302 0.342 0.363 0.397 0.323 0.369
48 0.331 0.382 0.695 0.567 0.671 0.665 0.331 0.386 0.592 0.515 0.395 0.387 0.542 0.508 0.494 0.503
168 0.370 0.387 0.731 0.595 0.803 0.724 0.378 0.419 0.635 0.549 0.438 0.399 0.666 0.578 0.678 0.614
336 0.411 0.514 0.818 0.649 1.958 1.429 0.472 0.486 0.693 0.609 0.675 0.429 0.991 0.735 1.056 0.786
720 0.463 0.552 0.932 0.712 1.838 1.601 0.620 0.574 0.782 0.655 0.721 0.643 1.032 0.756 1.192 0.926

W
ea
th
er

24 0.296 0.357 0.320 0.373 0.572 0.603 0.298 0.360 0.307 0.363 0.324 0.369 0.321 0.367 0.335 0.381
48 0.405 0.462 0.380 0.421 0.647 0.691 0.359 0.411 0.374 0.418 0.366 0.427 0.386 0.423 0.395 0.459
168 0.458 0.466 0.479 0.495 1.117 0.962 0.464 0.491 0.491 0.506 0.543 0.477 0.491 0.501 0.608 0.567
336 0.462 0.467 0.505 0.514 1.783 1.370 0.497 0.517 0.525 0.530 0.568 0.487 0.502 0.507 0.702 0.620
720 0.644 0.493 0.543 0.547 1.850 1.566 0.533 0.542 0.556 0.552 0.601 0.522 0.498 0.508 0.831 0.731

Avg. 0.582 0.548 0.989 0.706 1.629 1.218 0.693 0.585 0.855 0.657 0.884 0.634 1.149 0.741 1.150 0.782

Table 3: Ablation study of each component in TFCC. (1) "T only" denotes the temporal contrasting module without cross-
view forecasting, (2) "T+T-Aug" signifies adding temporal cross-view forecasting, (3) "T+TC+T-Aug" adds temporal consis-
tency, (4) "T+TC+FC+T-Aug" adds frequency consistency, (5) "T+TC+FC+X-Aug" adds frequency cross-view forecasting, (6)
"TFCC(T+TC+FC+TFC+X-Aug)" is our framework, and (7) "TFCC(T-Aug only)" and (8) "TFCC(F-Aug only)" are TFCC with only
time augmentations and frequency augmentations without cross-view forecasting.

Epilepsy HAR ETTh1 Weather

Component Accuracy MF1 Accuracy MF1 MSE MAE MSE MAE

T only 94.39±1.19 90.93±1.41 82.76±1.50 82.17±1.64 0.594 0.559 0.435 0.562
T+T-Aug 96.69±0.69 94.61±0.76 88.46±2.30 88.40±2.26 0.536 0.517 0.422 0.517
T+TC+T-Aug 97.43±0.61 95.86±0.92 90.61±0.64 90.63±0.98 0.529 0.535 0.414 0.461
T+TC+FC+T-Aug 97.65±0.26 96.12±0.59 91.10±1.82 91.04±1.85 0.447 0.528 0.412 0.456
T+TC+FC+X-Aug 98.04±0.32 97.23±0.47 91.72±1.61 91.60±1.15 0.309 0.459 0.327 0.442
TFCC (T+TC+FC+TFC+X-Aug) 98.15±0.17 97.92±0.35 92.73±0.57 92.52±0.59 0.271 0.428 0.296 0.357

TFCC (T-Aug only) 97.55±0.49 95.49±0.32 89.60±2.26 88.43±2.23 0.324 0.471 0.391 0.452
TFCC (F-Aug only) 97.30±0.85 95.32±0.41 88.48±1.38 86.21±1.44 0.331 0.466 0.411 0.460

Table 4: Cross-Domain transfer learning results on Fault Diagnosis dataset

Method
FD-A FD-B FD-C FD-D

AVG
A→B A→C A→D B→A B→C B→D C→A C→B C→D D→A D→B D→C

Supervised 34.48 44.94 34.57 52.93 63.67 99.82 52.93 84.02 83.54 53.15 99.56 62.43 63.83
TS-TCC 43.15 51.50 42.74 47.98 70.38 99.30 38.89 98.31 99.38 51.91 99.96 70.31 67.82
CA-TCC 44.75 52.09 45.63 46.26 71.33 100.0 52.71 99.85 99.84 46.48 100.0 77.01 69.66
TFCC 55.91 53.85 62.72 48.43 71.45 100.0 46.61 98.84 97.98 53.68 100.0 71.11 71.72
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Figure 4: Comparison between TFCC fine-tuning vs. super-
vised for different percentages of few labels in MF1-score.

analysis on two datasets, HAR and ETTh1, focusing on five key
parameters: dropout mask ratio, temperature 𝜏 , and the weights of
contrastive losses 𝜆1, 𝜆2, and 𝜆3. As delineated in Table 5, optimal
performance is attained with a dropout mask ratio of 0.2. This is
because too high value may lose the original properties of time se-
ries and too low may lead to representation collapse. Table 6 shows
that TFCC gets the best performance when 𝜏= 0.15. A reasonable
𝜏 will facilitate the optimization of the training process and make
the representation more discriminative as it is adjusted. Figure 5
explores the influence of 𝜆1, 𝜆2, and 𝜆3 on ETTh1 under length=24.
We first fixed 𝜆1 at 0.1 and varied 𝜆2 and 𝜆3. The results suggest
that the model performs best at 𝜆2 = 0.6 and 𝜆3 = 0.4. Subsequently,
we fixed the two values and tuned the value of 𝜆1. Once again, a
moderate value of 𝜆1 = 0.1 yielded the best outcomes.

Table 5: Sensitivity experiments of drop_mask ratio

drop_mask p=0.01 p=0.1 p=0.15 p=0.2 p=0.3 p=0.5

HAR 87.73 90.58 91.39 92.73 91.21 89.10

ETTh1(24, MSE) 0.287 0.282 0.280 0.271 0.284 0.311

Table 6: Sensitivity experiments of 𝜏

𝜏 0.01 0.1 0.15 1 10 100

HAR 90.07 91.88 92.73 91.72 90.94 90.63

ETTh1(24, MSE) 0.319 0.301 0.271 0.32 0.314 0.308

Figure 5: Sensitivity analysis of 𝜆1, 𝜆2 and 𝜆3 on ETTh1.

4.7 Augmentation Analysis
Augmentations selection is less explored, which is still an open
and pending problem. Table 7 presents the augmentation effects.
it can be seen that MSE and MAE reached 0.346 and 0.482 when
slicing was used alone. Furthermore, the MSE increased from 0.297
to 0.301, MAE rose from 0.453 to 0.464 when slicing is used in
multi-augmentations, with worse performance, which may be due
to slicing destroying the long-term dependence, leading to sampling
bias. In contrast, when adding "drop_mask" and "phase perturba-
tion", the model’s performance has a significant improvement, with
the MSE decreasing from 0.304 to 0.294, and further to 0.281. Specif-
ically, when adding phase perturbation, the MSE decreased from
0.294 to 0.271, and the MAE decreased from 0.451 to 0.428, which
are improved by 7.8% and 5.1%, respectively, indicating that the
introduction of phase perturbation can significantly improve the
performance of the model. These findings reveal that TFCC can
produce representations invariant to temporal and spectrum per-
turbations, and appropriate time and frequency augmentations can
improve model generalization.

Table 7: Augmentation Analysis on ETTh1 (24)

Time Augmentation Frequency Augmentation MSE MAE

slicing add 0.346 0.482
scale add 0.321 0.463
scale, jitter add, remove 0.303 0.453
drop_mask add, remove 0.304 0.459
scale, jitter, drop_mask add,remove 0.294 0.451
slicing, jitter, drop_mask remove, phase_pertub 0.301 0.464
jitter, drop_mask add, remove,phase_pertub 0.281 0.439
jitter, drop_mask remove, phase_pertub 0.297 0.453
scale, jitter, drop_mask add, remove, phase_pertub 0.271 0.428

5 CONCLUSION
This study proposes TFCC, a novel framework specifically engi-
neered for unsupervised representation learning from time series
data. In TFCC, we use the entire series as input and construct two
sets of instance-level augmentation families based on the temporal
and frequency characteristics to generate different views for train-
ing. Then, the framework injects multi-view contrasting modules
into pre-training to learn properties invariant to diverse pertur-
bations within various complex dynamics. Specifically, two chal-
lenging cross-view forecasting tasks between the original and its
augmented series in time and frequency domains are first designed
for robust representation learning. Contextual consistency brings
the temporal-based and frequency-based representations alongwith
their local neighbors close together in their latent space. Temporal-
frequency consistency fosters mutual representation learning au-
tomatically and unveils temporal-spectral correlations through
cross-domain dependencies, thus promoting discriminative rep-
resentation learning. Comprehensive experiments validate TFCC’s
exceptional prowess in both classification and forecasting tasks,
alongside its notable efficiency in label-scarce and transfer learning
scenarios.
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