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A Further Related Work577

Introduction to the Problem. Consider the following motivating examples: a worker joining a new578

team, a student starting an internship, or a junior professor joining a committee. These agents initially579

face uncertainty about the required effort and what constitutes good performance. They must decide580

when to exert more effort and when to reduce it. Peer assessments introduce additional uncertainty581

and noise. Furthermore, the environment is dynamic, with the value of certain outcomes changing582

over time. Each agent encounters an implicit and evolving system of incentives that they must adapt to583

through repeated interactions. This pattern is prevalent in many real-life contractual relationships and584

is increasingly relevant to AI agents handling complex, open-ended, and computationally intensive585

tasks. For details to the aforementioned examples, the interested reader can see [39] and references586

therein. In settings like credit scoring, the evaluation system creates incentives for the agent while587

remaining opaque to prevent gaming, forcing the agent to act under uncertainty [36].588

Simplifying Contracts. Given this complexity, one line of work focuses on identifying settings589

where simple contracts suffice. Notably, [46] assume constant absolute risk aversion (CARA) utilities590

and Brownian motion of the output, examining a single payment at the end of the contractual591

relationship based on all outcomes. Another approach involves deliberately vague contracts, leaving592

agents uncertain about performance-based compensation (e.g., [3, 10, 30]). [42] explore how to593

learn an agent’s private type through online principal-agent interaction and contract menus. [9] study594

principal-agent problems over MDPs, where a budgeted principal offers additional rewards, and the595

agent selects the MDP policy selfishly, without learning. Thus, a naturally arising question is:596

How should an agent choose their actions in a contractual relationship597

involving uncertainty and recurrent interactions?598

Our algorithmic perspective introduces a novel, learning-based approach to address the complexity599

of repeated contracts, leveraging no-regret and general mean-based agents. Below, we discuss why600

learning methods are natural choices for agents’ responses in the context of existing literature.601

Optimizing Against No-Regret Learners. From an econometric perspective, agents often respond602

to repeated strategic interactions in auctions in ways consistent with no-regret learning [57, 58].603

Inspired by these findings, [14] explore algorithmic mechanism design, demonstrating that no-regret604

learning methods are natural responses for agents. No-regret learning has been extensively studied in605

repeated games (e.g.,[11, 15, 34, 44, 55, 62, 2, 51, 65, 63, 38, 37]), auctions and economic interactions606

(e.g.,[24, 18, 50]), and Stackelberg security games (e.g., [8]). For a comprehensive overview, see [61].607

By assuming agents employ no-regret learning instead of complex strategic reasoning, we propose a608

new approach to repeated contracting.609

Optimizing Against Mean-Based Learners. Finding an optimal dynamic strategy against a mean-610

based learner in general games remains an open problem. [26] show an equivalence between this611

problem and an n-dimensional control problem, where n is the number of actions available to the612

agent. Non-trivial optimization against a mean-based learner has been achieved only in repeated613

auction settings, where [14] demonstrate that the designer can extract full welfare as revenue. [25, 17]614

extend this to prior-free auction settings and multiple agents. However, even for a single agent, the615

optimal auction strategy, involving alternating between second-price auctions and charging large616

payments, is impractical and not intended to guide practice [17]. [18] study mechanisms for no-regret617

agents, incorporating principal learning to avoid common prior assumptions in economic design618

problems.619

B Proof of Theorem 3.1 (Optimal Dynamic Linear Contract)620

Proof overview. We will present a series of “rewriting” rules, which will allow us to replace a given621

dynamic contract ⇡ with a simpler, more constrained, dynamic contract ⇡0 with utility at least as large622

as ⇡. At the conclusion of our sequence of rewriting steps, we will see that our contract takes the623

form of a free-fall contract, thus implying that there is an optimal free-fall contract.624

We begin not with a rewriting rule, but instead a general observation about the structure of dynamic625

linear contracts — namely, that it is impossible for an agent to “skip over” an action. That is, if an626

agent is playing action i at some point, and action j at some later point, there must exist segments of627

non-zero duration where the agent plays each of the intermediate actions between i and j. Formally,628

we can write this as follows.629
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Figure 3: An illustration of Lemma B.2. The plot shows the cumulative contract over time for the contract game
shown in Figure 1, repeated to T steps, where both axes are normalized by T . The lemma shows how arbitrary
dynamic strategies, as the one shown in the blue curve, can be re-written as piecewise stationary strategies,
depicted in the dotted red curve, inducing similar behavior by the agent and the same utilities.

Lemma B.1. If ⇡ = {(↵k
, ⌧

k
, a

k)} is a dynamic linear contract, then for any k, |ak � a
k+1

|  1630

(i.e., in any two consecutive segments, the learner’s action can change by at most one).631

Proof. Note that ak and a
k+1 must both be best responses to the average historical contract ↵k, i.e.,632

a
k
, a

k+1
2 BR(↵k). Since BR(↵) is always of the form {i} or {i, i+1}, the conclusion follows.633

Note that the proof of Lemma B.1 relies on the “linear topology” of the best-response regions in634

Figure 2 (i.e., any non-zero boundary between best-response regions connects two consecutive actions635

of the agent). This property is not true for general contracts or general games; however, we will later636

see that Lemma B.1 also holds for the class of p-scaled contracts introduced in Appendix D.637

We now proceed to introduce our rewriting rules. The first rewriting rule we present is very general638

(and in fact applies to any game): we will show that without loss of generality, no two consecutive639

segments of a dynamic contract induce the same action for the learner. Intuitively, for any time640

interval in which a mean-based agent plays a single action, we can replace the contracts in this641

interval with their average and obtain overall a revenue-equivalent dynamic contract. Formally, we642

can phrase this as follows.643

Lemma B.2. Let ⇡ be any linear dynamic contract. Then there exists a linear dynamic contract644

⇡
0 such that Util(⇡0) � Util(⇡) and no two consecutive segments of ⇡0 share the same agent action645

(ak 6= a
k+1).646

Proof. Let ⇡ = {(↵k
, ⌧

k
, a

k)}K
k=1 be any linear dynamic contract. Assume that for some k, ak =647

a
k+1 = a. Then the linear dynamic contract ⇡0 formed by replacing the two segments (↵k

, ⌧
k
, a)648

and (↵k+1
, ⌧

k+1
, a) with the single segment ((↵k

⌧
k + ↵

k+1
⌧
k+1)/(⌧k + ⌧

k+1), ⌧k + ⌧
k+1

, a) has649

the property that Util(⇡0) � Util(⇡). To see this, observe that the same action a is played throughout650

the entire interval, and the average payout to the agent is the same. Therefore, in fact we have651

Util(⇡0) = Util(⇡). It only remains to confirm that this is still a valid dynamic contract (i.e., that each652

prescribed action is still a best response in the corresponding segment).653

To see this, observe first that the cumulative contract at the start (respectively, end) of the merged654

segment in ⇡0 is the same as the start of segment k (respectively, end of segment k+1) in ⇡. Therefore,655

all segments before and after the merged segment are still correct. To confirm the merged segment,656

we need only confirm that a is a best response on the merged segment in ⇡0 using the fact that it was657

a best response in both segments k and k + 1 in ⇡.658

For this, let ↵0 denote the cumulative contract after the first k�1 segments, ↵1 denote the cumulative659

contract after the first k + 1 segments, ↵0(t) denote the cumulative contract of ⇡0 during a time t in660
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the merged segment, and ↵(t) denote the cumulative contract of ⇡ during a time t in segments k or661

k + 1. Observe first that for every x between ↵0 and ↵1, there is some t such that ↵(t) = x. Because662

a is a best response on the entire segments k and k + 1, this means that a is a best response to x for663

all x between ↵0 and ↵1. Moreover, observe that ↵0(t) lies between ↵0 and ↵1 for all t. Therefore, a664

is indeed a best response to ↵0(t) for all t in the merged segment, and the dynamic contract is valid.665

By repeatedly applying this merging of segments, we can obtain a linear dynamic contract ⇡0666

satisfying the constraints of the lemma.667

Figure 3 illustrates the above lemma graphically. The figure displays the cumulative contract over668

time for the contract game depicted in Figure 1. The blue curve represents the trajectory of an669

arbitrary dynamic contract strategy under which the agent’s best response is to take action 3 until670

time t/T ⇡ 0.425, and then take action 2 in the remaining time. The crossing point between the best671

response regions is marked with a red dot. Lemma B.2 demonstrates that we can replace the blue672

trajectory with the simpler trajectory depicted in red. In this red trajectory, every region between two673

consecutive ↵ values is crossed by a single linear segment (i.e., a piecewise-stationary trajectory),674

resulting in the same behavior by the agent and the same revenue.675

Our second rewriting rule is specific to linear contracts. It shows that for every linear contract in676

which the agent is indifferent between two actions, it is beneficial for the principal to shift the contract677

infinitesimally so that the agent prefers the action with the higher expected reward.678

Lemma B.3. Let ⇡ = {(↵k
, ⌧

k
, a

k)}K
k=1 be a dynamic linear contract where during segment k the679

agent is indifferent between actions i and i+ 1 (i.e., BR(↵k�1) \ BR(↵k) ◆ {i, i+ 1}), but ak = i.680

If we form ⇡
0 by replacing a

k with i+ 1, then Util(⇡0) � Util(⇡) (the principal always prefers that681

the agent plays the action with higher expected reward).682

Proof. Since actions in the linear contract setting are sorted by increasing value of expected reward,683

we have that Util(⇡0)� Util(⇡) = ⌧
k

T K

�
uP (pk, i+ 1)� uP (pk, i)

�
= ⌧

k

T K

�
Ri+1 �Ri)(1� ↵

k
�
�684

0.685

Note that the principal can implement the change in the agent’s action in Lemma B.3 by simply686

increasing their payment to the agent by an arbitrarily small amount – this incentivizes the agent to687

break ties in favor of the action with larger expected reward (which is the action labeled with a larger688

number). The fact that the principal can implement this change also follows as a direct consequence689

of the discrete-to-continuous reduction of Theorem 2.4.690

By applying the above two rewriting rules (Lemmas B.2 and B.3) along with our observation in691

Lemma B.1, we can establish our third rewriting rule: it is always possible to rewrite a dynamic692

contract so that the sequence of actions is a consecutively decreasing sequence.693

π

t

α

α1,2

α2,3

α3,4

α4,5

αk

(a) Base policy ⇡. In this example, the kth seg-
ment is the first segment where the action in-
creases immediately after the segment (ak = 2,
ak+1 = ak + 1 = 3).

π

t

α

α1,2

α2,3

α3,4

α4,5

αk

(b) Since ak�1 = ak+1, the kth lies along the best
response boundary ↵2,3, and its existence violates
Lemma B.3 (we can rewrite it as a segment with
ak = 3, and then further collapse these segments
via Lemma B.2).

Figure 4: Illustrations for the proof of Lemma B.4.
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Lemma B.4. Let ⇡ be any dynamic linear contract. Then there exists a dynamic linear contract694

⇡
0 = {(↵k

, ⌧
k
, a

k)}K
k=1 with Util(⇡0) � Util(⇡) and where a1, a2, . . . , aK is a decreasing sequence695

of consecutive actions (i.e., ak = a
1
� (k � 1)).696

Proof. Apply the two rewriting rules in Lemmas B.2 and B.3 to ⇡ until it satisfies the post-conditions697

of both lemmas (so, no two consecutive segments incentivize the same action, and any segment on698

a best-response boundary incentivizes the higher-reward action). Since Lemma B.1 implies that699

consecutive segments cannot skip over an action, this means that every two consecutive actions under700

⇡ are consecutive: either the agent switches to the next higher action or the next lower action each701

time step. We therefore just must show that any dynamic contract where the agent increases their702

action can be rewritten as a decreasing contract with at least same payoff.703

Consider the first segment in ⇡ where the agent switches to a larger action, that is, the smallest k such704

that ak+1 = a
k + 1. Let ak = j (so a

k+1 = j + 1). Note that the agent must be indifferent between705

actions j and j + 1 at the end of the jth segment (i.e., {j, j + 1} ✓ BR(↵k)).706

There are two cases: either segments k and k + 1 are the first two segments of the dynamic contract707

⇡ (i.e., k = 1), or there exists a (k � 1)st segment. In the first case, the agent is indifferent between708

actions j and j+1 for the entire first segment (from time 0 to ⌧1), but plays action j. This contradicts709

the fact that ⇡ cannot be reduced further by Lemma B.3.710

In the second case, the (k � 1)st segment must incentivize action j + 1 for the learner (since711

the sequence of actions is decreasing up until segment k). But this means that the agent must be712

indifferent between actions j and j + 1 also after the (k � 1)st segment, and thus for the entirety of713

the kth segment ({j, j + 1} ✓ BR(↵k�1)). Since the agent plays j during the kth segment, this also714

contradicts the fact that ⇡ cannot be reduced further by Lemma B.3 (see Figure 4 for an example of715

this reduction).716

We are now almost done – Lemma B.4 shows we can rewrite any dynamic contract so that the agent717

descends through their action space. We now need only show that the principal should abruptly718

switch to offering the zero contract after the first segment (instead of slowing the rate of descent719

through these regions by offering a positive contract). We do this in our final rewriting lemma.720

π

αk

t

α

α1,2

α2,3

αBR = α3,4

α4,5

(a) Base policy ⇡. The kth segment is the first non-
free-fall segment; we decompose it into a segment
↵ = ↵BR = ↵3,4 and a free-fall segment with
↵ = 0.

π

αk

t

α

α1,2

α2,3

αBR = α3,4

α4,5

(b) The segment with ↵ = ↵BR can be rewritten
via Lemma B.3 to lie in region 4, where it can
then be further combined with earlier segments
via Lemma B.2. This moves the first non-free-fall
action earlier in ⇡.

Figure 5: Illustrations for the proof of Lemma B.5.

Lemma B.5. Let ⇡ be a dynamic linear contract where the agent plays a decreasing sequence of721

actions. Then there exists a free-fall linear contract ⇡0 with Util(⇡0) � Util(⇡).722

Proof. Let ⇡ = {(↵k
, ⌧

k
, a

k)}K
k=1 (with a

k decreasing), and consider the last non-free-fall segment723

(↵k
, ⌧

k
, a

k), i.e., k is the maximal k for which ↵k
6= 0. Assume that k > 1 (if not, then ⇡ is already724

a free-fall contract).725

17



Let ↵BR = ↵ak,ak+1 be the indifference contract for the best-response boundary separating the726

current action from the previously incentivized action. Consider replacing this segment with the727

two consecutive segments (↵BR, (↵k
/↵BR)⌧k, ak), (0, (1 � ↵

k
/↵BR)⌧k, ak)). In doing so we728

essentially are doing the inverse of the first rewriting rule in Lemma B.2 – replacing a single segment729

with two segments that average to the original segment – and because of this, the resulting dynamic730

contract is valid and has the same utility as our original contract (the construction also guarantees731

both segments stay within this region). But now we have a segment (↵BR, (↵k
/↵BR)⌧k, ak) that732

lies along the best-response boundary ↵BR, so by Lemma B.3 we can replace it with the segment733

(↵BR, (↵k
/↵BR)⌧k, ak + 1) and strictly increase the utility of our dynamic contract (see Figure 5).734

We can then merge this segment with the previous segment in (which also incentivizes action a
k + 1)735

to obtain a new dynamic contract with strictly greater utility than ⇡ and whose first non-free-fall736

action occurs strictly earlier. Repeating this process, we obtain a free-fall contract ⇡0 with at least the737

same utility as ⇡.738

We can now prove the main theorem of this section.739

Proof of Theorem 3.1. From Lemmas B.4 and B.5 the first part of this theorem (that there exists a740

free-fall linear contract ⇡0 with Util(⇡0) � Util(⇡)) immediately follows.741

To show that we can efficiently compute this free-fall contract, note that the optimal free-fall linear742

contract might as well start with a segment of the form (↵i�1,i, ⌧, i) for some indifference contract743

↵i�1,i (if it does not start by offering some indifference contract, we can apply the rewriting rule of744

Lemma B.2 to merge this segment with the following segment, which would incentivize the same745

action).746

It is also true that the optimal free-fall linear contract might as well end at an indifference contract:747

that is, ↵K = ↵j�1,j for some j. To see this, consider a free-fall linear contract ⇡ that does not end748

on an indifference contract. It ends with a segment of the form (0, ⌧K , a) for some agent action a.749

Consider the contract ⇡(⌧) formed by replacing the duration of the last segment with ⌧ ; this operation750

is valid for all ⌧ in some interval [0, ⌧max]. Note that Util(⇡(⌧)) is a convex function of ⌧ (it is of751

the form (Util(⇡(0))T K�1 + uP (0, a)⌧)/(T K�1 + ⌧)) so it is maximized when ⌧ equals one of the752

endpoints of this interval. But at both endpoints, ↵K lies on a best-response boundary (for ⌧ = 0,753

↵a,a+1, for ⌧ = ⌧max, ↵a�1,a).754

Since our optimal contract is completely characterized by its start and end points, it can be computed755

in polynomial time in n by testing all the pairs of indifference points {↵i�1,i,↵j�1,j} with j  i as756

candidates for the start and end points of the optimal initial contract (this pair of indifference points757

also uniquely specifies the fraction of time that must be spent in free-fall). Note that in the case where758

in the optimal free-fall contract i = j, the optimal contract is the best static contract.759

In Appendix D (see Theorem D.1), we generalize Theorem 3.1, showing that free-fall contracts are760

optimal for a much broader family of dynamic contracts with “single-dimensional scaling,” where the761

principal is using an arbitrary non-linear contract and dynamically rescales it during the interaction762

with the agent.763

Our proof of Theorem D.1 is parallel to the proof of Theorem 3.1 in the sense that we demonstrate764

how to gradually transform a general single-dimensional-scaling contract into a free-fall contract,765

while increasing utility for the principal. The main difficulty in applying the proof of Theorem766

3.1 directly is that the rewriting rule in Lemma B.3 no longer holds – for general contracts with767

single-dimensional scaling, it is not the case that segments along a best-response boundary should768

always incentivize the higher action for the agent. In the proof of Theorem D.1, we forego the use769

of this rewriting rule and instead using the weaker condition that there cannot be two consecutive770

segments along a best-response boundary.771
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C Proof of Theorem 3.2 (Win-Win)772

Proof. Consider the following contract game.10 There are n > 2 actions, with expected reward773

Ri = v
i for some v > 0. Concretely, we let v = 2. The cost of the action are specified recursively774

by c1 = 0 and ci = ci�1 + Ri�1 �
1
2 for i > 1, yielding ci>1 =

P
i

k=2(2
k�1

�
1
2 ). The resulting775

indifference contracts are thus ↵i = 1� 2�i for 1 < i  n. In this game, the principal has the same776

utility (of one unit) for all the indifference contracts. The agent’s utility under the contract ↵i, as the777

reader can verify, is given by 2i � 3
2 �

P
i

k=1(2
k�1

�
1
2 ) =

1
2 (1 + i). Notably, this utility is higher778

for the higher actions. The welfare of action i is thus wi =
1
2 (3+ i). Next, we slightly alter this game779

by increasing the payoff of action 2 by a small amount ✏ > 0 such that the optimal static contract is780

now ↵2, which yields a utility of 1+O(✏) for the principal, and the agent is still indifferent under this781

contract between action 2 and the null action. In the following analysis, we are mainly interested in782

large (but finite) n. Notice that the optimal static contract is extremely inefficient for large n, getting783

an arbitrarily low (independent of n) fraction of the optimal welfare.784

Now consider an optimal dynamic strategy; by Theorem 3.1, there is an optimal strategy of a free-fall785

form. We will construct a free-fall contract p that starts at ↵n, so action n is played initially, where786

the duration �T of that stage is chosen such that the final action at time T is action
⌃
1
2 log(n)

⌥
.787

Specifically, we require �↵n + (1� �) · 0 = ↵
d 1

2 log(n)e
, and so � = 2n

2n�1

�
1� 1p

n

�
. We show that788

this free-fall strategy bounds the utilities of both players from below.789

Claim C.1. In an optimal free-fall contract, the utilities for both players are at least those obtained790

in the contract described above.791

For ease of presentation, the proof for this claim is deferred to the following subsection. It consists of792

three parts: first, we show that an optimal free-fall contract must start at ↵n. This is done directly793

by way of contradiction. Then, the proof shows that the last action that is played by the agent in an794

optimal free-fall contract must be higher than 1
2 log n. The intuition for this part of the proof is that795

as the principal continues to free fall through lower and lower actions, the marginal gain from each796

action (which is the expected reward of that action because we are free falling) continues to diminish.797

At some point, the marginal gain is outweighed by the current average principal utility, which we798

show should occur at action ⇥(log n) (since we know the principal can get an average utility of799

⇥(n) and the expected reward of action i is 2i). Lastly, we compare the utilities of both players in a800

free-fall strategy that begins at action n and ends at action
⌃
1
2 log n

⌥
to those of the optimal free-fall801

strategy and observe that the utilities in the former case bound the respective utilities in the latter case802

from below. The principal’s utility is clearly bounded from below by her utility in our strategy due to803

optimality. For the agent, the total utility is determined by the stopping point. Since the agent’s utility804

at ↵i is increasing with i in our game, we conclude that the agent’s utility in an optimal contract is at805

least 1
2 log n.806

Now let us calculate the average utilities for the players under our dynamic strategy, averaged over807

the whole sequence of play. The agent’s average utility at the last step is the same as the utility that808

would have been obtained under the average contract at that time, which is 1
2 (1 +

⌃
1
2 log(n)

⌥
). To809

calculate the utility for the principal, we define ti to be the time when the agent switches from action810

i to action i� 1. We know that the transition from action n to n� 1 happens at time tn = �T , and811

until that time the principal gains a utility of one per time unit. After that time, the average contract812

at time t is the weighted average until t of the contract ↵n with weight �T and zero contract with813

weight t � �T . Therefore, the transition times from each action i are given by ti = �T
↵n
↵i

. After814

time �T , the principal pays zero and extracts the full welfare from the agents actions, and so the815

overall utility for the principal is �T +
P

n

i=d 1
2 log(n)e

(ti�1 � ti)Ri�1.816

Claim C.2. The utility for the principal in the free-fall contract (↵n,�) is O(n).817

10In this example we shift the rewards with an additive constant such that the reward for the principal when
the agent takes the null action equals some constant instead of zero. This simplifies the following analysis and is
without loss of generality.
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Proof. The utility from region i is �T +
P

n

i=d 1
2 log(n)e

(ti�1 � ti)Ri�1. The time intervals are

(ti�1 � ti) = �T↵n

⇣ 1

↵i�1
�

1

↵i

⌘
=

�T↵n2i

(2i � 2)(2i � 1)
.

The utility for the principal from region i >
1
2 log(n) and large n is thus:

�T↵n22i

2(2i � 2)(2i � 1)
= ⇥(1).

Summing over n�
1
2 log(n) such terms yields a utility of O(n).818

The above arguments hold similarly also for perturbed versions of this game. For example, shifting819

the rewards by arbitrary and independent values in the range [�1, 1], as well as re-scaling the reward820

parameter v, yielding a positive measure in the parameter space.821

C.1 Proof of Claim C.1822

Proof. We execute this proof in two parts. In the first part of the proof, we will show that any optimal823

dynamic (free fall) contract must begin at ↵n. In the second part of the proof, we show that an optimal824

dynamic (free fall) contract that begins at ↵n must end at ↵
d 1

2 logne
or higher, if n is sufficiently825

large. This is enough to imply the claim because if the optimal free fall contract stops at a higher826

action than
⌃
1
2 log n

⌥
, then the principal has higher utility due to optimality and the agent has higher827

utility since their utility is increasing in actions.828

We now prove that any optimal dynamic contract must begin at ↵n. For the sake of contradiction,829

suppose that it instead begins at ↵i for some action i 2 [1, n� 1]. In particular, it begins with the830

segment (p1 = ↵iR, ⌧
1
, a

1 = i) for some i 2 [1, n� 1]. To achieve a contradiction, we will show831

that this dynamic contract is not optimal by producing a better dynamic contract.832

In particular, let us consider replacing this first segment with the following two segments:833

(↵i+1R, x , ↵i
↵i+1

⌧
1
, i + 1), (0, y ,

h
1� ↵i

↵i+1

i
⌧
1
, i) (and re-indexing all subsequent segments834

appropriately). We claim that this will achieve strictly greater principal utility, while leaving the total835

time unaffected. We first show how we solved for the appropriate time-split (x, y).836

x+ y = ⌧
1 ((x, y) is a time split)

x↵i+1 = ⌧
1
↵i (At time ⌧1, the cumulative linear contract is still ↵i)

x =
↵i

↵i+1
⌧
1

y =


1�

↵i

↵i+1

�
⌧
1

By construction, our choice of x and y keeps the total time invariant, so it remains to prove that this837

results in strictly more principal utility. Since all subsequent segments are the same and generate838

the same amount of principal utility, we only need to compare the principal utility of these three839

segments.840

The (cumulative) principal utility of the original segment (↵iR, ⌧
1
, i) is just ⌧1 since the contract841

problem is designed so that all indifference contracts ↵i result in one unit of utility to the principal.842

The exception is action one, which was adjusted to have 1 +O(") principal utility and therefore has843

cumulative principal utility ⌧1(1 +O(")).844

Next, we consider the cumulative principal utility of our two new segments (ai+1R, x, i + 1) and845

(0, y, i). The first segment has (cumulative) principal utility equal to just x for the same reason as846

above (but now i + 1 cannot be the first action). The second segment has (cumulative) principal847

utility equal to y(Ri+1) where Ri+1 is the expected reward from action i+1, due to the fact that this848

segment offers the zero contract. Together, these two segments generate (cumulative) principal utility849

equal to the following.850

x+ y(Ri+1) = (x+ y) + y(Ri+1 � 1)

= ⌧
1 + y(2i+1

� 1)
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However, we can see from our choice of y that y > 0 and (2i+1
� 1) > 0 since i � 1. Hence this851

strictly beats the cumulative principal utility of the original segment as long as " is sufficiently small.852

This completes our contradiction, since the original dynamic contract was assumed to be optimal but853

we found a strictly better one. Hence the optimal dynamic contract must free fall from ↵n (which854

there is no higher action to start from instead), completing the first part of the proof.855

We now use this fact to prove that the optimal dynamic (free fall) contract must end at ↵
d 1

2 logne
or856

higher, if n is sufficiently larger. The proof plan is to consider the effect of free falling through an857

additional action, and determining when that might improve the free fall contract. As a first step, we858

observe that the objective function of the continuous setting, Util(⇡), is invariant when we equally859

scale all times ⌧k. As a result, we can assume without loss of generality that the first segment of860

free-fall (p1 = ↵nR, ⌧
1
, a

1 = n) uses ⌧1 = 1. We can also assume without loss of generality that861

the other segments {(pk = 0, ⌧k, ak = n� k + 1)}K
k=2 begin and end at region boundaries, which is862

enough to work out their durations ⌧k based on when the average linear contract reaches a particular863

indifference point.864

⌧
k =

↵n

↵n�k+1
�

↵n

↵n�k+2
=

1� 2�n

1� 2�n+k�1
�

1� 2�n

1� 2�n+k�2

= [1� 2�n]
2�n+k�1

� 2�n+k�2

(1� 2�n+k�1)(1� 2�n+k�2)

= [1� 2�n]
2�n+k�2

(1� 2�n+k�1)(1� 2�n+k�2)

Hence segment k 2 [2,K] contributes the following (cumulative) principal utility.865

⌧
k
uP (p

k
, a

k) = ⌧
k2n�k+1 = 2n�k+1

·
⇥
1� 2�n

⇤ 2�n+k�2

(1� 2�n+k�1)(1� 2�n+k�2)

=
1

2

⇥
1� 2�n

⇤ 1

(1� 2�n+k�1)(1� 2�n+k�2)

Let ⇡K be the trajectory that uses K segments. We can compute its objective value to be the following.866

Util(⇡K) =
1 + 1

2 [1� 2�n]
P

K

k=2
1

(1�2�n+k�1)(1�2�n+k�2)

(1� 2�n)/(1� 2�n+K�1)

= (1� 2�n+K�1)

"
1/(1� 2�n) +

1

2

KX

k=2

1

(1� 2�n+k�1)(1� 2�n+k�2)

#
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We can take the difference of two such expressions to decide whether ⇡K+1 is better than ⇡K . For867

n�
⌃
1
2 log n

⌥
 K  n� 1:868

Util(⇡K+1)� Util(⇡K) = (1� 2�n+K)

"
1/(1� 2�n) +

1

2

K+1X

k=2

1

(1� 2�n+k�1)(1� 2�n+k�2)

#

� (1� 2�n+K�1)

"
1/(1� 2�n) +

1

2

KX

k=2

1

(1� 2�n+k�1)(1� 2�n+k�2)

#

= (1� 2�n+K)
1

2

1

(1� 2�n+K)(1� 2�n+K�1)

� 2�n+K�1

"
1/(1� 2�n) +

1

2

KX

k=2

1

(1� 2�n+k�1)(1� 2�n+k�2)

#


1

2

1

(1� 2�n+(n�1))(1� 2�n+(n�1)�1)

� 2�n+(n� 1
2 logn)�1

2

64
1

2

n�d 1
2 logneX

k=2

1

3

75

=
1

2

1

(1/2)(3/4)
�

1

2
p
n


1

2
(n�

⇠
1

2
log n

⇡
� 1)

�

Since the positive term has magnitude O(1) and the negative term has magnitude O(
p
n), this bound869

will always be negative when n is sufficiently large. Hence it is strictly not worth it to free fall below870

↵
d 1

2 logne
, as desired. This completes the proof.871

D General Contracts with Single-Dimensional Scaling872

Here we consider general contracts, and in Theorem D.1 generalize the result of Theorem 3.1 to873

families of one-dimensional (yet non-linear) dynamic contracts for which free-fall contracts are874

optimal.875

Given any contract p, the set of p-scaled contracts are the one-dimensional family of contracts of876

the form ↵p for some ↵ � 0. We will consider a principal that is restricted to only play p-scaled877

contracts. In the continuous-time formulation of Section 2.2, this means that each contract pk must878

be p-scaled. We will let pk = ↵
kp, and we will often abuse notation and write ↵k as shorthand for879

this contract (e.g., we will specify segments of the trajectory ⇡ in the form (↵k
, ⌧

k
, a

k)). Recall that880

a free-fall contract denotes such a dynamic contract for the principal where ↵k = 0 for all k > 1.881

As with linear contracts, note that as ↵ increases from 0, the contract ↵p incentivizes the agent to play882

an action in BRp(↵) (which is unique except for at most n “breakpoint” values of ↵, where the agent is883

indifferent between two actions). This induces an ordering over the actions; we will relabel the actions884

so that actions 1 (the null action), 2, 3, . . . are incentivized for increasing values of ↵. Formally, if885

the agent has n actions, we have n “breakpoints” 0 = ↵0,1 < ↵1,2 < ↵2,3 < · · · < ↵n�1,n, where886

action i belongs to BRp(↵) iff ↵ 2 [↵i�1,i,↵i,i+1] (with ↵n,n+1 = 1).887

Our main result in this section is the following theorem, by which free-fall p-scaled contracts are888

optimal p-scaled dynamic contracts.889

Theorem D.1. Let ⇡ be any p-scaled dynamic contract. Then there exists a free-fall p-scaled890

contract ⇡0 where Util(⇡0) � Util(⇡).891

To prove Theorem D.1, we will establish a sequence of lemmas constraining the potential geometry of892

an optimal p-scaled dynamic contract. Note that since linear contracts are a specific case of p-scaled893

contracts, this also provides an alternate proof of Theorem 3.1.894

We begin our proof with the observation that, similar to linear contracts, p-scaled contracts cannot895

“skip over” actions for the agent (c.f. Lemma B.1, which has an essentially identical proof).896

Lemma D.2. If ⇡ = {(↵k
, ⌧

k
, a

k)} is a p-scaled dynamic contract, then 8k, |ak � a
k+1

|  1.897
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(a) Base policy ⇡. In this exam-
ple the kth and (k + 1)st seg-
ments both lie along the ↵3 in-
difference boundary, but the two
segments incentivize different ac-
tions (ak = 4, ak+1 = 3).

π1

α1,2

α2,3

α3,4

α4,5

t

α

(b) Policy ⇡1 formed by replacing
the first k segments of ⇡ with an
enlarged version of the kth seg-
ment.
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α3,4

α4,5

t

α

(c) Policy ⇡2 formed by replacing
the first k segments of ⇡ with an
enlarged version of the first k � 1
segments.

Figure 6: Figures for the proof of Lemma D.3.

Proof. Note that ak and a
k+1 both must be best-responses to the average historical contract pk after898

segment k, which is a p-scaled contract with parameter ↵k =
P

k

k0=1 ↵
k
0
⌧
k
0
/
P

k

i=1 ⌧
k
0
. In other899

words, ak and a
k+1 belong to BRp(↵

k). Since BRp(↵) is always of the form {i} or {i, i+ 1} the900

conclusion follows.901

Now, recall that in Lemma B.2 we show that (for general contract problems) we can restrict our902

attention to trajectories where no two consecutive segments have the same agent best response (i.e.,903

a
k
6= a

k+1 for any k). The following lemma proves a strengthening of this fact specific to p-scaled904

contracts.905

Lemma D.3. Let ⇡ be any p-scaled dynamic contract. Then there exists a p-scaled dynamic906

contract ⇡0 = {(↵k
, ⌧

k
, a

k)} with the property that for all k, ak 6= a
k+1 and a

k
6= a

k+2, and that907

Util(⇡0) � Util(⇡).908

Proof. The fact that we can rewrite ⇡ into an equivalent contract where a
k
6= a

k+1 follows from909

the proof of Lemma B.2. Therefore, assume without loss of generality that ⇡ already has this form.910

We will show how to rewrite it into a new dynamic contract ⇡0 with the additional property that911

a
k
6= a

k+2.912

We will induct on the number of segments in the path (it is obviously true when there is only913

K = 1 segment). Assume that for some k, ⇡ has the property that ak = a
k+2

6= a
k+1. This914

implies that BRp(↵
k) = BRp(↵

k+1) = {a
k
, a

k+1
}. Since there is a unique value of ↵ for which915

BRp(↵) = {a
k
, a

k+1
} (namely, one of the breakpoints ↵i,i+1), this can only happen if ↵k = ↵

k+1,916

which in turn means that ↵k+1 = ↵
k = ↵

k+1. Pictorially, this is because if a dynamic contract917

spends only one segment in a best-response region, this segment must lie along the boundary of the918

best-response region (see Figure 6).919

Now, consider the following two modifications of ⇡:920

1. In ⇡1, we replace the first k + 1 segments of ⇡ with a scaled up version of the921

(k + 1)st segment. That is, remove the first k + 1 segments of ⇡ and replace them with922

(↵k+1
, T

k+1
, a

k+1). To see that this is a valid contract, note that since ↵k+1 = ↵
k+1, ↵k+1923

incentivizes action a
k+1 so the first segment of this contract is valid. Moreover, after T k+1924

time units have elapsed, both ⇡ and ⇡1 resume the same sequence of segments from the925

same state ↵k+1.926

2. In ⇡2, we replace the first k+1 segments of ⇡ with a scaled up version of the first k segments.927

That is, remove the segment (↵k+1
, ⌧

k+1
, a

k+1), and scale up ⌧k
0

(for each 1  k
0
 k)928

to ⌧k
0
(T k+1

/T
k). Again, this is a valid dynamic contract because scaling up a (prefix929

of a) dynamic contract results in a valid dynamic contract, and ⇡ and ⇡2 both resume the930

remainder of segments at the same time and from the same state ↵k+1.931
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(a) Base policy ⇡ with consecu-
tively increasing actions.
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(b) Policy ⇡K formed by setting
↵K to the minimum ↵ required to
remain in the same best-response
region (in this case, ↵3).
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(c) Policy ⇡0 formed by scaling
up the first K � 1 segments of ⇡
(i.e., all but the last segment).

Figure 7: Figures for the proof of Lemma D.4.

Finally, note that Util(⇡) is a convex combination of Util(⇡1) and Util(⇡2) – specifically, Util(⇡) =932

(⌧k+1
⇡1 + T

k
⇡2)/T k+1 – and so is less than or equal to one of them. But both ⇡1 and ⇡2 have933

strictly fewer segments than ⇡, so by applying the inductive hypothesis, we are finished.934

As a consequence of Lemmas D.2 and D.3, we can restrict ourselves to dynamic contracts whose935

sequences of actions are either consecutively increasing (ak+1 = a
k +1) or consecutively decreasing936

(ak+1 = a
k
� 1). We show that we can ignore the first case – such contracts can never be better than937

static contracts.938

Lemma D.4. Let ⇡ = {(↵k
, ⌧

k
, a

k)} be a p-scaled dynamic contract where the ak are consecutively939

increasing. Then there exists a static p-scaled contract ⇡0 (i.e., a single segment dynamic contract of940

the form (↵0
, 1, a0)) where Util(⇡0) � Util(⇡).941

Proof. As in the proof of Lemma D.3, we will again induct on the number of segments of ⇡. If ⇡ has942

one segment, we are done.943

Now consider a ⇡ with K segments, whose last segment is (↵K
, ⌧

K
, a

K). Recall that for any i,944

↵i�1,i is the smallest value of ↵ for which ↵p incentivizes action i. Note that if ↵K
> ↵aK�1,aK ,945

we can improve the utility of the principal by decreasing ↵K to ↵aK�1,aK (this pays strictly less to946

the agent but still incentivizes the same action a
K). We’ll therefore assume the last segment is of947

the form (↵aK�1,aK , ⌧
K
, a

K); note that this segment by itself is a valid static p-scaled contract, as948

↵aK�1,aK incentivizes action a
K . Call this contract ⇡K .949

Let ⇡0 be the dynamic contract formed by the first K � 1 segments of ⇡ (see Figure 7 for examples of950

⇡K and ⇡0). But now, Util(⇡) is a convex combination of Util(⇡0) and Util(⇡K), so it is at most the951

maximum of these two quantities. If this maximum is Util(⇡K), we are done (⇡K is a static contract);952

if it is Util(⇡0), we are also done by the inductive hypothesis (⇡0 has K � 1 segments).953

Finally, we show that in the case where the sequence of actions are consecutively decreasing, such a954

contract is no better than some free-fall contract.955

Lemma D.5. Let ⇡ = {(↵k
, ⌧

k
, a

k)} be a p-scaled dynamic contract where the ak are consecutively956

decreasing. Then there exists a free-fall p-scaled contract ⇡0 where Util(⇡0) � Util(⇡).957

Proof. Assume that ⇡ is not a free-fall contract. We will show we can rewrite ⇡ in a way so that958

either the first agent action a
1 strictly decreases or the first non-free-fall occurs strictly later. Since959

the number of segments in ⇡ is bounded (by n, since the actions are consecutively decreasing), this960

implies the theorem statement.961

Let (↵k
, ⌧

k
, a

k) be the first segment in ⇡ with k � 2 where ↵k
> 0 (so, the dynamic contract is962

not free-falling here). Note that since this segment ends on the boundary between the best-response963

regions for ak and a
k+1 = a

k
� 1, ↵k = ↵ak�1,ak .964

The main observation of this proof is that we can rewrite this segment as a combination of a free-fall965

segment (with ↵ = 0) and a segment along the boundary of these two best-response regions (with966
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(a) Base policy ⇡ with consecu-
tively decreasing actions. The kth
segment is the first non-free-fall
segment: we form ⇡0 (the dashed
trajectory) by decomposing this
segment into a free-fall segment
followed by a boundary segment.
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(b) Policy ⇡1 formed by replac-
ing the first k segments of ⇡ by a
scaled up version of the boundary
dashed segment.
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(c) Policy ⇡2 formed by replac-
ing the first k segments of ⇡ by
a scaled up version of the prefix
of ⇡ up to (but not including) the
boundary dashed segment.

Figure 8: Figures for the proof of Lemma D.5.

↵ = ↵
k). Specifically, form a new dynamic contract ⇡0 by replacing (↵k

, ⌧
k
, a

k) in ⇡ with the967

two consecutive segments (0,�⌧k, ak) and (↵ak�1,ak , (1 � �)⌧k, ak), where � is chosen so that968

(1� �)↵ak�1,ak = ↵
k. Note that by doing this ⇡0 now has K + 1 segments, where segments k and969

k + 1 are this new free-fall and boundary segment respectively. Note that we will let quantities like970

⌧
k, T k, and ↵k still refer to the relevant quantities for ⇡, not ⇡0.971

This allows us to proceed via a similar technique as in Lemma D.3. Consider the following two972

modifications of ⇡0 (see Figure 8 for examples):973

1. In ⇡1, we replace the first k + 1 segments of ⇡0 with a scaled-up version of the boundary974

segment of the form (↵k
, T

k
, a

k).975

2. In ⇡2, we replace the first k + 1 segments of ⇡0 with a scaled up version of the first k976

segments (the first k � 1 segments of ⇡ and the free-fall segment, but not the boundary977

segment). Specifically, let C = T
k
/(T k�1 + �⌧

k). Then the first k � 1 segments of ⇡2 are978

of the form (↵k
0
, C⌧

k
0
, a

k
0
), and the kth segment of ⇡2 is of the form (0, C�⌧k, ak).979

As in the proof of Lemma D.3, we can check that both ⇡1 and ⇡2 are valid dynamic contracts: in980

particular, after T k units of time, they are both in the state ↵k, so the remaining suffix of ⇡ is a valid981

extension for both contracts.982

Again, Util(⇡) can be written as a convex combination of Util(⇡1) and Util(⇡2), specifically,983

Util(⇡) =
(1� �)⌧kUtil(⇡1) + (T k�1 + �⌧

k)Util(⇡2)

T k
.

But ⇡1 starts at a later action than ⇡ (since a
k = a

1
� (k � 1)), and ⇡2 is a free-fall contract for one984

further step than ⇡ (since ↵2 = ↵
3 = · · · = ↵

k�1 = 0, and the kth segment in ⇡2 also has ↵ = 0).985

This completes the proof.986

We can now conclude the proof of Theorem D.1.987

Proof of Theorem D.1. Because of Lemmas D.2 and D.3, we can assume without loss of generality988

that the actions a
k in ⇡ are either consecutively increasing or decreasing. The conclusion now989

immediately follows from Lemmas D.4 and D.5.990

E Proof of Thorem 4.2 (Unknown Time Horizon)991

Proof. Due to Theorem H.3, it suffices to show that there exists some � such that U?
�
< (1 + ")R?.992

This lets us focus on the continuous-time setting.993
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Figure 9: We use a “raw” potential function  (↵) which maps time-averaged linear contracts ↵ to (raw)
potentials.

The high-level plan from here is to focus on a particular continuous trajectory ⇡ =
�
(pk, ⌧k, ak

 
k

994

apply a potential argument to it. We will then show our analysis extends to distributions D for free.995

We will define a potential function  (↵) that maps time-averaged linear contracts ↵ to potentials996

in R�0. This potential is based only on the principal-agent problem (c, F, r). There are some997

peculiarities about our potential argument, relating to the passage of time. Consider a principal998

managing to produce a time-averaged linear contract of ↵ after t units of time, and compare that999

with a principal that has managed to arrive a time-averaged linear contract of ↵ after 2t units of time1000

instead, i.e. twice the time. In terms of absolute (not time-averaged) units of profit we can extract1001

from this point, it is twice as good to be in the latter situation. With this in mind, our proof will1002

carefully distinguish between the raw potential  (↵) and the time-weighted potential  (↵) · t. If a1003

principal maintains a steady time-averaged linear contract, then the raw potential will remain constant1004

while the time-weighted potential will grow.1005

The purpose of the time-weighted potential is to model the ability of a principal to extract additional1006

profit by gradually lowering time-averaged linear contract. It will be used to demonstrate that this1007

extra profit produced by using up a finite resource, which will imply the desired theorem result.1008

We now give our raw potential function  (↵). We begin by writing down the linear contract1009

breakpoints of (c, F, r); without loss of generality11 they are 0 < ↵2 < ↵3 < · · · < ↵n, where the1010

linear contract ↵i leaves the agent indifferent between actions i� 1 and i. For notational convenience,1011

we also define an ↵1 , 0 as the minimum linear contract to incentivize the first action. We also1012

denote the expected reward of action i with Ri. With this notation in place, our raw potential function1013

 : [0,↵n] ! R�0 is the following piecewise-linear function. Note that we can assume without loss1014

of generality that the average linear contract never exceeds ↵n, because capping it to this quantity1015

only improves principal utility at all moments in time.1016

 (↵) ,
(P

i
0�1
i=1 (↵i+1 � ↵i)Ri + (↵� ↵i0)Ri0 if ↵ 2 [↵i0 ,↵i0+1)P
n�1
i=1 (↵i+1 � ↵i)Ri if ↵ = ↵n

The potential above is depicted in Figure 9 and can be seen as the product of the following thought1017

experiment: what if the principal was allowed to offer unbounded payments (in particular, payments1018

can be negative and can exceed the payment bound P )? In our continuous-time setting, this gives the1019

principal the ability to produce segments of play (pk, ⌧k, ak) which have near-instantaneous times1020

⌧
k
! 0 while using large-magnitude cumulative contracts pk⌧k to move between the boundaries1021

between actions. If these near-instantaneous actions are used at time t, then the time-weighted1022

potential  (↵) · t captures the necessary payments to alter the time-averaged linear contract. One1023

interesting aside about this thought experiment is that the necessary payment to near-instantaneously1024

move up from ↵i to the next ↵i+1, namely [ (↵i+1)�  (↵i)] t, is equal to the payout received for1025

near-instantaneously using a negative contract to move down from ↵i+1 to ↵i.1026

11Implicitly, this step prunes away all actions which cannot be incentivized by a linear contract.
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Potential function in hand, we return to the original problem where payments are bounded and1027

nonnegative. Let us consider the k
th segment of play (pk = ↵

k
R, ⌧

k
, a

k) and relate the total profit1028

generated during this segment of play with the change in potential.1029

For notational convenience we define shorthand for the cumulative linear contract offered.1030

A
k ,

kX

k0=1

⌧
k
0
↵
k

We will also use u
k

P
to denote the (time-weighted) principal utility for segment k and u

k
?

to denote1031

the corresponding amount of principal utility that the optimal static contract obtains over ⌧k time.1032

Using this notation, we can compute an upper bound on how much additional principal utility this1033

segment manages to achieve over the optimal static contract.1034
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At the same time, this contract has shifted the time-averaged linear contract and hence altered the1035

time-weighted potential.1036
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Interestingly, the expression for time-weighted potential has a term that perfectly cancels with our1037

bound for how much additional principal utility this segment produces over the optimal static contract.1038
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The right-hand side expression above is just the integral of the current raw potential as this segment1039

advances the time from T
k�1 to T

k. Conveniently, this upper bound still works out to the same1040

amount even if we subdivide our segment (pk, ⌧k, ak) into two sub-segments (pk, x, ak), (pk, y, ak)1041

such that x, y 2 [0, ⌧k] and x+ y = ⌧
k (and re-index the other segments appropriately). This means1042

we can sum this bound to get an overall bound for any time t 2 [0, T ], just by splitting the last1043
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segment appropriately. To formalize this, we introduce some more parenthetical superscript notation1044

to denote the corresponding objects when considering time from zero to t. In particular, u(t)
? denotes1045

the optimal static contract’s principal utility for t units of time, A(t) denotes the cumulative linear1046

contract for t units of time.1047
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Recall our notation where R? denotes the optimal static contract’s principal utility. For t 2 [T , T ],1048

we know that the excess principal utility needs to be at least "R?t, which implies the following.1049
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With this bound in mind, we can view every trajectory ⇡ that manages to successfully beat the optimal1050

static contract by (1 + ") in terms of how much raw potential it has as a function of time. Note1051

that this bound controls the current raw potential based on the average raw potential up to this point1052

(minus a constant). As a result, if we just consider trajectories ⇡ that obey this bound, the worst1053

case for us would be a function that satisfies it with equality everywhere since greedily picking the1054

maximum value for the function early on allow for higher values later on (greedy stays ahead). We1055

now solve for this function f(t) which simultaneously maximizes raw potential everywhere.1056

"R?t+ f(t)t =

Z
t

0
f(T )dT

"R? + f(t) + f
0(t)t = f(t)

f
0(t) = �"R?/t

At time T , we know the raw potential can be at most  (↵n). We want to choose � and hence T so1057

that f(T ) is negative in order to create a contradiction. Because f yields the maximum possible1058

function value attainable at time T , this means that our actual raw potential will also be negative at T .1059

We now solve for the largest value of � that does not actually create a contradiction.1060

f(T )� f(T ) = � (↵n)
Z

T

T

f
0(t)dt = � (↵n)

�"R? [ln t]
T

T
= � (↵n)

ln(T/T ) =
 (↵n)

"R?

� = e
�(↵n)/("R?)

Hence it suffices to pick a � > e
�(↵n)/("R?). This demonstrates that it is impossible for a deterministic1061

trajectory ⇡ to beat the optimal static contract by a (1 + ") multiplicative factor.1062

What about randomized dynamic contracts D? We can just take the appropriate convex combination1063

of our bounds according to drawing ⇡ ⇠ D. In particular, this yields:1064
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We can then re-execute the remainder of the proof in the same way, replacing the deterministic1065

additional principal utility with expected additional principal utility and deterministic raw potential1066

with expected raw potential. The expected potential function is still bounded everywhere by the same1067

function f(T ) and we reach the same conclusions about �. This completes the proof.1068
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Remark. Due to Yao’s minimax principle, Theorem 4.2 implies that there exists an adversarial1069

distribution over times in [T , T ] such that for any randomized principal strategy, the ratio between1070

expected principal utility and the principal utility of the optimal static contract for that duration of1071

time is strictly less than (1+"). In order to apply Yao’s minimax principle, we need the set of relevant1072

principal strategies and the set of relevant adversary strategies to be finite. We already do this in1073

our proof of Theorem H.3: the latter can just be an "-net since principal utility is Lipschitz with1074

Lipschitz constant depending on the contract problem, and after that the former then follows from1075

Carathéodory’s Theorem by treating each deterministic trajectory as a vector with one coordinate for1076

every point in our "-net.1077

F Proof of Theorem 4.3 (Unknown Time Horizon – Converse)1078

Proof. We prove this by proving the contrapositive. Suppose for any fixed time T there is a dynamic1079

contract that can achieve an expected utility of (1 + ✏)u?T for some ✏ > 0. By Theorem 3.1, we can1080

assume without loss of generality that this is a free-fall linear contract. We will show that for any �1081

we will construct a dynamic contract such that for all T 2 R and all t 2 [T , � · T ], we can achieve an1082

expected utility of (1 + f(✏, �)) · u? · t where f(✏, �) � ⌦
⇣
min

⇣
( "4 )

O(log(1+�))
,
"

�

⌘⌘
.1083

As a first step, we will show that if there is a free-fall linear contract that beats the optimal static1084

contract, then there is a free-fall linear contract that beats the optimal static contract but also either1085

(1) ends at or above the optimal static contract or (2) begins at the optimal static contract. Afterwards,1086

we plan to analyze case (1) and (2) separately.1087

If our free-fall linear contract does not already satisfy case (1) or (2), then it must do one of the1088

following; (a) begin at a higher breakpoint than the optimal static contract and end at a lower1089

breakpoint than the optimal static contract or (b) being and end at lower breakpoints than the optimal1090

static contract. We now analyze these two cases. In the process, we will lose a constant factor which1091

is folded into our ⌦ notation.1092

Case A: Dynamic contracts beginning above ↵? and ending below ↵?. We write our free-1093

fall linear contract in the usual form ⇡ = {(pk
, ⌧

k
, a

k)}K
k=1. By virtue of being in this case, we1094

know there is some index 2  i < K such that the average linear contract after i segments, pi,1095

is exactly ↵?. We “cut” the trajectory ⇡ at this point to produce two new trajectories ⇡0 and ⇡00.1096

Specifically, ⇡0 = {(pk
, ⌧

k
, a

k
}
i

k=1 and ⇡00 = {(↵?, T
i
, a

i)} � {(pk
, ⌧

k
, a

k
}
K

k=i+1 where � denotes1097

concatenation. In other words, we construct ⇡0 by ending at this point and we construct ⇡00 by1098

taking the optimal static contract to this point and continuing as normal. Observe that the combined1099

performance of ⇡0 and ⇡00 is equal to the combined performance of ⇡ and just playing the single1100

segment {(↵?, T
i
, a

i)}: (1+✏)u?T
K+u?T

i. This results in a combined time-averaged performance1101

of1102

(1 + ✏)u?T
K + u?T

i

T K + T i
= u?


(1 + ✏)

T
K

T K + T i
+ (1)

T
i

T K + T i

�

� (1 + ✏/2)u?

since T
K

� T
i. Since ⇡0 and ⇡00 have this combined average, one of them must have at least this1103

average (and we only lost a factor 1/2 on our ✏, which is indeed a constant. Since ⇡0 matches case (1)1104

and ⇡00 matches case (2), this completes the analysis of case (a).1105

Case B: Dynamic contracts beginning and ending below ↵?. We take the obvious approach1106

and choose to begin at ↵? instead. Specifically, we replace the first segment with a sequence of1107

segments that begins at ↵? and then undergoes the appropriate number of free-fall segments to arrive1108

at the same endpoint as before (same total time and average linear contract). We argue that each new1109

segment has at least as much principal utility per unit time as the original segment. Since the total1110

time is the same, this is a direct improvement over the original dynamic contract, both in terms of1111

total principal utility and time-averaged principal utility. The argument that each new segment does1112

at least as well per unit time is similar to before. The first new segment just hovers at the optimal1113

static contract, which by definition is better than any other static contract (which our original segment1114

must be). The remaining new segments are freefall segments, and achieve principal utility per unit1115

time equal to the expected revenue of the actions they fall through. We observe that we fall through1116

segments in order of decreasing expected utility, meaning all of these segments have higher expected1117

utility than the action we originally began with, and expected revenue is at least the principal utility1118
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of the static contract that achieves a particular action. We finish this case by noting that we did not1119

diminish ✏ at all, which trivially a constant factor.1120

This completes our analysis of cases (a) and (b). In all cases, we managed to reduce to either case (1)1121

or (2), which we now consider.1122

Case 1: Dynamic contracts ending at or above ↵?. First, we consider the case where for any fixed1123

T there is a dynamic contract ⇡(T ) = ((↵1
, ⌧

1
, a

1), . . . , (↵k
, ⌧

k
, a

k)) which ends at or above the1124

optimal static action: ak � a?. Given any � and time period [T , T = � · T ], consider the dynamic1125

contract which starts with ⇡(T ), free falls to the optimal static contract, and then plays the optimal1126

static contract for the remaining time period. We again observe (as we did for case (b)) that free1127

falling through actions that are at least the a? results in at least u? principal profit per unit time.1128

Hence the total revenue for any time t 2 [T , T ] for the principal is (1+ ✏) ·u?T +(t�T ) ·u?, which1129

is at least (1 + ✏/�)R?t.1130

Case 2: Dynamic contracts starting in ↵?. By Theorem 3.1, we know any dynamic con-1131

tract can be transformed into a free-fall dynamic contract with no loss in revenue. There-1132

fore, we assume that for any fixed time horizon T , there is a dynamic contract form ⇡(T ) =1133 �
↵?, ⌧

1
, a

1), (0, ⌧2, a2), . . . , (0, ⌧k, ak)
�

which achieves a total revenue of (1 + ")R?T . Since1134

this is a free-fall contract, the optimal revenue from this contract can be characterized as1135

(1 � ↵?)R?⌧
1 +

P
k

i=2 ⌧
i
Rai which is at least (1 + ")R?t > (1 + ")(1 � ↵?)R?. Let µ be the1136

minimum fraction of time such that for any time T , the dynamic contract ⇡(T ) achieves revenue at1137

least (1 + "/2)µu?T . Since we know that ⇡(T ) achieves a total revenue of (1 + ")u?T and starts1138

out at the optimal static contract, we know that µ � ⌧
1
/
Pk

i=1 ⌧
i and it is a constant bounded away1139

from 1. Let Si = dµ
i
T e and let p be the first index where Sp is less than T (i.e., p = d

log(1+�)
log(µ) e) .1140

By construction, Si satisfy two properties:1141

1. Sp  T  Sp�1  . . . S1  T .1142

2. If the principal runs dynamic contract ending at Si, namely ⇡(Si), then they are guaranteed1143

revenue (1 + "/2)tR? for any t 2 [Si+1, Si].1144

We will construct a sequence of dynamic contracts ⇡i which have the property that for any t 2 [Si, �T ]
achieves revenue that is at least (1 + ("/4)i)R?t. We do this via induction. For the base case, let
⇡
1 = ⇡(T ). By construction, we know that for all t 2 [S1, T ], the principal will get revenue

(1 + "/2)u?t. Now suppose we have such a dynamic contract ⇡i, then we construct ⇡i+1 by taking a
convex combination of ⇡i and the optimal dynamic contract ending at ⇡(Si). In particular, let

⇡
i+1 =

1 + "/2

1 + "/2 + ("/4)i
⇡
i +

("/4)i

1 + "+ ("/4)i
⇡(Si).

For any t 2 [Si, T ], we have that revenue we attain is at least the revenue from the contract1145

1 + "/2

1 + "/2 + ("/4)i
Revenue(⇡i(t)) �

1 + "/2

1 + "/2 + ("/4)i
(1 + ("/4)i)u?t �

1 +
"
i+1

/2·4i

1 + "/2 + ("/4)i
� (1 + ("/4)i+1)u?t.

For any t 2 [Si+1, Si], observe that we get at least u?t from the first contract ⇡i and at least1146

(1 + "/2)u?t in the second contract. Therefore we get at least1147

1 + "/2

1 + "/2 + ("/4)i
u?t+

("/4)i

1 + "/2 + ("/4)i
(1 + ("/2))u?t � (1 + ("/4)i)u?t.

1148

G General Contracts1149

In this section, we give a general contract instance with n = 4 actions (3 non-null actions) and m = 41150

outcomes (3 non-null outcomes), where the best dynamic contract provably outperforms the best1151

free-fall dynamic contract. The instance in question is defined as follows:1152
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• The cost vector c = (c1, c2, c3, c4) = (0, 0.2, 0.4, 0.5).1153

• The reward vector r = (r1, r2, r3) = (0, 1.0, 1.6, 2.0).1154

• The forecast matrix is given by F =

0

B@

1.00 0.00 0.00 0.00
0.45 0.20 0.25 0.10
0.35 0.05 0.25 0.35
0.15 0.30 0.30 0.25

1

CA1155

This instance was found by a programmatic search over a large collection of instances. For this1156

instance, we can (again, programmatically) compute that the best free-fall dynamic contract achieves1157

a net asymptotic utility for the principal of at most 0.753 per round. At the same time, we can1158

exhibit a non-free-fall dynamic contract for this instance that achieves a utility of at least 0.764 per1159

round. For conciseness, we present the details of our approach in Appendix G.1, where we construct1160

well-tailored linear programs that provide the aforementioned intricate instance.1161

G.1 Programmatic LP Search for Sub-Optimal Free Fall Against Non-Linear Contracts1162

At a high level, the verification of the example of section 3.3 relies on the following fact: given a1163

sequence of actions (a1, a2, . . . , aK), we can construct a polynomial-sized linear program to find the1164

optimal continuous-time dynamic (general or free-fall) contract {(pk
, ⌧

k
, a

k)}K
k=1 with this specific1165

action sequence.1166

The variables of this LP are the ⌧k and pk corresponding to each action a
k. The constraints follow1167

from the definition of a valid trajectory of play in Section 2.2 and are as follows:1168

• (Non-negativity) pk
, ⌧

k
� 0.1169

• (Time normalization)
P

K

k=1 ⌧
k = 1. We normalize the total duration of the trajectory to 1.1170

• (Beginning of segment is best response)
P

k�1
k0=1 ⌧

k
0
uL

⇣
pk

0
, a

k

⌘
�1171

P
k�1
k0=1 ⌧

k
0
uL

⇣
pk

0
, a

0
⌘

for any a
0
2 [n]. This represents the constraint ak 2 BR(pk�1).1172

• (End of segment is best response)
P

k

k0=1 ⌧
k
0
uL

⇣
pk

0
, a

k

⌘
�
P

k

k0=1 ⌧
k
0
uL

⇣
pk

0
, a

0
⌘

for1173

any a
0
2 [n]. This represents the constraint ak 2 BR(pk).1174

The objective of the LP is the optimizer utility
P

K

k=1 ⌧
k
uO(pk

, a
k). If we want to further impose1175

that the contract is a free-fall contract, we can add the constraint that pk = 0 for k > 1.1176

For free-fall contracts, we have an additional constraint on what sequences of actions are possible.1177

Note that a free-fall contract will never repeat an action – in particular, after the initial segment,1178

the cumulative utility of each action i 2 [n] decreases by ci per round, so the sequence of actions1179

(a1, a2, . . . , aK) a free-fall contract passes through must be sorted in decreasing order of cost. This1180

means there are at most 2n sequences of actions to check, and by checking all of them we can1181

provably compute the optimal free-fall contract for a given general contract instance.1182

On the other hand, it’s not clear if there are any constraints on how complex the sequence of actions1183

for the optimal general dynamic contract can be – it is an interesting open question whether there1184

exists any efficient (or even computable) algorithm for computing U
? for a general contract instance.1185

Luckily, in order to show this separation, we need only exhibit a single general contract which1186

outperforms the best free-fall contract. In the example above, we compute the best general contract1187

for the same action sequence that the optimal free-fall contract passes through, and observe that the1188

general contract obtains strictly larger utility.1189

H Simplifying Tool: Reductions from Discrete to Continuous Time1190

H.1 Proof of Theorem 2.41191

In this section we prove Theorem 2.4, showing that instead of working with discrete-time learning1192

algorithms, it instead suffices to work with the set of continuous-time trajectories piecewise-linear1193

trajectories described in Section 2.2. Our proof will generally follow the proof structure of [26]1194

(which proves a similar reduction in the case of two-player bi-matrix games), with a few slight1195
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additional complexities due to some differences in notation (namely, we do not insist that every1196

segment lies in the interior of a best-response region).1197

Before we begin the proof, it will be useful to establish a helpful auxiliary lemma about trajectories.1198

Call a segment (pk, ⌧k, ak) of a trajectory ⇡ degenerate if it lies on the boundary of two best-response1199

regions (i.e., |BR(pk�1) \ BR(pk)| � 2), and non-degenerate otherwise. Let Util0(⇡) be the utility1200

contributed by just non-degenerate segments. We begin by showing that starting with any trajectory1201

⇡, we can construct a mostly non-degenerate trajectory ⇡0 with Util0(⇡0) almost as large as Util(⇡).1202

Lemma H.1. For any trajectory ⇡ and any " > 0, there exists a trajectory ⇡0 such that Util0(⇡0) �1203

(1� ")Util(⇡).1204

Proof. Let ⇡ = {(pk, ⌧k, ak)}. We will produce ⇡0 by interleaving a sequence of small perturbations1205

(qk, �k) into ⇡ for some q
k
2 Rm

�0 and �k > 0; that is, we will let ⇡0 be defined by the sequence of1206

segments (q1, �1), (p1, ⌧1, a1), (q2, �2), . . . , (qk, �k), (pk, ⌧k, ak). Note that we have not specified1207

the best-response of the learner for the perturbation segments (qk, �k), because we will not count the1208

utility from these segments (in fact, these perturbation segments might cross best-response boundaries,1209

in which case we can split them into smaller segments). We will show that if we choose q
i and �i1210

correctly, ak is the unique best-response for each of the shifted (pk, ⌧k, ak) segments.1211

Without loss of generality, assume
P

k
⌧
k = 1. For any t 2 [0, 1], we will let p(t) be the average1212

contract at time t under trajectory ⇡. That is, if t = ⌧
1 + ⌧

2 + · · ·+ ⌧
i�1 + ⌧ with 0  ⌧ < ⌧

i, then1213

p(t) =
⌧
1
p
1 + ⌧

2
p
2 + · · ·+ ⌧

i�1
p
i�1 + ⌧p

i

t
.

For each i 2 [k], we will also let �i = �
1 + �

2 + · · ·+ �
i, and Q

i = (�1q1 + �
2
q
2 + · · ·+ �

i
q
i)/�i.1214

Now, if t = ⌧
1 + ⌧

2 + · · · + ⌧
i�1 + ⌧ with 0  ⌧ < ⌧

i, we will let p0(t) be the average contract1215

under trajectory ⇡0 at time �i + ⌧ (i.e., time ⌧ into segment (pi, ⌧ i, ai)). It is the case that for such t,1216

p0(t) =
Q

i�i + tp(t)

�k + t
= p(t) +

�i

�i + t
(Qi

� p(t)).

We would like to choose Q
i and �i such that for each i 2 [k], for a large sub-interval of ⌧ 2 [0, ⌧ i),1217

the unique best response to p0(t) is exactly a
i. To begin, note that for any sequence of strictly positive1218

contracts Qi
2 Rm

>0, there is a sequence of qi and �i that implements it (because we can make each1219

Q
i any convex combination of Qi�1 and q

i). Moreover, we can make �k arbitrarily small, because1220

scaling all the �i simultaneously does not affect the values of the Q
i.1221

Now, for each i, we will set Qi to a positive contract that uniquely incentivizes action a
i. Note that1222

a non-negative contract exists by our assumption in Section 2; but since infinitesimal perturbations1223

maintain the property that the contract uniquely incentivizes ai, there must also be a positive contract1224

with this property. We claim that if BR(Qk) = {a
k
} and a

k
2 BR(p(t)), then for any �  1,1225

BR(p(t) + �(Qk
� p(t))) = {a

k
}. To see this, note that we can write p(t) + �(Qk

� p(t)) =1226

(1� �)p(t) + �Q
k. Since the utility of the agent is an affine linear function in the contract they are1227

offered, for any action a
0
6= a we have that uA((1� �)p(t) + �Q

k
, a

k) = (1� �)uA(p(t), ak) +1228

�uA(Qk
, a

k) > (1� �)uA(p(t), a0) + �uA(Qk
, a

0) = uA((1� �)p(t) + �Q
k
, a

k).1229

It follows that if we choose the Qi in this way, BR(p0(t)) = {a
k
}, and therefore each of the segments1230

(pi, ⌧ i, ai) is non-degenerate. We will set �k equal to ". Doing so, we have that:1231

Util0(⇡0) �

P
k

i=1 uP (pi, ai)⌧ i

1 +�k

� (1� ")Util(⇡)

1232

Equipped with Lemma H.1, we can now prove Theorem 2.4.1233

Proof of Theorem 2.4. We follow the proof structure of [26] and prove both parts separately.1234
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Part 1. Let ⇡ = {(pk, ⌧k, ak)}K
k=1 represent a valid strategy for the principal in the continuous-time1235

problem. Without loss of generality, assume
P

k
⌧
k = 1 (if not, we can divide all ⌧k through by1236 P

k
⌧k without changing the value of this strategy). We will convert ⇡ into the following discrete-time1237

strategy for the principal: for each i 2 [K] (in order), the principal offers the contract pk for ⌧kT1238

rounds.1239

Our goal is to show that for any � > 0 and any mean-based algorithm A, the above strategy results in1240

at least (Util0(⇡)� �)T � o(T ) utility for the optimizer. The conclusion then follows by choosing a1241

trajectory ⇡ for which Util0(⇡) > U
?
� "/2 (such a ⇡ exists by Lemma H.1 and the definition of1242

U
?) and some � < "/2. In the remainder of this proof, we will fix a specific mean-based algorithm A1243

that is �(T )-mean-based for some �(T ) = o(1).1244

As in Definition 2.2, let �i,t denote the aggregate utility of action i to the agent over the first t rounds.1245

Let T k =
P

k

j=1 ⌧
j
T , and consider the values of �t for rounds t 2 [T k�1

, T
k] corresponding to the1246

kth segment. Note that �t is linear in this interval and so we can interpolate1247

�t =
(t� T

k�1)�Tk�1 + (T k
� t)�Tk

⌧kT
. (1)

Furthermore, assume that segment k is non-degenerate, and so BR(pk�1) \ BR(pk) = {a
k
}. In1248

particular, for any t 2 [T k�1
, T

k] and a
0
6= ak, either �Tk�1,ak > �Tk�1,a0 or �Tk,ak > �Tk,a0 .1249

As a consequence of (1), this means that for any "k > 0, there exists a �k > 0 such that for1250

t 2 [T k�1 + "k⌧
k
, T

k
� "k⌧

k], �t,ak � �t,a0 + �kT . For sufficiently large T , �kT > �(T )T , and so1251

the learner will put weight at least (1� n�(T )) on action a
k. The total utility of the principal from1252

these rounds is therefore at least1253

(1� n�(T ))(1� 2"k)⌧
k
uP (p

k
, a

k) � ⌧
k
uP (p

k
, a

k)� (n�(T ) + 2"k)T. (2)

Summing over all non-degenerate segments k, we find the total utility of the principal is at least1254

X

k

⌧
k
uP (p

k
, a

k)�
X

k

k(n�(T ) + 2"k)T = Util0(⇡)�
X

k

k(n�(T ) + 2"k)T.

By choosing "k sufficiently small, we can guarantee that this is at least Util0(⇡)� �T for sufficiently1255

large T , as desired.1256

Part 2. Fix any " > 0. Assume that for some sufficiently large T0, there exists a (possibly1257

adaptive) dynamic strategy for the principal that guarantees utility at least (U? + ")T0 against every1258

mean-based agent. We will show that this implies the existence of a continuous trajectory ⇡ and1259

Util(⇡) � U
? + ", contradicting the definition of U?. Fix �(T ) = T

�1/2 and at any time t, let1260

Jt = {j 2 [n]|(maxi �t,i) � �t,j < �(T )T} be the set of actions for the learner whose historical1261

performance are within �(T )T of the optimally performing action. The set Jt contains exactly the1262

set of actions that the mean-based guarantee implies the agent must play with high probability. Our1263

agent will do the following: if the principal is about to play contract pt, the agent will play the action1264

j 2 Jt that minimizes uL(pt, j) (note that because we are tailoring the agent to this principal, we can1265

do this).1266

Assume that this results in the principal playing the sequence of contracts p1, p2, . . . , pT0 . Consider1267

the trajectory ⇡ defined by the sequence of tuples (p1, 1/T0), (p2, 1/T0), . . . , (pT0 , 1/T0). In this1268

description of the trajectory, we’ve omitted the response action for the agent, which can be any1269

best-response action for that segment. In fact, some segments may not be valid, as they start in one1270

best response region and end in another; for those, we can subdivide them into however many parts1271

are necessary to form a valid trajectory.1272

Now, note that the sub-segments corresponding to the step (pt, 1/T0) only contain agent actions in1273

the set Jt. This is since the agent utility at the start of this segment is �t, the agent utility at the end1274

of this segment is �t+1, each component of �t+1 � �t is at most 1 (since the problem is bounded),1275

but any action j not in Jt is at least �(T ) away from optimal. The principal’s utility contributed by1276

this segment is therefore at least 1
T0

minj2Jt uP (pt, j). But this is exactly the utility the principal1277
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obtained in round t of the discrete-time game. Therefore the total utility Util(⇡) of this trajectory is1278

at least U? + " – but this contradicts the definition of U?, as desired.1279

We will need the following lemma which says we can restrict our attention to finite-support D without1280

loss of generality.1281

Lemma H.2. Fix a principal-agent problem, a � > 1, and an " > 0. Let D be any distribution over1282

trajectories. Then there exists a finite-support distribution D
0 over trajectories with the property that1283

Util�(D0) � Util�(D).1284

Proof. We first claim the following: if a distribution D has the property that E⇡⇠D[u
(t)
P
(⇡)] � Ut for1285

each t in the discretized set of time-intervals S",� = {1/�, 1/� + "/�, 1/� + 2"/�, . . . , 1� "/�, 1},1286

then it is the case that E⇡⇠D[u
(t)
P
(⇡)] � (U � ")t for all t 2 [1/�, 1]. This follows from the fact that1287

the principal’s profit per round is bounded above by 1, so |u
(t0)
P

(⇡)�u
(t)
P
(⇡)|  |t

0
� t|. In particular,1288

if t0 is the closest element of S�," to a t 2 [1/�, 1], it is the case that |u(t0)
P

(⇡)�u
(t)
P
(⇡)|  "/�  "t.1289

Now, associate to each trajectory ⇡ the |S",� |-tuple of real numbers f(⇡) = {u
(t)
P
(⇡)}t2S",� ; define1290

f(D) = E⇡⇠D[f(⇡)]. Define X = {f(⇡) | ⇡ is a trajectory} ⇢ R|S| to be the set of all such tuples.1291

By Caratheodory’s theorem, we can construct a distribution over at most |S| + 1 elements of X1292

that (is arbitrarily close to) f(D), for any D. If we let D0 be the corresponding distribution over1293

trajectories, this satisfies the constraints of the theorem statement.1294

H.2 Reduction from Discrete to Continuous Time with Unknown Time Horizons1295

In this section, we extend the previous reduction to the case where the time horizon can belong to an1296

interval. One of the biggest differences is the introduction of this parameter � � 1 which equals the1297

multiplicative ratio (T/T ). Instead of a trajectory ⇡ = {(pk, ⌧k, ak}K
k=1 being solely evaluated at1298

its end time T
K , we now care about its performance over its final interval of multiplicative width �,1299

namely [ 1
�
T

K
, T

K ].1300

In order to quantify the performance of a trajectory at a certain time t, we will introduce some1301

corresponding parenthetical superscript notation. In particular, u(t)
P
(⇡) will denote the cumulative1302

expected principal utility of trajectory ⇡ from time zero to t, and is formally defined as1303

u
(t)
P
(⇡) ,

(P
k
0�1

k=1 ⌧
k
uP (pk, ak) + (t� T

k
0
)uP (pk

0
, a

k
0
) if t 2 [T k

0
, T

k
0+1)

P
k
0�1

k=1 ⌧
k
uP (pk, ak) if t = T

K
.

Then, the worst-case (under possible time horizons) expected (under drawing from the distribution
and actions producing random outcomes) utility of the principal for distribution D is given by

Util�(D) = min
x2[1/�,1]

E⇡⇠D
u
(xT K)
P

(⇡)

xT K
,

where each T
K is according to the drawn trajectory ⇡.1304

Finally, let U?
�
= supD Util�(D), where the sup runs over all distributions of valid trajectories of1305

arbitrary finite length. We can think of U?
�

as the maximum possible worst-case utility of the principal1306

in the unknown time horizon continuous setting game.1307

Theorem H.3. Fix any principal-agent problem and � � 1. We have the following two results:1308

1. For any " > 0, there exists an oblivious strategy for the principal that gets at least (U?
�
�1309

")t� o(t) utility for the principal for all t 2 [T, d�T e] for sufficiently large T .1310

2. For any " > 0, there exists a mean-based algorithm A such that no (even adaptive12)1311

principal can get more than (U?
�
+ ")t + o(t) utility against an agent running A for all1312

t 2 [T, d�T e] for any T .1313

12As with the known time-horizon result, this holds against adaptive principals in the full-feedback setting, or
if the principal is deterministic. See Appendix H.3 for details.
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Proof of Theorem H.3. Part 1. Begin by picking a strategy D for the optimizer in the continuous-1314

time game that achieves utility at least U?
�
� "/2. This strategy D is a distribution over trajectories ⇡;1315

by Lemma H.2, we can assume (at the cost of losing an arbitrarily small O(") term) that D has finite1316

support. For each of these trajectories, we apply Lemma H.1 to transform ⇡ into a new trajectory ⇡01317

which obtains at least (1� ") fraction of the utility of ⇡ on non-degenerate segments. We will also1318

normalize the total duration of each ⇡0 to 1.1319

Now, note that since inequality (2) holds per segment (and indeed, even fractionally per segment), we1320

can convert each resulting trajectory ⇡0 to a discrete-time strategy over T rounds, with the property1321

that for sufficiently large values of T , for any t 2 [T = T/�, T ], the utility of this discrete-time1322

strategy until time t is at least u(t)
P
(⇡). Taking the corresponding distribution over these discrete-time1323

strategies (choosing a sufficiently large T for all such strategies – note that we can do this because D1324

has finite support), we obtain a discrete-time randomized (but otherwise oblivious) strategy for the1325

principal that satisfies the theorem statement.1326

Part 2. As in the previous proof, fix an " > 0, assume to the contrary there exists a T0 along with a1327

discrete-time (possibly randomized / adaptive) dynamic strategy which achieves at least (U?
�
+ ")t1328

utility for the principal for all t 2 [T0/�, T0] against any mean-based bidder. Construct the same1329

mean-based bidder as in the proof of part 2 of Theorem 2.4, which always picks the action in the set1330

of approximate best-responses that least to the minimum expected utility for the principal.1331

When this principal plays against this agent, this leads to a distribution over sequences of con-1332

tracts (p1, p2, . . . , pT0). Each such sequence can be converted to a trajectory ⇡ of the form1333

{(p1, 1/T0), (p2, 1/T0), . . . , (pT0 , 1/T0)}. This trajectory ⇡ not only has the property that Util(⇡)T1334

upper bounds the utility of the discrete-time agent (as in the proof of part 2 of Theorem 2.4), but1335

in fact u(t)
P
(⇡) is at least the utility of the agent discrete-time agent at time tT0 (by exactly the1336

same logic). It follows that if we let D be the distribution over such trajectories, it is the case that1337

Util�(D) � U
?
�
+ ". This contradicts the definition of U?

�
, as desired.1338

Finally, we conclude this supplementary section with the proof of a preliminary lemma exploited in1339

Section 3.11340

Lemma H.4. (Restated Lemma B.2) Consider any dynamic contract. For any time interval in which1341

a mean-based agent plays a single action, we can replace the contracts in this interval with their1342

average and obtain overall a revenue-equivalent dynamic contract.1343

Proof. The result follows since the utility for the principal uP is affine in its first argument.1344

Formally, let ⇡ = {(pk, ⌧k, ak)}K
k=1 be a dynamic contract, with a

k = a
k+1 = a for1345

some k. Consider a different contract ⇡0 where we replace the consecutive pair of segments1346

(pk, ⌧k, ak) and (pk+1
, ⌧

k+1
, a

k+1) with the their average segment, i.e., (p, ⌧k + ⌧
k+1

, a), where1347

p = (pk⌧k + p
k+1

⌧
k+1)/(⌧k + ⌧

k+1), and all other segments remain the same as in ⇡. Then,1348

we have Util(⇡0) � Util(⇡) = 1PK
k=1 ⌧k

⇣
⌧
k
uP (pk, a) + ⌧

k+1
uP (pk+1

, a) � (⌧k + ⌧
k+1)p

⌘
= 0.1349

That is, both contracts give same utility for the principal. A similar argument holds for the discrete1350

formulation of the model as well.1351

H.3 Mean-Based Algorithms in the Partial-Feedback Setting1352

We conclude with some clarifying remarks on the definition of a mean-based learning algorithm1353

in a stochastic, partial-feedback setting (the bandits setting). The proofs of Theorems 2.4 and H.31354

continue to hold essentially as written, but there are some subtleties that are worth pointing out.1355

We begin by clarifying the definition of mean-based in a partial-information setting. Formally, we1356

write it as follows. Recall that �t

i
=
P

t�1
t0=1 u

t
0

i
is equal to the expected utility the learner would1357

receive if they had played action i for the first t� 1 rounds, assuming the sequence of contracts the1358

principal offers the learner remains static (so in particular, for an adaptive / stochastic principal, �t is1359

a random variable).1360

Definition H.5. (Mean-based algorithms in partial-information settings) A learning algorithm in a1361

partial-information setting is �(T )-mean-based if the following conditions hold: Fix any adaptive1362

dynamic strategy of the principal and let (for each round t 2 [T ]), Xt be the event that �t

i
<1363
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�
t

i0 � �(T ) · T , and Yt be the event that the algorithm takes action i in round t. Then the algorithm is1364

mean based if the probability Pr[Xt^Yt] (over all randomness in the learner’s algorithm, principal’s1365

strategy, and problem setting) is at most �(T ). We say an algorithm is mean-based if it is �(T )-mean-1366

based for some �(T ) = o(1).1367

The above definition is very similar to Definition 2.2; the main reason for stating it like this is1368

to avoid implying the slightly stronger constraint that event Xt deterministically implies that the1369

probability of Yt is small conditioned on the current history of play. This implication is fine in the1370

full-information setting where algorithms like multiplicative weights will indeed deterministically1371

place small weight on action i
0 if the event Xt holds; but in the partial-information setting, there is1372

always a chance that the learner is unable to accurately observe whether Xt holds, and therefore1373

no partial-information algorithm can achieve that guarantee. On the other hand, standard bandit1374

algorithms with high-probability guarantees such as EXP3 (see [16]) satisfy the above definition of1375

mean-based learning.1376

The proof of Theorem 2.4 works equally well with Definition H.5. The only subtlety is in Part 2,1377

where to show a principal cannot do well against all mean-based agents, we design a mean-based1378

agent that foils this specific principal. If the principal is randomized and adaptive, the agent cannot1379

accurately predict the expected contract pt the principal will play in round t (note that if the principal1380

is adaptive but deterministic, the agent can still simulate the principal’s behavior – likewise, if the1381

principal is oblivious and randomized, the agent can compute the expected contract pt at any round).1382

The proof of Theorem H.3 is similar.1383

I Final Remarks1384

The following are observations about our repeated contract games with learning agents that arise1385

from our analysis and from known results on learning agents in general games.1386

Observation I.1. In the fixed contract setting, for any regret-minimizing agent in the limit T ! 11387

the support of the average empirical distribution of play includes only best-response actions with1388

probability one. Therefore, the repeated game with a static contract against a regret-minimizing1389

agent is essentially equivalent to the single-shot game against a rational agent.1390

Proof. This follows directly from the regret-minimization property. Indeed, suppose, for the sake of1391

contradiction, that there exists an action a in the support which is not a best response. Denote the1392

best-response utility by OPT . Action a is played with probability p > 0. Notice that since there is1393

only one player, the regret from any other action cannot be negative. Then we have that the regret is1394

Regret � p(OPT � u(a))T = O(T ), a contradiction.1395

Observation I.2. If the agent is using a no-swap-regret algorithm, then the optimal static contract1396

played repeatedly is also optimal in the dynamic setting. As a corollary, this is the case also for1397

general no-regret algorithms if the agent has at most two actions.1398

Proof. The result follows from [26], who show that in any game between an optimizer and a no-1399

swap-regret algorithm, the optimizer cannot extract higher payoff than the Stackelberg value of the1400

game where the optimizer plays the first move. The corollary is since with (at most) two actions1401

internal regret and external regret are equivalent.1402

Below we show that in our analysis of dynamic linear contracts, it suffices to only examine linear1403

contracts with ↵ 2 [0, 1]. Note that although this is obvious in the static setting (offering ↵ > 11404

requires the principal to suffer negative utility), it is not a priori clear that the principal cannot benefit1405

via a dynamic strategy which offers a contract with ↵ > 1 for some fraction of the time horizon1406

(perhaps counterbalancing it by offering a contract with a much smaller ↵ later on). In fact, [41]1407

show that when the agents have private information (“types”) the principal can benefit by offering a1408

randomized menu of linear contracts which possibly contains linear contracts with ↵ > 1.1409

Nonetheless, we show that the principal cannot benefit by doing this in the dynamic setting. The1410

proof below follows from a slight modification of Lemma B.3 in our proof of Theorem 3.1.1411

Observation I.3. Let ⇡ = {(↵k
, ⌧

k
, a

k)K
k=1} be any linear dynamic contract with some linear1412

contract ↵i
> 1. Then there exists a dynamic linear contract ⇡0 = {(↵k

, ⌧
k
, a

k)}K
k=1 with Util(⇡0) �1413

Util(⇡) and where ↵k
 1 for all k.1414
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Proof. We first observe that in Lemma B.3, when an agent is indifferent between actions i and i+ 11415

then the change in utility for the principal by choosing an action i + 1 over i is proportional to1416

(1� ↵
i). This is negative if ↵i

> 1 and therefore the principal will prefer to agent to play action i1417

when ↵i
> 1. However if ↵i

< 1 , then the principal will prefer that the agent play action i+1. Thus1418

in this modified rewriting lemma, contracts with breakpoints greater than 1, will prefer the lower1419

action and breakpoints lower than 1, will prefer the higher action. By modifying Lemma B.3, we can1420

rewrite any linear contract ⇡ using the rewriting rules of Theorem 3.1 into a new linear contract ⇡01421

with a breakpoints that are at most 1, without any loss in utility.1422

J Conclusion1423

In this paper, we provide a clean and tractable answer to our main question. When the agent’s choice1424

among n actions can lead to the success or failure of a project, the principal’s optimal dynamic1425

contract is surprisingly simple. Specifically, the principal should offer a carefully designed contract1426

for a certain fraction of the T rounds (both the contract and the fraction are poly-time computable),1427

then switch to a zero contract (i.e., pay the agent nothing) for the remaining rounds. Our main result1428

also generalizes to settings with a rich set of outcomes beyond success/failure, as long as the principal1429

changes the contract dynamically by scaling it (“single-dimensional scaling”). However, we show1430

that without this single-dimensional scaling restriction, there exist principal-agent instances where1431

the optimal dynamic contract does not take this form. In these cases, with non-linear contracts, the1432

principal can do strictly better than offering the same contract for several rounds before switching to1433

a zero contract.1434

As our second main result, we address a significant gap in the current literature on optimizing against1435

no-regret learners: the assumption that the optimizer knows the time horizon T . We show that when1436

there is uncertainty about T , even if limited, the principal’s ability to use dynamic contracts to1437

guarantee more revenue than the optimal static contract diminishes. We characterize the optimal1438

dynamic contract under uncertainty of T , demonstrating that the principal’s added value from being1439

dynamic sharply degrades with an appropriate measure of uncertainty.1440

Open Problems. The computational study of repeated contracts, particularly with learning agents,1441

raises many open questions. These include determining the optimal dynamic contract when the1442

principal is not restricted to one-dimensional dynamics, and the computational complexity of finding1443

it. Additionally, it involves identifying the optimal dynamic contract against a learning agent with a1444

hidden type, thereby unifying our contract model with the auction model of [14]. Another intriguing1445

area is understanding what the optimal dynamic contract would be against a team of multiple learning1446

agents. Finally, it is crucial to explore the effects on welfare and utilities when there are two learning1447

players, rather than a learner and an optimizer.1448
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-1516

perimental results of the paper to the extent that it affects the main claims and/or conclusions1517

of the paper (regardless of whether the code and data are provided or not)?1518

Answer: [NA]1519

Justification: We are a purely theoretical paper and do not include any experiments.1520

Guidelines:1521

• The answer NA means that the paper does not include experiments.1522

• If the paper includes experiments, a No answer to this question will not be perceived1523

well by the reviewers: Making the paper reproducible is important, regardless of1524

whether the code and data are provided or not.1525

• If the contribution is a dataset and/or model, the authors should describe the steps taken1526

to make their results reproducible or verifiable.1527

• Depending on the contribution, reproducibility can be accomplished in various ways.1528

For example, if the contribution is a novel architecture, describing the architecture fully1529

might suffice, or if the contribution is a specific model and empirical evaluation, it may1530

be necessary to either make it possible for others to replicate the model with the same1531

dataset, or provide access to the model. In general. releasing code and data is often1532

one good way to accomplish this, but reproducibility can also be provided via detailed1533

instructions for how to replicate the results, access to a hosted model (e.g., in the case1534

of a large language model), releasing of a model checkpoint, or other means that are1535

appropriate to the research performed.1536

• While NeurIPS does not require releasing code, the conference does require all submis-1537

sions to provide some reasonable avenue for reproducibility, which may depend on the1538

nature of the contribution. For example1539

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1540

to reproduce that algorithm.1541

(b) If the contribution is primarily a new model architecture, the paper should describe1542

the architecture clearly and fully.1543

(c) If the contribution is a new model (e.g., a large language model), then there should1544

either be a way to access this model for reproducing the results or a way to reproduce1545

the model (e.g., with an open-source dataset or instructions for how to construct1546

the dataset).1547

(d) We recognize that reproducibility may be tricky in some cases, in which case1548

authors are welcome to describe the particular way they provide for reproducibility.1549

In the case of closed-source models, it may be that access to the model is limited in1550

some way (e.g., to registered users), but it should be possible for other researchers1551

to have some path to reproducing or verifying the results.1552

5. Open access to data and code1553
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Question: Does the paper provide open access to the data and code, with sufficient instruc-1554

tions to faithfully reproduce the main experimental results, as described in supplemental1555

material?1556

Answer: [NA]1557

Justification: This paper does not include any experiments requiring code.1558

Guidelines:1559

• The answer NA means that paper does not include experiments requiring code.1560

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1561

public/guides/CodeSubmissionPolicy) for more details.1562

• While we encourage the release of code and data, we understand that this might not be1563

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1564

including code, unless this is central to the contribution (e.g., for a new open-source1565

benchmark).1566

• The instructions should contain the exact command and environment needed to run to1567

reproduce the results. See the NeurIPS code and data submission guidelines (https:1568

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1569

• The authors should provide instructions on data access and preparation, including how1570

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1571

• The authors should provide scripts to reproduce all experimental results for the new1572

proposed method and baselines. If only a subset of experiments are reproducible, they1573

should state which ones are omitted from the script and why.1574

• At submission time, to preserve anonymity, the authors should release anonymized1575

versions (if applicable).1576

• Providing as much information as possible in supplemental material (appended to the1577

paper) is recommended, but including URLs to data and code is permitted.1578

6. Experimental Setting/Details1579

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1580

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1581

results?1582

Answer: [NA]1583

Justification: We are a purely theoretical paper and do not include any experiments.1584

Guidelines:1585

• The answer NA means that the paper does not include experiments.1586

• The experimental setting should be presented in the core of the paper to a level of detail1587

that is necessary to appreciate the results and make sense of them.1588

• The full details can be provided either with the code, in appendix, or as supplemental1589

material.1590

7. Experiment Statistical Significance1591

Question: Does the paper report error bars suitably and correctly defined or other appropriate1592

information about the statistical significance of the experiments?1593

Answer: [NA]1594

Justification: We are a purely theoretical paper and do not include any experiments.1595

Guidelines:1596

• The answer NA means that the paper does not include experiments.1597

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1598

dence intervals, or statistical significance tests, at least for the experiments that support1599

the main claims of the paper.1600

• The factors of variability that the error bars are capturing should be clearly stated (for1601

example, train/test split, initialization, random drawing of some parameter, or overall1602

run with given experimental conditions).1603

• The method for calculating the error bars should be explained (closed form formula,1604

call to a library function, bootstrap, etc.)1605
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• The assumptions made should be given (e.g., Normally distributed errors).1606

• It should be clear whether the error bar is the standard deviation or the standard error1607

of the mean.1608

• It is OK to report 1-sigma error bars, but one should state it. The authors should1609

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1610

of Normality of errors is not verified.1611

• For asymmetric distributions, the authors should be careful not to show in tables or1612

figures symmetric error bars that would yield results that are out of range (e.g. negative1613

error rates).1614

• If error bars are reported in tables or plots, The authors should explain in the text how1615

they were calculated and reference the corresponding figures or tables in the text.1616

8. Experiments Compute Resources1617

Question: For each experiment, does the paper provide sufficient information on the com-1618

puter resources (type of compute workers, memory, time of execution) needed to reproduce1619

the experiments?1620

Answer: [NA]1621

Justification: The paper does not include experiments.1622

Guidelines:1623

• The answer NA means that the paper does not include experiments.1624

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1625

or cloud provider, including relevant memory and storage.1626

• The paper should provide the amount of compute required for each of the individual1627

experimental runs as well as estimate the total compute.1628

• The paper should disclose whether the full research project required more compute1629

than the experiments reported in the paper (e.g., preliminary or failed experiments that1630

didn’t make it into the paper).1631

9. Code Of Ethics1632

Question: Does the research conducted in the paper conform, in every respect, with the1633

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1634

Answer: [Yes]1635

Justification: The paper does not use humans or data. The authors do not believe the listed1636

potential harmful societal impacts apply.1637

Guidelines:1638

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1639

• If the authors answer No, they should explain the special circumstances that require a1640

deviation from the Code of Ethics.1641

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1642

eration due to laws or regulations in their jurisdiction).1643

10. Broader Impacts1644

Question: Does the paper discuss both potential positive societal impacts and negative1645

societal impacts of the work performed?1646

Answer: [NA]1647

Justification: The work is purely theoretical and works in an abstract setting and has no1648

immediate or forseeable impact to society.1649

Guidelines:1650

• The answer NA means that there is no societal impact of the work performed.1651

• If the authors answer NA or No, they should explain why their work has no societal1652

impact or why the paper does not address societal impact.1653

• Examples of negative societal impacts include potential malicious or unintended uses1654

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1655

(e.g., deployment of technologies that could make decisions that unfairly impact specific1656

groups), privacy considerations, and security considerations.1657
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• The conference expects that many papers will be foundational research and not tied1658

to particular applications, let alone deployments. However, if there is a direct path to1659

any negative applications, the authors should point it out. For example, it is legitimate1660

to point out that an improvement in the quality of generative models could be used to1661

generate deepfakes for disinformation. On the other hand, it is not needed to point out1662

that a generic algorithm for optimizing neural networks could enable people to train1663

models that generate Deepfakes faster.1664

• The authors should consider possible harms that could arise when the technology is1665

being used as intended and functioning correctly, harms that could arise when the1666

technology is being used as intended but gives incorrect results, and harms following1667

from (intentional or unintentional) misuse of the technology.1668

• If there are negative societal impacts, the authors could also discuss possible mitigation1669

strategies (e.g., gated release of models, providing defenses in addition to attacks,1670

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1671

feedback over time, improving the efficiency and accessibility of ML).1672

11. Safeguards1673

Question: Does the paper describe safeguards that have been put in place for responsible1674

release of data or models that have a high risk for misuse (e.g., pretrained language models,1675

image generators, or scraped datasets)?1676

Answer: [NA]1677

Justification: The paper is purely abstract and theoretical and has no foreseeable risk for1678

misuse.1679

Guidelines:1680

• The answer NA means that the paper poses no such risks.1681

• Released models that have a high risk for misuse or dual-use should be released with1682

necessary safeguards to allow for controlled use of the model, for example by requiring1683

that users adhere to usage guidelines or restrictions to access the model or implementing1684

safety filters.1685

• Datasets that have been scraped from the Internet could pose safety risks. The authors1686

should describe how they avoided releasing unsafe images.1687

• We recognize that providing effective safeguards is challenging, and many papers do1688

not require this, but we encourage authors to take this into account and make a best1689

faith effort.1690

12. Licenses for existing assets1691

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1692

the paper, properly credited and are the license and terms of use explicitly mentioned and1693

properly respected?1694

Answer: [NA]1695

Justification: The paper does not use existing assets.1696

Guidelines:1697

• The answer NA means that the paper does not use existing assets.1698

• The authors should cite the original paper that produced the code package or dataset.1699

• The authors should state which version of the asset is used and, if possible, include a1700

URL.1701

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1702

• For scraped data from a particular source (e.g., website), the copyright and terms of1703

service of that source should be provided.1704

• If assets are released, the license, copyright information, and terms of use in the1705

package should be provided. For popular datasets, paperswithcode.com/datasets1706

has curated licenses for some datasets. Their licensing guide can help determine the1707

license of a dataset.1708

• For existing datasets that are re-packaged, both the original license and the license of1709

the derived asset (if it has changed) should be provided.1710
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• If this information is not available online, the authors are encouraged to reach out to1711

the asset’s creators.1712

13. New Assets1713

Question: Are new assets introduced in the paper well documented and is the documentation1714

provided alongside the assets?1715

Answer: [NA]1716

Justification: The paper does not release new assets.1717

Guidelines:1718

• The answer NA means that the paper does not release new assets.1719

• Researchers should communicate the details of the dataset/code/model as part of their1720

submissions via structured templates. This includes details about training, license,1721

limitations, etc.1722

• The paper should discuss whether and how consent was obtained from people whose1723

asset is used.1724

• At submission time, remember to anonymize your assets (if applicable). You can either1725

create an anonymized URL or include an anonymized zip file.1726

14. Crowdsourcing and Research with Human Subjects1727

Question: For crowdsourcing experiments and research with human subjects, does the paper1728

include the full text of instructions given to participants and screenshots, if applicable, as1729

well as details about compensation (if any)?1730

Answer: [NA]1731

Justification: The project neither involves crowdsourcing nor research with human subjects.1732

Guidelines:1733

• The answer NA means that the paper does not involve crowdsourcing nor research with1734

human subjects.1735

• Including this information in the supplemental material is fine, but if the main contribu-1736

tion of the paper involves human subjects, then as much detail as possible should be1737

included in the main paper.1738

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1739

or other labor should be paid at least the minimum wage in the country of the data1740

collector.1741

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1742

Subjects1743

Question: Does the paper describe potential risks incurred by study participants, whether1744

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1745

approvals (or an equivalent approval/review based on the requirements of your country or1746

institution) were obtained?1747

Answer: [NA]1748

Justification: The project neither involves crowdsourcing nor research with human subjects.1749

Guidelines:1750

• The answer NA means that the paper does not involve crowdsourcing nor research with1751

human subjects.1752

• Depending on the country in which research is conducted, IRB approval (or equivalent)1753

may be required for any human subjects research. If you obtained IRB approval, you1754

should clearly state this in the paper.1755

• We recognize that the procedures for this may vary significantly between institutions1756

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1757

guidelines for their institution.1758

• For initial submissions, do not include any information that would break anonymity (if1759

applicable), such as the institution conducting the review.1760
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