
A Appendix208

A.1 Representation alignment in InfoNCE with cosine similarity209

Pointwise mutual information (PMI) is a measurement of association that compares the probability of210

two events x and x′ happening jointly with their probability of happening independently, defined as:211

PMI(x, x′) = log
p(x, x′)

p(x)p(x′)
= log

p(x′|x)
p(x′)

(4)

PMI values reflect, in log scale, the likelihood of observing x′ having observed x relative to212

otherwise. In the case of synthetic augmentation, p(x′|x) ≫ p(x′) if x′ is an augmentation of x,213

and p(x′|x) = 0 otherwise, hence PMI(x, x′) is a small positive value reflective of the number of214

augmentations, e.g. 5, or unboundedly negative.215

216

The InfoNCE(17) objective is optimised when representations z, z′ of samples x, x′ satisfy217

sim(z, z′) = PMI(x, x′) + c(x), where sim(·) is the similarity function, e.g. cosine similar-218

ity (sim(z, z′) = zT z
||z||2||z′||2 ), and c is a scalar that can vary with x. Us of the bounded popular219

cosine similarity function restricts the ability for the optimality condition to be reached, instead220

the optimization of this restricted InfoNCE objective leads to representations of similar data being221

aligned (z = z′) and representations of dissimilar data being maximally dispersed.222

A.2 Relationship between Representations and PMI223

When considering why representations learned by InfoNCE are useful, which intuitively pertains to224

the information they capture, the fact that the loss function is optimised when representations satisfy225

a relationship to pointwise mutual information seems highly relevant (§2). Even more so, since an226

analogous relationship underpins properties of word2vec learned word embeddings (§2). However,227

several further observations undermine this natural line of thought:228

(i) Closer approximations of mutual information do not appear to improve representations (21);229

(ii) As discussed in §3.1, employing cosine similarity sim(x,x’)= zT z′

|z||z′| ∈ [−1, 1] often leads to230

better downstream performance than using unbounded similarity functions, e.g. dot product,231

even though PMI values can fall far outside the bounded range [-1,1]; and232

(iii) Several recent self-supervised methods take a different contrastive approach, with the aim of233

circumventing negative sampling, showing no clear relationship to PMI and yet perform well234

(1).235

A.3 Objective derivation236

Let x = {x1, ..., xj}, with j ≤ N , be a set of N samples generated through augmentations, as237

described in section A.4. Let θ = {θx, θz, π} and ϕ = {ϕz, ϕy} be parameters of the model and238

approximate posterior, respectively. We derive the Evidence Lower Bound (ELBO) used as the239

SimVAE optimization objective and described in section 3.2 as:240
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min
θ

DKL[ p(x) ∥ pθ(x) ] = max
θ

E
x

[
log pθ(x)

]
= max

θ,ϕ
E
x

[∫
z

∑
y

qϕ(y, z|x) log pθ(x)
]

= max
θ,ϕ

E
x

[∫
z

∑
y

qϕ(y, z|x) log pθ(x) qϕ(y,z|x)qϕ(y,z|x)

]
= max

θ,ϕ
E
x

[∫
z

∑
y

qϕ(y, z|x) log pθx(x|z)pθz(z|y)pπ(y)
pθ(y,z|x)

qϕ(y,z|x)
qϕ(y,z|x)

]
= max

θ,ϕ
E
x

[∫
z

∑
y

qϕ(y, z|x) log pθx(x|z)pθz(z|y)pπ(y)
qϕ(y,z|x)

]
+DKL[ qϕ(y, z|x) ∥ pθ(y, z|x) ]

≥ max
θ,ϕ

E
x

[∫
z

∑
y

qϕ(y, z|x) log pθx(x|z)pθz(z|y)pπ(y)
qϕ(y,z|x)

]
= max

θ,ϕ
E
x

[∫
z

∑
y

qϕz(z|x)pϕy (y|z) log
pθx(x|z)pθz(z|y)pπ(y)

qϕz(z|x)qϕy(y|z)

]
= max

θ,ϕ
E
x

[∫
z

qϕz(z|x)
{
log

pθx(x|z)
qϕz(z|x)

+
∑
y

qϕy(y|z) log
pθz(z|y)pπ(y)

qϕy(y|z)
}]

= max
θ,ϕ

E
x

∫
z

qϕz
(z|x) log pθx(x|z)︸ ︷︷ ︸

−recon(x)

−
∫
z

qϕz
(z|x) log qϕz

(z|x)︸ ︷︷ ︸
Hqϕ(z|x)

+

∫
z

qϕz
(z|x)

∑
y

pπ,θz(y|z) log pθz(z|y)pπ(y)

where recon(·) refers to the reconstruction loss, H to the entropy and DKL to the KL-divergence. In241

the last step, we use maxϕy qϕy (y|z) = pπ,θz(y|z)
.
=

pθz(z|y)pπ(y)∑
y′ pθz(z|y′)pπ(y′) using Bayes’ rule since y242

is assumed to be discrete in this case. In the setting with N = 2 related samples, x = {x, x′}, the243

SimVAE objective can be formulated as:244

min
θ

DKL[ p(x) ∥ pθ(x) ] ≥ max
θ,ϕ

E
x

∫
z

qϕ(z|x) log pθx(x|z)︸ ︷︷ ︸
−recon(x)

+

∫
z′
qϕ(z

′|x′) log pθx(x
′|z′)︸ ︷︷ ︸

−recon(x′)

−
∫
z

qϕ(z|x) log qϕ(z|x)︸ ︷︷ ︸
Hqϕ(z|x)

−
∫
z′
qϕ(z

′|x′) log qϕ(z
′|x′)︸ ︷︷ ︸

Hqϕ(z′|x′)

+

∫
z

qϕ(z|x)
∑
y

pπ,θz(y|z) log pθz(z|y)pπ(y)

Algorithm 1 provides an overview of the main computational steps required for the training of the245

SimVAE evidence lower bound detailed above.246
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Algorithm 1 SimVAE

Require: data {xk}Mk=1; batch size N ; data dimension D; augmentation set T ; latent dimension L;
number of augmentations A; encoder network fϕ; decoder network gθ; prior variance {σ∗

l }Ll=1

for randomly sampled mini-batch {xk}Nk=1 do
# augment mini-batch
{ta}Aa=1 ∼ T ;

{xa
k}Aa=1 = {ta(xk)}Aa=1;

# forward pass : z ∼ p(z|x), x̃ ∼ p(x|z)
{(µa

k,Σ
a
k) = fϕ(x

a
k)}Aa=1;

{zak ∼ N (µa
k,Σ

a
k)}Aa=1;

{x̃a
k = gθ(z

a
k)}Aa=1;

# compute & minimize loss terms
Lk

rec =
1

σND

∑A
a=1

∑D
d=1(x

a
k,d − x̃a

k,d)
2

Lk
H = L log(2πe) + 1

2

∑A
a=1 log(|Σa

k|)
µ∗

k = 1
A

∑A
a=1 z

a
k

Lk
prior = N +AL log (

√
2π) +A

∑L
l=1 log (σ∗

l ) +
∑A

a=1

∑L
l=1

1
2σ∗

l
(zak,l − µ∗

k,l)
2

min(L = 1
N

∑N
k=1 Lk

rec + Lk
H + Lk

prior) w.r.t ϕ,θ by SGD;

end for
return ϕ,θ;

247

A.4 Experimental Details248

A.4.1 Datasets249

FashionMNIST The FashionMNIST dataset (24) is a collection of 60’000 training and 10’000 test250

images depicting Zalando clothing items (i.e., t-shirts, trousers, pullovers, dresses, coats, sandals,251

shirts, sneakers, bags and ankle boots). Images were kept to their original 28x28 pixel resolution.252

The 10-class clothing type classification task was used for evaluation.253

CIFAR10 The CIFAR10 dataset (14) offers a compact dataset of 60,000 (50,000 training and 10,000254

testing images) small, colorful images distributed across ten categories including objects like airplanes,255

cats, and ships, with various lighting conditions. Images were kept to their original 32x32 pixel256

resolution.257

Celeb-A The Celeb-A dataset (15) comprises a vast collection of celebrity facial images. It encom-258

passes a diverse set of 183’000 high-resolution images (i.e., 163’000 training and 20’000 test images),259

each depicting a distinct individual. The dataset showcases a wide range of facial attributes and poses260

and provides binary labels for 40 facial attributes including hair & skin color, presence or absence of261

attributes such as eyeglasses and facial hair. Each image was cropped and resized to a 64x64 pixel262

resolution. Attributes referring to hair color were aggregated into a 5-class attribute (i.e., bald, brown263

hair, blond hair, gray hair, black hair). Images with missing or ambiguous hair color information264

were discarded at evaluation.265

All datasets were sourced from Pytorch’s dataset collection.266

A.4.2 Data augmentation strategy267

Taking inspiration from SimCLR’s (3) augmentation strategy which highlights the importance of ran-268

dom image cropping and color jitter on downstream performance, our augmentation strategy includes269

random image cropping, random image flipping and random color jitter. The color augmentations are270

only applied to the non gray-scale datasets (i.e., CIFAR10 (14) & Celeb-A dataset (15)). Due to the271

varying complexity of the datasets we explored, hyperparameters such as the cropping strength were272

9



adapted to each dataset to ensure that semantically meaningful features remained after augmentation.273

The augmentation strategy hyperparameters used for each dataset are detailed in table 3.

Dataset Crop Vertical Flip Color Jitter
scale ratio prob. b-s-c hue prob.

MNIST 0.4 [0.75,1.3] 0.5 - - -
Fashion 0.4 [0.75,1.3] 0.5 - - -
CIFAR10 0.6 [0.75,1.3] 0.5 0.8 0.2 0.8
Celeb-A 0.6 [0.75,1.3] 0.5 0.8 0.2 0.8

Table 3: Data augmentation strategy for each dataset: (from left to right)
cropping scale, cropping ratio, probability of vertical and horizontal
flipping, brightness-saturation-contrast jitter strength, hue jitter strength,
probability of color jitter

274

A.4.3 Training Implementation Details275

This section contains all details regarding the architectural and optimization design choices used to276

train SimVAE and all baselines. Method-specific hyperparameters are also reported below.277

Datasets and Evaluation Metrics We evaluated SimVAE on three benchmark datasets including two278

with natural images: FashionMNIST (24), Celeb-A (15) and CIFAR10 (14). We augment images279

following the SimCLR (3) protocol which includes cropping and flipping as well as color jitter for280

natural images. We evaluate representations’ utility for downstream classification tasks using a linear281

probe, a non-linear MLP probe, and k-nearest neighbors (kNN) (4) trained on the pre-trained frozen282

representations using image labels (3; 2). Additionally, we conducted a fully unsupervised evaluation283

by fitting a Gaussian mixture model (GMM) to the frozen features for which the number of clusters284

was set to its ground-truth value. Downstream performance is measured in terms of classification285

accuracy (CA). A model’s generative quality was evaluated using the Fréchet Inception Distance286

(FID) (9), reconstruction error as well as the Normalized Mutual Information (NMI) and Adjusted287

Rank Index (ARI) clustering scores (see appendix A.5).288

Baselines methods We compare SimVAE to other VAE-based models including the vanilla VAE (13),289

β-VAE (10) and CR-VAE (19), as well as to state-of-the-art self-supervised discriminative methods290

including SimCLR (3), VicREG (1), and MoCo (8). As a lower bound, we also provide results291

obtained for randomly initialized embeddings. To ensure fair comparison, the augmentation strategy,292

representation dimensionality, batch size, and encoder-decoder architectures were kept invariant293

across methods. To enable a qualitative comparison of representations, decoder networks were trained294

for each discriminative baseline on top of frozen representations using the reconstruction error. See295

appendices A.4.3 and A.4.4 for further details on training baselines and decoder models.296

Hyperparameters We use MLP and Resnet18 (7) network architectures for simple and natural image297

datasets respectively. We fix the dimension of representations z to 10 for FashionMNIST, and to 64 for298

Celeb-A and CIFAR10 datasets. For all generative approaches, we adopt Gaussian posteriors, priors,299

and likelihoods, employing diagonal covariance matrices as in (13). We fix covariances of the prior300

and likelihood distributions and perform a hyper-parameter search. SimVAE conveniently allows for301

the simultaneous incorporation of sets of related observations. After tuning, we fix the number of302

augmentations to 6 (see Figure 4 for an ablation). For baselines, all sensitive hyperparameters were303

tuned independently for each dataset and method.304

Network Architectures The encoder network architectures used for SimCLR, MoCo, VicReg, and305

VAE-based approaches including SimVAE for simple (i.e., FashionMNIST ) and complex datasets306

(i.e., CIFAR10, Celeb-A) are detailed in table 4a, table 5a respectively. Generative models which307

include all VAE-based methods also require decoder networks for which the architectures are detailed308

in table 4b and table 5b. The encoder and decoder architecture networks are kept constant across309

methods including the latent dimensionality to ensure a fair comparison across methods.310

Optimisation & Hyper-parameter tuning All methods were trained using an Adam optimizer until311

training loss convergence. A learning rate tuning was performed for each method independently312
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Layer Name Output Size Block Parameters

fc1 500 784x500 fc, relu
fc2 500 500x500 fc, relu
fc3 2000 500x2000 fc, relu
fc4 10 2000x10 fc

(a) Encoder

Layer Name Output Size Block Parameters

fc1 2000 10x2000 fc, relu
fc2 500 2000x500 fc, relu
fc3 500 500x500 fc, relu
fc4 784 500x784 fc

(b) Decoder

Table 4: Multi-layer perceptron network architectures used for FashionMNIST training

Layer Name Output Block Parameters

conv1 32x32 4x4, 16, stride 1
batchnorm, relu
3x3 maxpool, stride 2

conv2 x 32x32 3x3, 32, stride 1
3x3, 32, stride 1

conv3 x 16x16 3x3, 64, stride 2
3x3, 64, stride 1

conv4 x 8x8 3x3, 128, stride 2
3x3, 128, stride 1

conv5 x 4x4 3x3, 256, stride 2
3x3, 256, stride 1

fc 64 4096x64 fc

(a) Encoder

Layer Name Output Block Parameters

fc 256x4x4 64x4096 fc

conv1 x 8x8 3x3, 128, stride 2
3x3, 128, stride 1

conv2 x 16x16 3x3, 64, stride 2
3x3, 64, stride 1

conv3 x 32x32 3x3, 32, stride 2
3x3, 32, stride 1

conv4 x 64x64 3x3, 16, stride 2
3x3, 16, stride 1

conv5 64x64 5x5, 3, stride 1

(b) Decoder

Table 5: Resnet18 network architectures used for CIFAR10 & Celeb-A training

across the range 1e−3 to 8e−5. A fixed batch size of 128 was used across methods and datasets. The313

β, τ , λ parameters for the β-VAE, SimCLR and CRVAE methods were tuned across the [0.1,0.2,0.5],314

[0.1,0.5,1.0] and [0.01,0.1,1.0] ranges respectively based on downstream performance. β = 0.1,315

λ = 0.01 were selected and τ = 1.0, τ = 0.5 were chosen for simple and natural datasets respectively.316

The likelihood probability variance for VAE-based methods including SimVAE was kept to σ2 = 1.0317

and the prior probability, p(z|y), variance parameter for SimVAE was tuned and fixed to 0.003, 0.005,318

0.005 for FashionMNIST, CIFAR10 and Celeb-A respectively.319

A.4.4 Evaluation Implementation Details320

Following common practices (3), downstream performance is assessed using a linear probe, a multi-321

layer perceptron probe, a k-nearest neighbors (kNN) algorithm, and a Gaussian mixture model322

(GMM). The linear probe consists of a fully connected layer whilst the mlp probe consists of two323

fully connected layers with a relu activation for the intermediate layer. Both probes were trained324

using an Adam optimizer with a learning rate of 3e-4 for 200 epochs with batch size fixed to 128.325

Scikit-learn’s Gaussian Mixture model with a full covariance matrix and 200 initialization was fitted326

to the representations using the ground truth cluster number. The kNN algorithm from Python’s327

Scikit-learn library was used with k spanning from 1 to 15 neighbors. The best performance was328

chosen as the final performance measurement. No augmentation strategy was used at evaluation.329

A.4.5 Generation Protocol330

In this section, we detail the image generation protocol as well as the evaluation of the quality of the331

generated samples.332
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Ad-hoc decoder training VAE-based approaches, including SimVAE, are fundamentally generative333

methods aimed at approximating the logarithm of the marginal likelihood distribution, denoted as334

log p(x). In contrast, most traditional self-supervised methods adopt a discriminative framework335

without a primary focus on accurately modeling p(x). However, for the purpose of comparing336

representations, and assessing the spectrum of features present in z, we intend to train a decoder337

model for SimCLR & VicReg models. This decoder model is designed to reconstruct images from the338

fixed representations initially trained with these approaches. To achieve this goal, we train decoder339

networks using the parameter configurations specified in Tables 4b and 5b, utilizing the mean squared340

reconstruction error as the loss function. The encoder parameters remain constant, while we update341

the decoder parameters using an Adam optimizer with a learning rate of 1e−4 until convergence is342

achieved (i.e. ∼ 200 epochs).343

Conditional Image Generation To allow for a fair comparison, all images across all methods are344

generated by sampling z from a multivariate Gaussian distribution fitted to the training samples’345

representations. More precisely, each Gaussian distribution is fitted to z conditioned on a label y.346

Scikit-Learn Python library Gaussian Mixture model function (with full covariance matrix) is used.347

A.5 Additional Results348

A.5.1 Self-supervised classification349

Clustering metrics Table 6 and table 7 report the normalized mutual information (NMI) and adjusted350

rank index (ARI) for the fitting of a GMM to latent representations z.351

Dataset Random VAE β-VAE CR-VAE SimVAE

Fashion ARI 28.7± 0.6 44.2± 1.1 44.7± 0.2 23.3± 0.8 55.7± 0.0

NMI 51.5± 0.2 66.7± 0.7 66.4± 0.4 46.1± 2.2 76.8± 0.2

Celeb-A ARI 3.4± 0.3 5.7± 0.2 6.2± 0.7 6.6± 0.9 2.6± 0.7

NMI 4.2± 0.4 3.9± 0.2 4.7± 0.9 5.0± 0.7 2.9± 0.7

CIFAR10 ARI 0.09± 0.0 0.7± 0.2 0.7± 0.2 0.9± 0.1 8.6± 0.3

NMI 27.9± 0.1 17.7± 0.5 18.7± 0.3 18.9± 0.1 37.2± 0.4

Table 6: Normalized mutual information (NMI) and Adjusted Rank Index (ARI) for all generative
methods and datasets; Average scores and standard errors are computed across three random seeds

Dataset MoCo VicReg SimCLR

Fashion ARI 30.9± 0.5 37.1± 1.3 50.3± 1.9

NMI 50.4± 0.6 64.5± 0.7 71.2± 1.0

Celeb-A ARI − 18.7± 0.8 0.0± 0.1

NMI − 24.3± 0.3 0.0± 0.0

CIFAR10 ARI 27.2± 1.0 31.2± 0.2 49.6± 1.3

NMI 16.5± 0.4 53.4± 0.1 26.9± 0.8

Table 7: Normalized mutual information (NMI) and Adjusted Rank Index (ARI) for all discriminative
baselines and datasets; Average scores and standard errors are computed across three random seeds

Augmentation Protocol Strength Figure 3 reports the downstream CA across methods for various352

augmentations stategy. More precisely, we progressively increase the cropping scale and color jitter353

amplitude. Unsurprinsingly (3), discriminative methods exhibit high sensitivity to the augmentation354

strategy with stronger disruption leading to improved content prediction. The opposite trend is355

observed with vanilla generative methods where reduced variability amongst the data leads to356

increased downstream performance. Interestingly, SimVAE is robust to augmentation protocol and357

performs comparably across settings.358
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Figure 3: Ablation experiment across the number of augmentations considered during training of the
SimVAE model using the MNIST (left) and FashionMNIST (right) datasets. Two, four, six and eight
augmentations were considered. The average and standard deviation of the downstream classification
accuracy using KNN and GMM probes are reported across three seeds.

# Augmentation Ablation Figure 4 reports the downstream classification accuracy for increasing359

numbers of augmentations considered simultaneously during the training of SimVAE. A larger number360

of augmentations result in a performance increase up to a certain limit (i.e., 6-8 augmentations).361

Further exploration is needed to understand how larger sets of augmentations can be effectively362

leveraged potentially by allowing for batch size increase.363

Figure 4: Ablation experiment across the number of augmentations considered during training of the
SimVAE model using the MNIST (left) and FashionMNIST (right) datasets. Two, four, six and eight
augmentations were considered. The average and standard deviation of the downstream classification
accuracy using KNN and GMM probes are reported across three seeds. Batch size of 128 for all
reported methods and number of augmentations.

A.5.2 Image Generation364

In this section, we explore and report the quality of images generated through SimVAE and all365

considered baselines through visualisations (for VAE-based approaches only) and quantitative366

measurements.367

368

Generated Images Figure 5 report examples of randomly generated images for each digit class and369

clothing item using the SimVAE trained on MNIST and FashionMNIST respectively.370
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Figure 5: Conditional sampling for each one of the FashionMNIST clothing type using pre-trained
SimVAE model

RE FID NLL

Fashion

VAE 4.4± 0.1 99.4± 0.6 5696.5± 0.1

β-VAE 4.6± 0.1 99.9± 0.7 5696.7± 0.1

CR-VAE 4.3± 0.0 98.7± 0.0 5696.7± 0.0

SimVAE 3.4± 0.1 96.1± 1.0 5695.6± 0.0

Celeb-A

VAE 56.6± 0.2 162.9± 2.8 −
β-VAE 60.3± 1.0 163.8± 2.3 −
CR-VAE 57.4± 0.1 159.3± 5.4 −
SimVAE 35.3± 0.2 157.8± 2.3 −

CIFAR10

VAE 21.4± 0.2 365.4± 3.3 22330.8± 0.2

β-VAE 22.3± 0.2 376.7± 1.7 22327.7± 0.2

CR-VAE 22.5± 0.0 374.4± 0.4 22327.3± 0.8

SimVAE 22.1± 0.1 349.9± 2.1 22327.3± 0.2

Table 8: Generation quality evaluation of all generative methods across three
random seeds: (from left to right) mean squared reconstruction error (RE, ↓),
fréchet inception distance (FID, ↓), negative log-likelihood (NLL,↓)

Generative quality Table 8 reports the FID scores, reconstruction error and approximate negative371

log-likelihoods using 1000 importance-weighted samples for all generative baselines and SimVAE.372
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