
Supplementary Material for366

Compositional Diffusion-Based Continuous Constraint Solvers367

Three videos are included in the supplementary directory:368

1. csp solve task1 triangle packing.mp4 and csp solve task4 robot packing.mp4369

are execution videos of solutions generated by our model Diffusion-CCSP.370

2. data gen task3 stability.mp4 shows the data generation simulation for task 3.371

The appendix includes two sections. Appendix A discusses how to integrate Diffusion-CCSP for372

CCSP solving with task and motion planning (TAMP) algorithms. Appendix B details how our373

datasets are collected for each task and how the inputs are encoded for diffusion models. Appendix C374

includes further experiments on the number of samples it take Diffusion-CCSP to solve problems in375

each task.376

A Integration with Task and Motion Planning Algorithms377

So far, we have presented a generic solution to solving constraint satisfaction problems that involve378

geometric and physical constraints. However, assuming that the constraint graph is given as input to379

the algorithm. This approach can be directly used to solve particular tasks such as the pose prediction380

task in object rearrangements. Next, we illustrate how the proposed method can be integrated with a381

search algorithm to solve general task and motion planning (TAMP) problems, where the constraint382

graphs are automatically constructed based on the sequence of actions that has been applied and383

the goal specification of the task. For brevity, we will present a simplified formulation of TAMP384

problems. For more details, please refer to the recent survey [35].385

Formally, given a space S of world states, a problem is a tuple hS, s0,G,A, T i, where s0 2 S is386

the initial state (e.g., the geometry and poses of all objects), G ✓ S is a goal specification (e.g.,387

as a logical expression that can be evaluated based on a state: in(A,Box) and in(B,Box)), A is a388

set of continuously parameterized actions that the agent can execute (e.g., pick-and-place), and T389

is a partial environmental transition model T : S ⇥ A ! S. Each action a is parameterized by390

two functions: precondition prea and effect effa. The semantics of this parameterization is that:391

8s 2 S.8a 2 A.prea(s)) (T (s, a) = effa(s)).392

The goal of task and motion planning is to output a sequence of actions ā so that the terminal state sT393

induced by applying ai sequentially following T satisfies sT 2 G. The state space and action space394

are usually represented as STRIPS-like representations: the state is a collection of state variables395

and each action is parameterized by a set of arguments. Figure 6 shows a simplified definition of the396

pick-and-place action in a table-top manipulation domain.397

;; pick up x and and place x to p.
action pick-place(x, g, p, t)

pre: valid-grasp(x, pose[x], g) ;; g is the grasp pose on x
valid-traj(x, pose[x], g, p, t) ;; p is the target pose of x
forall z. cfree(x, z, pose[x], t) ;; t is the robot trajectory

eff: pose[x] := p ;; object x will be moved

goal: in(A, C, pose[A], pose[C]) and in(B, C, pose[B], pose[C])

The precondition-effect definition of a continuously parameterized
action pick-place: pick and place object x.

Figure 6: Illustration of a simple task and motion planning problem. The domain contains only
one action: pick-and-place of objects. It contains three preconditions: g should be a valid grasp pose
on object x, t should be a valid robot trajectory that moves x from its current pose to the target pose
p, and during the movement, the robot and the object x should not collide with any other objects y. If
successful, the object will be moved to the new location. The goal of the task is to pack both objects
into the target box without any collisions.

13

!!"

!#"

!$"

"! !! #!

valid-g valid-t

"! !! #!

valid-g valid-t

in in

(b) The corresponding TAMP constraint graph derived from the plan
skeleton. cfree constraints and geometric features are omitted for brevity.

(a) A partially specified plan skeleton
and its corresponding constraints.

pick-place(A, gA, pA, tA)
valid-grasp(A, pA0, gA)
valid-traj(A, pA0, gA, pA, tA)
cfree(A, B, pB0, tA)
cfree(A, C, pC0, tA)

pick-place(B, gB, pB, tB)
valid-grasp(B, pB0, gB)
valid-traj(B, pB0, gB, pB, tB)
cfree(B, A, pA, tB)
cfree(B, C, pC0, tB)

Goal
in(A, C, pA, pC0)
in(B, C, pB, pC0)

Figure 7: Example of a partially specified plan skeleton in task and motion planning, together with
the corresponding set of constraints. pA0, pB0, and pC0 corresponds to the initial pose of objects.

A characteristic feature of TAMP problems is that the decision variables (i.e., the arguments of398

actions) include both discrete variables (e.g., object names) and continuous variables (e.g., poses and399

trajectories). Therefore, one commonly used solution is to do a bi-level search [36, 4]: the algorithm400

first finds a plan that involves only discrete objects (called a plan skeleton) and uses a subsequent401

CSP solver to find assignments of continuous variables, backtracking to try a different high-level plan402

if the CCSP is found to be infeasible. For example, consider the discrete task plan (also called plan403

skeleton): pick-and-place(A), pick-and-place(B). There are six parameters to decide: the grasps404

on A and B, the place locations of A and B, and the robot trajectory while transporting A and B.405

Based on the preconditions of actions and the goal condition of the task, we can obtain the constraint406

graph. Therefore, each solution to the CCSP constructed based on the plan skeleton corresponds to a407

concrete plan of the original planning problem. By combining the high-level search of plan skeletons408

and our constraint solver Diffusion-CCSP, the integrated algorithm is capable of solving a wide range409

of task and motion planning problems that involves geometric, physical, and qualitative constraints.410

B Problem Domains and Data Generation411

Next, we describe how data are generated and how variables are encoded for each task. All datasets412

are balanced, i.e. the number the examples involving different number of objects are the same. In413

neural network input encoding, all object dimensions and poses are normalized with regard to that of414

the container or shelf region.415

B.1 2D Triangle Packing416

Figure 8: Example collision-free configurations of triangles

14

Data. The data is generated by randomly sampling points in the square and, connecting them with417

each other and the edge points using the Bowyer–Watson algorithm, then shrinking each triangle a418

little to make space among them.419

Encoding. We define the resting pose of a triangle as the pose when the vertex A facing the shortest420

side BC is at origin and its longest side AB is aligned horizontally. Its geometry is encoded three421

numbers, the length of the longest side |AB| and the vector (x, y) =*AC. Its pose is encoded as the422

2D coordinates of vertex A, along with the sin and cos values of the rotation ✓ from the testing pose.423

B.2 2D Shape Arrangement with Qualitative Constraints424

Figure 9: Example rearrangements of rectangles with in, cfree, and 11 types of qualitative con-
straints.

Data. The data is generated by recursively splitting the tray at different proportions until depth 3. For425

each resulting region, a random padding is added to each side. Regions whose area or side is too small426

are discarded. Labels of qualitative constraints are created by hand-crafted rules, e.g. ‘close-to’427

means the distance between two objects is smaller than the maximum width of two objects. All qualita-428

tive constraints include ‘center-in’, ‘left-in’, ‘right-in’, ‘top-in’, ‘bottom-in’,429

‘left-of’, ‘top-of’, ‘close-to’, ‘away-from’, ‘h-aligned’, ‘v-aligned’.430

Encoding. The resting pose of a rectangle is when its longer side is oriented horizontally. Its geometry431

is encoded using its width and length at resting pose. It’s pose is the 2D pose of the centroid, along432

with the sin and cos encoding of the object’s yaw rotation. Many problems require some objects to433

be at vertical positions in order for all the constraints to be satisfied.434

B.3 3D Object Stacking with Stability Constraints435

Figure 10: Example stable configurations of rectangles, with in, cfree, and supported-by con-
straints. There is at least one object that’s supported by multiple objects.

15

Data. The data is generated by randomly splitting a 2D vertical region and shrinking and cutting436

each box. The resulting small boxes are initiated in PyBullet simulator and letting it drop until rest.437

We filter for configurations where the final state is stable. Then all objects are removed one by one to438

test that each intermediate configuration is also stable. An upper shelf is added to be just enough to439

fit the current configuration.440

Encoding. The resting pose of a box is rotated so that the longer side is oriented horizontally. The441

rectangle’s geometry is encoded using its width and length. The rectangle’s pose is the 2D pose of442

the centroid, along with the sin and cos encoding of the object’s roll rotation.443

B.4 3D Robot Packing with Robots444

Figure 11: Example configuration of 3D shapes that enables the robot place each object in a given
sequence without colliding into other objects already placed. All the bottles, dispensers, and bowls
affords only side grasps.

Data. A fixed number of grasps are generated for each object that points directly to one of its five445

faces, e.g. +x,�x,+y,�y,+z. The data is generated by randomly splitting the tray into rectangle446

regions, then fitting into each region an object with random scale and orientation. The collision-free447

configuration is then tested by a TAMP planner to see whether a placement order and corresponding448

grasps can be found (by enumerating all combinations of order and grasps) so that the gripper at each449

grasp pose won’t collide with any objects already in the goal region.450

Encoding. The objects’ geometry is encoded using axis-aligned bounding box (e.g., width, length,451

height). An object’s grasp is encoded using a five-dimensional vector, indicating the face that the452

gripper points to. For example, [0, 0, 0, 0, 1] is a top grasp. The object’s pose is encoded using its 3D453

coordinate in the tray frame, along with the sin and cos encoding of the object’s yaw rotation.454

C Additional Sampler Comparison455

In the main experiment section, we let Diffusion-CCSP and baselines generate 10 samples for each456

CCSP and check if all constraints are satisfied. Here we let Diffusion-CCSP generate 100 samples on457

100 problems, and plot the number of problems it took Diffusion-CCSP to solve for each task. In a458

batch of 100 CCSPs, it takes on average 0.01-0.05 sec for Diffusion-CCSP (Reverse) to solve each459

CCSP while 0.18-0.28 for Diffusion-CCSP (ULA) to solve each CCSP.460

16

(a) Task 1: 2D Triangle Packing

(b) Task 2: 2D Shape Arrangement with Qualitative Constraints

(c) Task 3: 3D Object Stacking with Stability Constraints

(d) Task 4: 3D Object Packing with Robots

Figure 12: Number of Diffusion-CCSP runs it takes to solve 100 CCSPs. OOD means out-of-
distribution problems that include more objects than trained on. x in x ticks means problems not
solved within 100 runs.

17

	Introduction
	Related Work
	Compositional Diffusion Constraint Solvers
	Formulation and Representation of Constraint Satisfaction Problems
	Compositional Diffusion Models
	Geometric and Physical Constraint Solving with Diffusion-CCSP

	Experiments
	2D Triangle Packing
	2D Shape Arrangement with Qualitative Constraints
	3D Object Stacking with Stability Constraints
	3D Object Packing with Robot Trajectory Constraints

	Limitation and Conclusion
	Integration with Task and Motion Planning Algorithms
	Problem Domains and Data Generation
	2D Triangle Packing
	2D Shape Arrangement with Qualitative Constraints
	3D Object Stacking with Stability Constraints
	3D Robot Packing with Robots

	Additional Sampler Comparison

