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A Supporting Material for Section 2 – Participatory Systems

A.1 Agent Model for Individual Disclosure

The performance of participatory systems will depend on individual reporting decisions. In what follows, we
characterize how participatory systems will perform under a generalized model of individual disclosure. Given a
participatory system h : X ⇥R! Y , we assume that each person will report group membership as:

ri 2 argmax
r2R

ui(r;h)

Here, the utility function can be
ui(r;h) = bi(r;h)� ci(r),

where ci(·) and bi(·) denote their cost and benefit of disclosure, respectively. We assume that costs increase
monotonically with information that is disclosed so that ci(r) � 0 for all r 2 R and ci(r)  ci(r

0) for
r ✓ r0. We assume that benefits increase monotonically with true risk so that bi(r, h) > bi(r

0
, h) when

Rr(h(xi, r)) < Rr(h(xi, r
0)).

The following remarks apply to any participatory system f : X ⇥R! Y that include a personalized model
h : X ⇥ G ! Y and a generic model h0 : X ! Y as its components.

• Every participatory system f will perform as well as a generic model h0. When a personalized model h
requires users to report information detrimental to performance (see Fig. 1), individuals incur a cost of
disclosure without receiving a benefit. In such instances, a minimal system f : X ⇥Rmin ! Y would allow
individuals to opt out of detrimental personalization and receive predictions from a generic model.

• Every participatory system f with more reporting options will perform better. Given that utility can only
increase with the number of reporting options, the maximum utility for each person will exceed that of a
minimal system. Thus, flat and sequential systems will perform better than a minimal system.

• The best-case performance of any participatory system will exceed the performance of any of its components.
Thus, we are guaranteed that any participatory system will outperform a traditional personalized model so
long as it is considered a component.
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A.2 Profiling System Performance with Respect to Participation

We can use the models for individual disclosure to evaluate how a participatory system will perform once it is
deployed. Given a participatory system, we can conduct this evaluation by simulating the parameters in the
individual disclosure model shown above. We can then summarize the results from this evaluation for each
intersectional group through a performance profile that shows how the system performance will vary across
different levels of participation.

We show performance profiles for participatory systems built for the saps dataset in Fig. 3. Here, we measure
the benefit of disclosure in terms of their expected performance gain and simulate the cost of reporting for each
individual by sampling their reporting cost from a uniform distribution – i.e., for each individual i, we sample
ci as ci ⇠ Uniform(0, �), where � 2 [0, 0.2]. For each value of �, we sample reporting costs 10 times and
average over the per group performance error for each sampled cost.

[<30, HIV+] [>30, HIV-]

[<30, HIV-] [>30, HIV-]

Figure 5: Performance profiles of the simulations performed for each intersectional group in the saps dataset.
The sequential system outperforms static personalized systems when all group attributes are reported. When the
cost of reporting is high, the sequential system still outperforms minimally personalized systems as evidenced
by higher accuracy at varying reporting cost thresholds.
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B Supporting Material for Section 3 – Learning Participatory Systems

B.1 Enumeration Routine for Algorithm 1

We summarize the Enumeration routine in Algorithm 2. Algorithm 2 takes as input a set of group attributes G
and a dataset D and outputs a collection of reporting interfaces T that obey ordering and plausibility constraints.
The routine enumerates all possible reporting interfaces for a given set of group attributes G through a recursive

Algorithm 2 Enumerate All Possible Reporting Trees for Reporting Options G
1: procedure VIABLETREES(G,D)
2: if T is for a Minimal system return [T{???}[G] return interface with an opt-out option ???
3: if T is for a Flat system return [T{???}⇥G] return interface with an opt-out option for each group attribute in G

4: if dim(G) = 1 return [TG] base case: we are left with only a single attribute on which to branch

5: T [ ]
6: for each group attribute A 2 [G1, . . . ,Gk] do

7: TA  reporting tree of depth 1 with |A| leaves
8: S  ViableTrees(G \ A,D) all subtrees using all attributes except A

9: for ⇧ in ValidAssignments(S,A,D) do: each assignment is a permutation of |A| to leaves of TA

10: T T [ TA.assign(⇧) extends the tree by assigning subtrees to each leaf

11: end for

12: end for

13: return T, reporting interfaces for group attributes G that obey plausibility and ordering constraints
14: end procedure

branching process. Given a set of group attributes, the routine is called for each attribute that has yet to be
considered in the tree Line 6, ensuring a complete enumeration. We note that the routine is only called for
building Sequential systems since there is only one possible reporting interface for Minimal and Flat systems.

Enumerating all possible trees ensures we can recover the best tree given the selection criteria and allows
practitioners to choose between models based on other criteria. We generate trees that meet plausibility
constraints based on the dataset, such as having at least one negative and one positive sample and at least s total
samples at each leaf. In settings constrained by computational resources, we can impose additional stopping
criteria and modify the ordering to enumerate more plausible trees first or exclusively (e.g., by changing the
ordering of G or imposing constraints in VALIDASSIGNMENTS).

B.2 Assignment Routine for Algorithm 1

We summarize the routine for AssignModels procedure in Algorithm 3.

Algorithm 3 Assigning Models
1: procedure ASSIGNMODELS(T,M,D)
2: Q [T.root] initialize with the root of the tree, reporting group ???
3: while Q is not empty do

4: r  Q.pop()
5: Mr  ViableModels(M, r) filter M to models that can be assigned to r

6: h
⇤  argmin

h2Mr

R̂r(h,D) assign the model with the best training performance

7: T.set_model(r, h⇤)
8: for r0 2 T.get_subgroups(r) do iterate through the children reporting groups of r

9: Q.enqueue(r0)
10: end for

11: end while

12: return T that maximizes gain for each reporting group
13: end procedure

Algorithm 3 takes as inputs a reporting tree T , a pool candidate models M, and an assignment (training) dataset
D and outputs a tree T that maximizes the gains of reporting group information. The pool of candidate models is
filtered to viable models for each reporting group. Since the pool of candidate models includes the generic model
h0, each reporting group will have at least one viable model. We assign each reporting group the best-performing
model on the training set and default to the generic model h0 when a better-performing personalized model is
not found. We assign performance on the training set and then prune using performance on the validation set to
avoid biased gain estimations.
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B.3 Pruning Routine for Algorithm 1

We summarize the routine used for the PruneLeaves procedure in Algorithm 1. The PruneLeaves routine

Algorithm 4 Pruning Participatory Systems
1: procedure PRUNELEAVES(T,D)
2: Stack  [T.leaves] initialize stack with all leaves

3: repeat

4: r  Stack.pop()
5: h  T.get_model(r)
6: h

0  T.get_model(pa(r))
7: if not Test(r, h, h0

,D) then test gains to see if parent model is as good as leaf model

8: T.prune(r)
9: end if

10: if T.get_children(pa(r)) is empty then consider pruning the parent if the parent has become a leaf

11: Stack.enqueue(pa(r))
12: end if

13: until Stack is empty
14: return T , reporting interface that ensures data collection leads to gain
15: end procedure

Algorithm 1 takes as input a reporting interface T and a validation sample D, and performs a bottom-up pruning
to output a reporting interface T that asks individuals to report attributes that are expected to lead to a gain. The
pruning decision at each leaf is based on a hypothesis test that evaluates the gains of reporting for a reporting
group on a validation dataset. This test has the form:

H0 : Rg(h)  Rg(h
0) vs. HA : Rg(h) > Rg(h

0)

This procedure evaluates the gains of reporting by comparing the performance of a model assigned at a leaf
node h and a model assigned at a parent node h

0 which does not use the reported information. Here, the null
hypothesis H0 assumes that the parent model performs as well as the leaf model – and thus, we reject the null
hypothesis when there is sufficient evidence to suggest that reporting will improve performance in deployment.
Our routine allows practitioners to specify the hypothesis test to compute the gains. By default, we use the
McNemar test for accuracy [21] and the Delong test for AUC [19, 50]. In general, we can use a bootstrap
hypothesis test [20].

B.4 Greedy Induction of Sequential Reporting Interface

We present an additional routine to construct reporting interfaces for sequential systems in Algorithm 5. We
include this routine as an alternative option that can be used to construct a reporting interface in settings where it
may be impractical or undesirable to enumerate all possible reporting interfaces. The procedure results in a valid
reporting interface that ensures gains. However, it does not guarantee an optimal tree in terms of maximizing the
overall gain and does not allow to practitioners to choose between reporting interfaces after training.

Algorithm 5 Greedy Induction Routine for Sequential Reporting Interfaces
1: procedure GREEDYTREE(R)
2: T  empty tree with single leaf
3: repeat

4: for r 2 leaves(T ) do

5: {Ar} Gi : r[i] = ? {Ar} contains all heretofore unused attributes

6: A⇤  argmaxA2{Ar} minr02r.split(A) �r0(r0
, r)

7: r.split(A⇤) Split on attribute that maximizes worse-case gain

8: end for

9: until no splits are added
10: return T , reporting interface that ensures gains for reporting each R.
11: end procedure

Algorithm 5 takes as input a collection of reporting options R and outputs a single reporting interface using a
greedy tree induction routine that chooses the attribute to report to maximize the minimum gain at each step.
The procedure uses the reporting options to iteratively construct a reporting tree that branches on all of the
attributes in R. The procedure considers each unused attribute for each splitting point and splits on the attribute
that provides the greatest minimum gain for the groups contained at that node.
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C Description of Datasets used in Section 4 – Experiments

We include additional information about the datasets used in Section 4.

Dataset Reference Outcome Variable n d m G
apnea Ustun et al. [55] patient has obstructive sleep apnea 1,152 28 6 {age, sex}

cardio_eicu Pollard et al. [43] patient with cardiogenic shock dies 1,341 49 8 {age, sex, race}

cardio_mimic Johnson et al. [30] patient with cardiogenic shock dies 5,289 49 8 {age, sex, race}

coloncancer Scosyrev et al. [45] patient dies within 5 years 29,211 72 6 {age, sex}

lungcancer Scosyrev et al. [45] patient dies within 5 years 120,641 84 6 {age, sex}

saps Allyn et al. [3] ICU mortality 7,797 36 4 {age, HIV}
Table 3: Overview of datasets used to fit clinical prediction models in Section 4. Here: n denotes the number
of examples in each dataset; d denotes the number of features; G denotes the group attributes that are used
for personalization; and m = |G| denotes the number of intersectional groups. Each dataset is de-identified
and available to the public. The cardio_eicu, cardio_mimic, lungcancer datasets require access
to public repositories listed under the references. The saps and apnea datasets must be requested from the
authors. The support dataset can be downloaded directly from the URL below.

apnea We use the obstructive sleep apnea (OSA) dataset outlined in Ustun et al. [55]. This dataset includes a
cohort of 1,152 patients where 23% have OSA. We use all available features (e.g. BMI, comorbidities, age, and
sex) and binarize them, resulting in 26 binary features.

cardio_eicu & cardio_mimic Cardiogenic shock is an acute condition in which the heart cannot
provide sufficient blood to the vital organs [29]. These datasets are designed to predict cardiogenic shock for
patients in intensive care. Each dataset contains the same features, group attributes, and outcome variables
for patients in different cohorts. The cardio_eicu dataset contains records for a cohort of patients in the
Collaborative Research Database V2.0 [43]. The cardio_eicu dataset contains records for a cohort of
patients in the MIMIC-III [30] database. Here, the outcome variable indicates whether a patient in the ICU with
cardiogenic shock will die while in the ICU. The features encode the results of vital signs and routine lab tests
(e.g. systolic BP, heart rate, hemoglobin count) that were collected up to 24 hours before the onset of cardiogenic
shock.

lungcancer We consider a cohort of 120,641 patients who were diagnosed with lung cancer between
2004-2016 and monitored as part of the National Cancer Institute SEER study [45]. Here, the outcome variable
indicates if a patient dies within five years from any cause, and 16.9% of patients died within the first five years
from diagnosis. The cohort includes patients from Greater California, Georgia, Kentucky, New Jersey, and
Louisiana, and does not cover patients who were lost to follow-up (censored). Age and Sex were considered as
group attributes. The features reflect the morphology and histology of the tumor (e.g., size, metastasis, stage,
node count and location, number and location of notes) as well as interventions that were administered at the
time of diagnosis (e.g., surgery, chemo, radiology).

coloncancer We consider a cohort of 120,641 patients who were diagnosed with colorectal cancer between
2004-2016 and monitored as part of the National Cancer Institute SEER study [45]. Here, the outcome variable
indicates if a patient dies within five years from any cause, and 42.1% of patients die within the first five years
from diagnosis. The cohort includes patients from Greater California. Age and Sex were considered as group
attributes. The features reflect the morphology and histology of the tumor (e.g., size, metastasis, stage, node
count and location, number and location of notes) as well as interventions that were administered at the time of
diagnosis (e.g., surgery, chemo, radiology).

saps The Simplified Acute Physiology Score II (SAPS II) score predicts the risk of mortality of critically-ill
patients in intensive care [35]. The data contains records of 7,797 patients from 137 medical centers in 12
countries. Here, the outcome variable indicates whether a patient dies in the ICU, with 12.8% patient of patients
dying. The features reflect comorbidities, vital signs, and lab measurements.
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D Experimental Results for Model Classes and Prediction Tasks

In this Appendix, we present experimental results for additional model classes and prediction tasks. We produce
these results using the setup in Section 4.1, and summarize them in the same way as Table 2. We refer to them in
our discussion in Section 4.2.

D.1 Logistic Regression for Ranking (AUC)

STATIC IMPUTED PARTICIPATORY

Dataset Metrics 1Hot mHot KNN-1Hot KNN-mHot Minimal Flat Seq

apnea
n = 1152, d = 26
G = {age,sex}
|G| = 6 groups
Ustun et al. [55]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

0.774
-0.002

-0.002 – 0.002
0.004

2

-0.002
0/6

100.0%

0.774
-0.002

-0.002 – 0.003
0.005

2

-0.002
0/6

100.0%

0.776
0.000

-0.002 – 0.002
0.004

2

0/12
0.0%

0.776
-0.000

-0.002 – 0.003
0.005

2

0/12
0.0%

0.776
0.000

0.000 – 0.002
0.002

0

5/7
16.7%

0.851

0.074

0.004 – 0.115
0.111

0

4/12
100.0%

0.851

0.074

0.004 – 0.115
0.111

0

4/12
83.3%

cardio_eicu
n = 1341, d = 49
G = {age,sex,race}
|G| = 8 groups
Pollard et al. [43]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

0.864
0.002

-0.005 – 0.003
0.009

3

-0.005
0/8

100.0%

0.863
0.001

-0.010 – 0.010
0.019

3

-0.010
0/8

100.0%

0.863
0.000

-0.005 – 0.003
0.009

3

0/27
0.0%

0.862
-0.001

-0.010 – 0.010
0.019

3

0/27
0.0%

0.865
0.002

0.000 – 0.003
0.003

0

6/9
25.0%

0.966
0.103

0.010 – 0.180
0.170

0

13/27
100.0%

0.966

0.103

0.010 – 0.180
0.170

0

11/27
95.8%

cardio_mimic
n = 5289, d = 49
G = {age,sex,race}
|G| = 8 groups
Johnson et al. [30]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

0.881
0.000

-0.001 – 0.001
0.002

3

-0.001
0/8

100.0%

0.881
0.000

-0.001 – 0.001
0.002

3

-0.001
0/8

100.0%

0.882
0.002

-0.001 – 0.001
0.002

3

0/27
0.0%

0.880
-0.000

-0.001 – 0.001
0.002

3

0/27
0.0%

0.881
0.000

0.000 – 0.001
0.001

0

6/9
25.0%

0.914

0.034

0.008 – 0.057
0.049

0

9/27
100.0%

0.914

0.034

0.008 – 0.057
0.049

0

8/27
91.7%

coloncancer
n = 29211, d = 72
G = {age,sex}
|G| = 6 groups
Scosyrev et al. [45]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

0.685
0.001

-0.001 – 0.002
0.003

3

-0.001
0/6

100.0%

0.685
0.002

-0.001 – 0.001
0.002

2

-0.002
0/6

100.0%

0.683
-0.000

-0.001 – 0.002
0.003

3

0/12
0.0%

0.683
-0.000

-0.001 – 0.001
0.002

2

0/12
0.0%

0.685
0.001

0.000 – 0.001
0.001

0

5/7
16.7%

0.700

0.016

0.001 – 0.021
0.020

0

2/12
100.0%

0.700
0.016

0.001 – 0.021
0.020

0

5/12
75.0%

lungcancer
n = 120641, d = 84
G = {age,sex}
|G| = 6 groups
Scosyrev et al. [45]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

0.855
0.001

-0.000 – 0.000
0.001

2

-0.000
0/6

100.0%

0.855
0.001

-0.000 – 0.000
0.001

2

-0.000
0/6

100.0%

0.852
-0.002

-0.000 – 0.000
0.001

2

0/12
0.0%

0.854
0.000

-0.000 – 0.000
0.001

2

0/12
0.0%

0.855
0.001

0.000 – 0.000
0.000

1

4/7
33.3%

0.861

0.006

0.001 – 0.012
0.011

0

2/12
100.0%

0.861
0.006

0.001 – 0.012
0.011

0

2/12
91.7%

saps
n = 7797, d = 36
G = {HIV,age}
|G| = 4 groups
Allyn et al. [3]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

0.875
0.010

-0.000 – 0.016
0.017

1

-0.000
0/4

100.0%

0.877
0.011

-0.002 – 0.019
0.021

1

-0.002
0/4

100.0%

0.875
0.010

-0.000 – 0.016
0.017

1

0/9
0.0%

0.857
-0.008

-0.002 – 0.019
0.021

1

0/9
0.0%

0.875
0.009

0.000 – 0.016
0.016

0

1/5
75.0%

0.960

0.095

0.035 – 0.141
0.106

0

2/9
100.0%

0.960
0.095

0.035 – 0.141
0.106

0

3/9
87.5%

Table 4: Overview of performance, data use, and consent for all personalized models and systems on all datasets
as measured by test auc. We show the performance of models and systems built using logistic regression.
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D.2 Random Forests for Decision-Making (Error)

STATIC IMPUTED PARTICIPATORY

Dataset Metrics 1Hot mHot KNN-1Hot KNN-mHot Minimal Flat Seq

apnea
n = 1152, d = 26
G = {age,sex}
|G| = 6 groups
Ustun et al. [55]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

26.3%
1.5%

-0.8% – 4.2%
5.0%

1

-1.2%
0/6

100.0%

26.0%
1.8%

0.4% – 3.8%
3.4%

0
-1.2%

0/6
100.0%

25.9%
1.9%

-0.8% – 4.2%
5.0%

1

0/12
0.0%

27.4%
0.4%

0.4% – 3.8%
3.4%

0

0/12
0.0%

26.3%
1.5%

0.0% – 4.2%
4.2%

0

2/7
66.7%

12.2%

15.6%

5.3% – 22.2%
16.9%

0

1/12
100.0%

12.2%

15.6%

5.3% – 22.2%
16.9%

0

2/12
91.7%

cardio_eicu
n = 1341, d = 49
G = {age,sex,race}
|G| = 8 groups
Pollard et al. [43]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

18.6%
-0.2%

-3.5% – 1.4%
4.9%

2

-3.5%
0/8

100.0%

17.8%
0.6%

-2.2% – 3.0%
5.3%

2

-2.2%
0/8

100.0%

18.2%
0.2%

-3.5% – 1.4%
4.9%

2

0/27
0.0%

18.6%
-0.2%

-2.2% – 3.0%
5.3%

2

0/27
0.0%

18.4%
0.0%

0.0% – 0.0%
0.0%

0

8/9
0.0%

5.7%

12.7%

6.0% – 14.9%
8.9%

0

11/27
100.0%

6.0%
12.4%

6.0% – 14.9%
8.9%

0

8/27
91.7%

cardio_mimic
n = 5289, d = 49
G = {age,sex,race}
|G| = 8 groups
Johnson et al. [30]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

19.9%
-0.3%

-1.1% – 1.3%
2.4%

5

-1.1%
0/8

100.0%

20.1%
-0.5%

-1.3% – 0.5%
1.7%

6

-1.3%
0/8

100.0%

19.9%
-0.3%

-1.1% – 1.3%
2.4%

5

0/27
0.0%

20.2%
-0.6%

-1.3% – 0.5%
1.7%

6

0/27
0.0%

19.6%
0.0%

0.0% – 0.0%
0.0%

0

8/9
0.0%

11.5%
8.1%

1.0% – 14.9%
13.8%

0

6/27
100.0%

11.4%

8.1%

1.0% – 14.9%
13.8%

0

5/27
87.5%

coloncancer
n = 29211, d = 72
G = {age,sex}
|G| = 6 groups
Scosyrev et al. [45]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

37.2%
-0.2%

-0.7% – 0.1%
0.7%

4

-0.7%
0/6

100.0%

37.0%
0.0%

-0.3% – 0.2%
0.5%

1

-0.3%
0/6

100.0%

37.2%
-0.2%

-0.7% – 0.1%
0.7%

4

0/12
0.0%

37.0%
-0.0%

-0.3% – 0.2%
0.5%

1

0/12
0.0%

37.0%
0.0%

0.0% – 0.0%
0.0%

0

6/7
0.0%

35.9%

1.0%

0.1% – 3.2%
3.1%

0

3/12
100.0%

35.9%
1.0%

0.1% – 3.2%
3.1%

0

5/12
75.0%

lungcancer
n = 120641, d = 84
G = {age,sex}
|G| = 6 groups
Scosyrev et al. [45]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

20.0%
0.1%

-0.3% – 0.2%
0.6%

1

-0.3%
0/6

100.0%

20.2%
-0.1%

-0.5% – 0.0%
0.5%

4

-0.5%
0/6

100.0%

20.0%
0.1%

-0.3% – 0.2%
0.6%

1

0/12
0.0%

20.3%
-0.2%

-0.5% – 0.0%
0.5%

4

0/12
0.0%

20.0%
0.1%

0.0% – 0.2%
0.2%

0

3/7
50.0%

19.3%

0.8%

0.0% – 2.3%
2.3%

0

1/12
100.0%

19.3%
0.7%

0.0% – 2.2%
2.1%

0

3/12
83.3%

saps
n = 7797, d = 36
G = {HIV,age}
|G| = 4 groups
Allyn et al. [3]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

14.1%
0.9%

-0.8% – 3.4%
4.2%

1

-0.8%
0/4

100.0%

15.0%
-0.0%

-0.5% – 0.3%
0.8%

1

-0.7%
0/4

100.0%

14.1%
0.9%

-0.8% – 3.4%
4.2%

1

0/9
0.0%

15.7%
-0.7%

-0.5% – 0.3%
0.8%

1

0/9
0.0%

13.9%
1.1%

0.0% – 3.4%
3.4%

0

2/5
50.0%

9.8%

5.2%

0.0% – 16.4%
16.4%

0

1/9
75.0%

9.8%

5.2%

0.0% – 16.4%
16.4%

0

1/9
87.5%

Table 5: Overview of performance, data use, and consent for all personalized models and systems on all datasets
as measured by test error. We show the performance of models and systems built using random forests.
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D.3 Random Forests for Ranking (AUC)

STATIC IMPUTED PARTICIPATORY

Dataset Metrics 1Hot mHot KNN-1Hot KNN-mHot Minimal Flat Seq

apnea
n = 1152, d = 26
G = {age,sex}
|G| = 6 groups
Ustun et al. [55]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

0.825
0.008

-0.004 – 0.009
0.012

2

-0.004
0/6

100.0%

0.824
0.006

-0.005 – 0.012
0.017

3

-0.005
0/6

100.0%

0.822
0.004

-0.004 – 0.009
0.012

2

0/12
0.0%

0.806
-0.012

-0.005 – 0.012
0.017

3

0/12
0.0%

0.823
0.005

0.000 – 0.009
0.009

0

3/7
50.0%

0.944

0.126

0.058 – 0.157
0.098

0

2/12
100.0%

0.942
0.124

0.058 – 0.157
0.098

0

4/12
75.0%

cardio_eicu
n = 1341, d = 49
G = {age,sex,race}
|G| = 8 groups
Pollard et al. [43]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

0.896
0.003

-0.008 – 0.011
0.020

3

-0.008
0/8

100.0%

0.896
0.003

-0.005 – 0.011
0.016

4

-0.005
0/8

100.0%

0.897
0.004

-0.008 – 0.011
0.020

3

0/27
0.0%

0.886
-0.007

-0.005 – 0.011
0.016

4

0/27
0.0%

0.894
0.001

0.000 – 0.004
0.004

0

7/9
12.5%

0.987

0.094

0.010 – 0.132
0.122

0

10/27
100.0%

0.987
0.094

0.010 – 0.130
0.120

0

10/27
87.5%

cardio_mimic
n = 5289, d = 49
G = {age,sex,race}
|G| = 8 groups
Johnson et al. [30]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

0.884
0.000

-0.005 – 0.006
0.011

3

-0.005
0/8

100.0%

0.883
-0.001

-0.006 – 0.013
0.019

7

-0.006
0/8

100.0%

0.884
0.001

-0.005 – 0.006
0.011

3

0/27
0.0%

0.881
-0.002

-0.006 – 0.013
0.019

7

0/27
0.0%

0.885
0.001

0.000 – 0.006
0.006

0

5/9
37.5%

0.955

0.071

0.016 – 0.108
0.092

0

6/27
100.0%

0.954
0.071

0.016 – 0.107
0.090

0

6/27
83.3%

coloncancer
n = 29211, d = 72
G = {age,sex}
|G| = 6 groups
Scosyrev et al. [45]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

0.684
0.002

-0.002 – 0.004
0.006

0
-0.002

0/6
100.0%

0.682
0.000

-0.004 – 0.002
0.007

0
-0.004

0/6
100.0%

0.681
-0.001

-0.002 – 0.004
0.006

0

0/12
0.0%

0.680
-0.002

-0.004 – 0.002
0.007

0

0/12
0.0%

0.683
0.001

0.000 – 0.004
0.004

0

3/7
50.0%

0.696

0.014

0.004 – 0.035
0.030

0

2/12
100.0%

0.696
0.014

0.004 – 0.031
0.026

0

5/12
75.0%

lungcancer
n = 120641, d = 84
G = {age,sex}
|G| = 6 groups
Scosyrev et al. [45]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

0.849
0.002

-0.001 – 0.003
0.004

1

-0.001
0/6

100.0%

0.849
0.001

-0.001 – 0.002
0.003

1

-0.001
0/6

100.0%

0.848
0.001

-0.001 – 0.003
0.004

1

0/12
0.0%

0.849
0.001

-0.001 – 0.002
0.003

1

0/12
0.0%

0.848
0.000

0.000 – 0.003
0.003

0

2/7
66.7%

0.856

0.008

0.002 – 0.020
0.018

0

1/12
100.0%

0.856

0.008

0.002 – 0.020
0.018

0

2/12
91.7%

saps
n = 7797, d = 36
G = {HIV,age}
|G| = 4 groups
Allyn et al. [3]

Overall Performance
Overall Gain
Group Gains

Max Disparity
Rat. Violations

Imputation Risk
Options Pruned

Data Use

0.921
0.003

-0.002 – 0.010
0.012

2

-0.002
0/4

100.0%

0.922
0.004

-0.002 – 0.013
0.015

2

-0.002
0/4

100.0%

0.922
0.003

-0.002 – 0.010
0.012

2

0/9
0.0%

0.906
-0.012

-0.002 – 0.013
0.015

2

0/9
0.0%

0.921
0.002

0.000 – 0.010
0.010

0

2/5
50.0%

0.966

0.048

0.009 – 0.109
0.100

0

2/9
100.0%

0.966

0.048

0.009 – 0.109
0.100

0

2/9
87.5%

Table 6: Overview of performance, data use, and consent for all personalized models and systems on all datasets
as measured by test auc. We show the performance of models and systems built using random forests.
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