
Suppelementary Material for Noise-Aware296

Statistical Inference with Differentially297

Private Synthetic Data298

A Privacy theorems for NAPSU-MQ299

The privacy bounds of the Gaussian mechanism depend on the sensitivity of the function f , which is300

an upper bound on the change in the value of f for neighbouring datasets.301

Definition A.1. The L2-sensitivity of a function f is �2f = supX⇠X0 ||f(X) � f(X 0)||2. X ⇠ X 0302

denotes that X and X 0
are neighbouring.303

Theorem A.2. Let a be the concatenation of ns full sets of marginal queries. Then �2a 
p

2ns.304

Proof. Let a1, . . . , ans be the full sets of marginal queries that form a. Because all of the queries of305

ai have the same set of variables, the vector ai(x) has a single component of value 1, and the other306

components are 0 for any x 2 X . Then, for any neighbouring X, X 0 2 Xn, ||ai(X)�ai(X 0)||22  2.307

Then308

�2a = sup
X⇠X0

||a(X) � a(X 0)|| (5)

= sup
X⇠X0

vuut
nsX

i=1

||ai(X) � ai(X 0)||22 (6)

 sup
X⇠X0

vuut
nsX

i=1

2 (7)

=
p

2ns (8)

309

Theorem A.3 (Balle and Wang [3]). The Gaussian mechanism for function f with L2-sensitivity �2310

and noise variance �2
is (✏, �)-DP with311

� � �

✓
�2

2�
� ✏�

�2

◆
� e✏�

✓
��2

2�
� ✏�

�2

◆
(9)

where � is the cumulative distribution function of the standard Gaussian distribution.312

B Multiple Imputation313

In order to compute uncertainty estimates for downstream analyses from the noise-aware posterior314

with NA+MI, we use Rubin’s rules for synthetic data [30, 31].315

After the synthetic datasets XSyn
i for 1  i  m are released by the data holder, the data analyst316

runs their downstream analysis on each XSyn
i . For each synthetic dataset, the analysis produces a317

point estimate qi and a variance estimate vi for qi.318

The estimates q1, . . . , qm and v1, . . . , vm are combined as follows [30]:319

q̄ =
1

m

mX

i=1

qi, v̄ =
1

m

mX

i=1

vi, b =
1

m � 1

mX

i=1

(qi � q̄)2. (10)

We use q̄ as the combined point estimate, and set320

T =

✓
1 +

1

m

◆
b � v̄, T ⇤ =

⇢
T if T � 0
nSyn

n v̄ otherwise.
(11)
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T an estimate of the combined variance. T can be negative, which is corrected using T ⇤ instead [31].321

We compute confidence intervals and hypothesis tests using the t-distribution with mean q̄, variance322

T ⇤, and degrees of freedom323

⌫ = (m � 1)(1 � r�1)2, (12)

where r = (1 + 1
m ) b

v̄ [31].324

These combining rules apply when q is a univariate estimate. Reiter [32] derives appropriate325

combining rules for multivatiate estimates, which can be applied with NA+MI.326

Rubin’s rules make many assumptions on the different distributions that are involved [30, 34], such327

as the normality of the distribution of qi when sampling data from the population. These assumptions328

may not hold for some types of estimates, such as probabilities [23] or quantile estimates [40]. Further329

work [12, 34] tries to reduce these assumptions, especially in the context of missing data. Their330

results for synthetic data generation can be applied with our method.331

Si and Reiter [34] propose to remove some of these assumptions by approximating the integral that332

Rubin’s rules are derived from by sampling instead of using the analytical approximations in (10)333

and (11). They find that their sampling-based approximation can be effective, especially with a small334

number of datasets, but is computationally more expensive.335

In the missing data context, when the downstream task uses Bayesian inference, Gelman et al. [12]336

propose to mix the samples of each downstream posterior, and use the mixed posterior for inferences,337

which doesn’t require the normality assumptions that Rubin’s rules require. However, this is restricted338

to Bayesian downstream tasks, and was originally proposed for the missing data context, but it may339

be applicable to synthetic data and our method.340

B.1 Unbiasedness of Rubin’s Rules341

Rubin’s rules make several assumptions on the downstream analysis method, and several normal342

approximations when deriving the rules. Raghunathan, Reiter, and Rubin [30] derive conditions343

under which Rubin’s rules give an unbiased estimate.344

Rubin’s rules aim to estimate a quantity Q of the entire population P , of which X is a sample.345

Conceptually, the sampling of the synthetic datasets is done in two stages: first, synthetic populations346

PSyn
i for 1  i  m are sampled. Second, a synthetic dataset XSyn

i is sampled from PSyn
i .347

This is equivalent to the sampling process for XSyn
i described in Section 2, and makes stating the348

assumptions of Rubin’s rules easier.349

Let Qi denote the quantity of interest Q computed from the synthetic population PSyn
i instead of P .350

Let Vi denote the sampling variance of qi from the synthetic population PSyn
i . Let Q̂D and ÛD be351

the point and variance estimates of Q when sampling from the population P .352

Assumption B.1. For all 1  i  m, qi is unbiased for Qi and asymptotically normal with respect353

to sampling from the synthetic population PSyn
i , with sampling variance Vi.354

Assumption B.2. For all 1  i  m, vi is unbiased for Vi, and the sampling variability in vi is355

negligible. That is vi | PSyn
i ⇡ Vi. Additionally, the variation in Vi across the synthetic populations356

is negligible.357

Assumption B.3. Q̂D | P ⇠ N (Q, ÛD)358

Assumptions B.1-B.3 ensure that the downstream analysis method used to estimate Q is accurate, for359

both point and variance estimates, when applied to real data, regardless of the population.360

Assumption B.4. Qi | X ⇠ N (Q̂D, ÛD)361

Assumption B.4 requires that the generation of synthetic datasets does not bias the downstream362

analysis. For query-based methods like NAPSU-MQ, it may not hold when the queries do not contain363

the relevant information for the downstream task.364

With Assumptions B.1-B.4, Raghunathan, Reiter, and Rubin [30] show that q̄ is an unbiased estimate365

of Q, and T in an asymptotically unbiased variance estimate.366

Theorem B.5 (Raghunathan, Reiter, and Rubin [30]). Assumptions B.1-B.4 imply that367
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1. E(q̄ | P ) = Q,368

2. E(T | P ) = Var(q̄ | P ),369

3. Asymptotically
q̄�Qp

T
⇠ N (0, 1),370

4. For moderate m,
q̄�Qp

T
⇠ t⌫(0, 1) [31].371

C Finding an Identifiable Parameterisation372

In this section, we describe the process we use to ensure the parameterisation of the posterior in373

NAPSU-MQ is identifiable. We ensure identifiability by dropping some of the selected queries,374

chosen using the the canonical parameterisation of MED✓ to ensure no information is lost. First,375

we give some background on Markov networks, which is necessary to understand the canonical376

parameterisation.377

Markov Networks A Markov network is a representation of a probability distribution that is378

factored according to an undirected graph. Specifically, a Markov network distribution P is a product379

of factors. A factor is a function from a subset of the variables to non-negative real numbers. The380

subset of variables is called the scope of the factor. The joint distribution is given by381

P (x) =
1

Z

Y

I⇢S

�I(xI) (13)

where S is the set of scopes for the factors. The undirected graph is formed by representing each382

variable as a node, and adding edges such that the scope of each factor is a clique in the graph.383

Canonical Parametrisation The canonical parametrisation is given in terms of canonical fac-384

tors [1]. The canonical factors depend on an arbitrary assignment of variables x⇤. We simply choose385

x⇤ = (0, . . . , 0). In the following, xU denotes the selection of components in the set U from the386

vector x, and x�U denotes the selection of all components except those in U .387

Definition C.1. A canonical factor �⇤
D with scope D is defined as388

�⇤
D(x) = exp

0

@
X

U✓D

(�1)|D�U | ln P (xU , x⇤
�U )

1

A

The sum is over all subsets of D, including D itself and the empty set. |D � U | is the size of the set389

difference of D and U .390

Theorem C.2 (Abbeel, Koller, and Ng [1](Theorem 3)). Let P be a Markov network with factor391

scopes S. Let S⇤ = [D2SP(D) � ;. Then392

P (x) = P (x⇤)
Y

D⇤2S⇤

�⇤
D⇤(xD⇤)

There are more canonical factors than original factors, so it might seem that there are more parameters393

in the canonical parametrisation than in the original parametrisation. However, many values in the394

canonical factors turn out to be ones. We can select the queries corresponding to non-one canonical395

factor values to obtain a set of queries with the same information as the original queries, but without396

linear dependencies [19]. We call this set of queries the canonical queries.397

Many of the canonical factor scopes are subsets of the original factor scopes, so using the canonical398

queries as is would introduce new marginal query sets and potentially increase the sensitivity of the399

queries. As all of the new queries are sums of existing queries, we can replace each new query with400

the old queries that sum to the new query, and use the same ✓ value for all of the added queries to401

preserve identifiability. If one of the added queries was already included, it does not need to be added402

again, because two instances of a single query can be collapsed into a single instance with it’s own403

parameter value. Because of this, we did not need to fix the ✓ values of any queries to the same value404

in the settings we studied.405
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D NAPSU-MQ vs. PGM406

The PGM algorithm [27] generates synthetic data based on the same marginal queries a and noise407

addition as NAPSU-MQ. PGM also models the original data using the MED✓ distribution. Unlike408

NAPSU-MQ, PGM finds the parameters ✓ by minimising the l2-distance ||s̃ � nµ(✓)||2 between409

the observed noisy query values s̃ and the expected query values nµ(✓) = nEx⇠MED✓ (a(x)) In the410

following, we’ll replace the query values s and s̃ that are summed over datapoints with u = s
n and411

ũ = s̃
n that represent mean query values over datapoints. Then the PGM objective is equivalent to412

||ũ � µ(✓)||2.413

We can view the PGM minimisation problem as a maximum likelihood estimation in the NAPSU-MQ414

probabilistic model415

X ⇠ MEDn
✓ , s = a(X), s̃ ⇠ N (s, �2

DP I), (14)

where we replace normal approximation that NAPSU-MQ uses with a law of large numbers approxi-416

mation. Specifically, first replace s with u in (14):417

X ⇠ MEDn
✓ , u =

a(X)

n
, ũ ⇠ N (u, �2

DP I/n2). (15)

Because u is a mean of sufficient statistics for individual datapoints, by the law of large numbers,418

asymptotically u ⇠ �µ(✓). With this approximation, the probabilistic model is419

u ⇠ �µ(✓), ũ ⇠ N (u, �2
DP I/n2). (16)

u can be marginalised from the likelihood of this model:420

p(ũ|✓) =

Z
p(ũ, u|✓)du (17)

=

Z
p(ũ|u)p(u|✓)du (18)

=

Z
N (ũ|u, �2

DP I/n2)�µ(✓)(u)du (19)

= N (ũ|µ(✓), �2
DP I/n2) (20)

The marginalised log-likelihood is then421

ln p(ũ|✓) = � n2

�2
DP

||ũ � µ(✓)||22 + constant, (21)

so maximising the log-likelihood is equivalent to minimising the PGM objective.422

If we made a normal approximation instead of the law of large numbers approximation in (15), we423

would get424

ũ ⇠ N (µ(✓), ⌃(✓)/n + �2
DP I/n2), (22)

so maximising the likelihood is still possible. Unlike PGM, this maximum likelihood objective425

includes the covariance ⌃(✓). We leave any comparisons between maximising this objective and426

PGM to future work.427

E Hyperparameters428

NAPSU-MQ The hyperparameters of NAPSU-MQ are the choice of prior, choice of inference429

algorithm, and the parameters of that algorithm. For the toy data experiment, we used the Laplace430

approximation for inference, which approximates the posterior with a Gaussian centered at the431

maximum aposteriori estimate (MAP). We find the MAP for the Laplace approximation with the432

LBFGS optimisation algorithm, which we run until the loss improves by less than 10�5 in an iteration,433

up to a maximum of 500 iterations. Sometimes LBFGS failed to converge, which we detect by434

checking is the loss increased by over 1000 in one iteration, and fix by restarting optimisation from a435

different starting point. We also restarted if the maximum number of iterations was reached without436

convergence. For almost all runs, no restarts were needed, and at most 2 were needed.437
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For the Adult experiment, we used NUTS [15]. We ran 4 chains of 800 warmup samples and 2000438

kept samples. We set the maximum tree depth of NUTS to 12. We normalised the posterior using the439

mean and covariance from the Laplace approximation. For the Laplace approximation, we used the440

same hyperparameters as with the toy data set, except we set the maximum number of iterations to441

6000.442

For the prior, we used a Gaussian distribution with mean 0 and standard deviation 10 for all compo-443

nents, without dependencies between components, for both experiments.444

PGM and Repeated PGM PGM finds the MED✓ parameters ✓ that minimise the L2-error between445

the expected query values and the noisy query values. The PGM implementation offers several446

algorithms for this optimisation problem, but we found that the default algorithm and number of447

iterations works well for both experiments.448

RAP RAP minimises the error on the selected queries of a continuous relaxation of the discrete449

synthetic dataset. After the optimal relaxed synthetic dataset is found, a discrete synthetic dataset is450

constructed by sampling. This gives two hyperparameters that control the size of the synthetic data:451

the size of the continuous dataset, and the number of samples for each datapoint in the continuous452

relaxation. We set the size of the continuous dataset to 1000 for both experiments, as recommended453

by the paper [2]. For the Adult data experiment, we set the number of samples per datapoint to 46, so454

that the total size of the synthetic dataset is close to the size of the original dataset. For the toy data455

experiment, we set the number of samples per datapoint to 50. The RAP paper [2] finds that much456

smaller values are sufficient, but higher values should only increase accuracy.457

In both cases, we weight the synthetic datapoints by n
nSyn

before the downstream logistic regression458

to ensure that the logistic regression does not over- or underestimate variances because of a different459

sample size from the original data.460

RAP also has two other hyperparameters that are relevant in our experiments: the number of iterations461

and the learning rate for the query error minimisation. After preliminary runs, we set the learning462

rate at 0.1 for both experiments, and set the number of iterations to 5000 for the toy data experiment,463

and 10000 for the Adult data experiment.464

PEP PEP has two hyperparameters: the number of iterations used to find a distribution with465

maximum entropy that has approximately correct query values, and the allowed bound on the466

difference of the query values. The PEP implementation hardcodes the allowed difference to 0. We467

set the number of iterations to 1000 after preliminary runs for both experiments.468

PrivLCM PrivLCM samples the posterior of a Bayesian latent class model, where the number of469

classes in limited to make inference tractable. The model has hyperparameters for the prior, and the470

number of latent classes. We leave the prior hyperparameters to their defaults, and set the number of471

latent classes to 10, which the PrivLCM authors used in a 5-dimensional binary data experiment [29].472

The remaining hyperparameter of PrivLCM is the number of posterior samples that are obtained. To473

keep the runtime of PrivLCM manageable, we set the number of samples to 500 after ensuring that474

the lower number of samples did not degrade the accuracy of the estimated probabilties for the joint475

distribution compared to using the default of 5000 samples.476

F Toy Data Experiment Details477

To demonstrate the necessity of noise-awareness in synthetic data generation, we measure the478

coverage of confidence intervals computed from DP synthetic data on a generated toy dataset where479

the data generation process is known. We test the existing algorithms PGM [27], PEP [21], RAP [2],480

PrivLCM [29] and our pipeline NA+MI, where data generation is implemented with NAPSU-MQ.481

The authors of PrivLCM also propose using multiple imputation [29], so we use Rubin’s rules [30]482

with the output of PrivLCM.483

The original data consists of n = 2000 datapoints of 3 binary variables. The first two are sampled by484

independent coinflips. The third is sampled from logistic regression on the other two variables with485

coefficients (1, 0).486
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For all algorithms except PrivLCM, we use the full set of 3-way marginal queries released with the487

Gaussian mechanism. PrivLCM doesn’t implement these, and instead uses all full sets of 2-way488

marginals, and a different mechanism, which is (✏, 0)-DP [29] instead of (✏, �)-DP like the other489

algorithms. We use the Laplace approximation for NAPSU-MQ inference, as it is much faster than490

NUTS and works well for this simple setting.491

For the privacy bounds, we use � = n�2, and vary ✏. We generate m = 100 synthetic datasets of492

size nSyn = n for all algorithms except RAP, where the synthetic dataset size is a function of two493

hyperparameters. We describe the hyperparameters in detail in Supplemental Section E.494

The downstream task is inferring the logistic regression coefficients from synthetic data. We repeated495

all steps 100 times to measure the probability of sampling a dataset giving a confidence interval that496

includes the true parameter values.497

Figure 1 shows the coverages, and Figure 3a shows the widths for the resulting confidence intervals.498

All of the algorithms apart from ours and PrivLCM are overconfident, even with very loose privacy499

bounds. Examining the confidence intervals shows the reason: PGM is unbiased, but it produces too500

narrow confidence intervals, while NAPSU-MQ produces wider confidence intervals. On the other501

hand, for ✏ > 0.25, PrivLCM produces much wider and too conservative confidence intervals.502

G Adult Experiment Details503

We include the columns Age, Workclass, Education, Marital Status, Race, Gender, Capital gain,504

Capital loss, Hours per week and Income of the Adult dataset, and discard the rest to remove505

redundant columns and keep computation times manageable. We discretise Age and Hours per week506

to 5 buckets, and discretise Capital gain and Capital loss to binary values indicating whether their507

value is positive. The Income column is binary from the start, and indicates whether a person has an508

income > $50 000.509

In the downstream logistic regression, we use income as the dependent variable, and Age, Race and510

Gender as independent variables. Age is transformed back to a continuous value for the logistic511

regression by picking the middle value of each discretisation bucket. We did not use all variables512

for the downstream task, as a smaller set of variables allows including the relevant marginals for513

synthetic data generation.514

For the input queries, we include the 2-way marginals with Hours per week and each of the inde-515

pendent variables Age, Race and Gender and income, as well as the 2-way marginal between Race516

and Gender. The rest of the queries were selected with the MST algorithm [25]. For MST, we used517

✏ = 0.5, but we do not include this in our figures, as we focus on the synthetic data generation, not518

query selection. The selected queries are shown in Figure S1. The selection is very stable: in 100519

repeats of query selection, these queries were selected 99 times.520

We chose the number of generated synthetic datasets for NAPSU-MQ and the number of repeats for521

repeated PGM by comparing the results of the Adult experiment for different choices. The results522

are shown in Figure S4 for NAPSU-MQ and Figure S2 for repeated PGM. We chose m = 10 for523

NAPSU-MQ because it had slightly better calibration than the other values, and m = 5 repeats for524

repeated PGM because it had the best calibration overall.525
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race

income

gender age

workclass marital-status

hours-per-week capital-loss capital-gain education

Figure S1: Markov network of selected queries for the Adult experiment. Each edge in the graph
represents a selected 2-way marginal.
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Figure S2: Comparison of different numbers of repetitions for repeated PGM. We chose m = 5
repeats to represent repeated PGM in the main experiment, although the differences between the
numbers of repeats are small.
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Figure S4: Comparison of different numbers of generated synthetic datasets for NAPSU-MQ. The
differences are small, but m = 10 synthetic datasets has the best calibration, so we chose it for the
main experiment.
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Figure S5: The fraction of coefficients dropped before Rubin’s rules because of very high estimated
variances from the downstream logistic regression in the Adult data experiment for NAPSU-MQ in
(a) and PGM-repeat in (b).
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Figure S6: Results from the Adult data experiment with regularised logistic regression instead of
removing very high variance estimates. The results are almost identical to Figure 4, except for RAP,
which suffers from the regularisation. The regularisation is l2 with a very small multiplier of 0.00001.
Variances for the downstream task are estimated with bootstrapping using 50 bootstrap samples.
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Figure S7: The tradeoff between the confidence level for DP confidence intervals and the width of
the intervals. The width ratio on the y-axis is with regards to the original 95% confidence interval, for
all confidence levels, so the plot shows how much must the confidence level drop to obtain the same
width from a DP confidence interval as a non-DP one. The horizontal line at y = 1 shows this point.
For ✏ = 1, the confidence level for NAPSU-MQ must be dropped to about 65%, and for PGM-repeat,
it must be dropped to about 50%.

Table S1: Runtimes of each inference run for the Adult experiment. Does not include the time taken
to generate synthetic data, or run any downstream analysis. The LA rows record the runtime for
obtaining the Laplace approximation for NAPSU-MQ that is used in the NUTS inference, so the total
runtime for a NAPSU-MQ run with NUTS is the sum of the LA and NUTS rows. Experiments were
run on 4 CPU cores of a cluster.

Mean Standard Deviation
Algorithm Epsilon

LA

0.1 2 min 53 s 18.5 s
0.3 3 min 53 s 29.4 s
0.5 3 min 38 s 35.0 s
1.0 3 min 25 s 25.5 s

NUTS

0.1 9 h 59 min 6 s 6506 s
0.3 7 h 33 min 28 s 2701 s
0.5 4 h 57 min 40 s 3185 s
1.0 3 h 51 min 34 s 1274 s

PEP

0.1 6 min 50 s 25.4 s
0.3 7 min 18 s 31.2 s
0.5 7 min 0 s 33.1 s
1.0 7 min 7 s 33.7 s

PGM

0.1 15 s 0.5 s
0.3 17 s 1.5 s
0.5 15 s 0.4 s
1.0 15 s 0.6 s

PGM-repeat-10

0.1 2 min 35 s 3.3 s
0.3 2 min 53 s 13.0 s
0.5 2 min 37 s 5.0 s
1.0 2 min 36 s 4.4 s

PGM-repeat-20

0.1 5 min 15 s 10.9 s
0.3 5 min 58 s 28.4 s
0.5 5 min 10 s 10.2 s
1.0 5 min 13 s 12.6 s

PGM-repeat-5

0.1 1 min 17 s 2.7 s
0.3 1 min 28 s 6.7 s
0.5 1 min 18 s 2.6 s
1.0 1 min 18 s 1.9 s

RAP

0.1 32 s 2.4 s
0.3 34 s 2.2 s
0.5 32 s 2.1 s
1.0 31 s 2.1 s
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Figure S8: Results for the US Census experiment, showing that only NAPSU-MQ and PGM-repeat
are calibrated for both values of ✏, and NAPSU-MQ produces significantly narrower confidence
intervals than PGM-repeat. Like Figure 4, the top row shows the mean coverage over all coefficients
and 20 runs for different confidence levels. The bottom row shows median confidence interval widths
divided by real data confidence interval widths.

I US Census Data Experiment527

We conducted an additional experiment on US Census data provided by the UCI repository [28]. We528

limited the data to individuals who have served in the US Military, and picked 9 columns2, most529

relating to military service. Even this subset of the data is large, with n = 320 754. All columns are530

discrete, and have 10 800 possible values, much fewer than the Adult experiment.531

As the downstream task, we use logistic regression with iPoverty as the dependent variable and iSex,532

iKorean, iVietnam and iMilitary as the independent variables. iPoverty has three categories, so we533

combine the two categories denoting people below the powerty line to make the dependent variable534

binary for the logistic regression, but not synthetic data generation.535

As our queries we use 4 three-way marginals covering the independent and dependent variables,536

and 3 two-way marginals that include the other variables that are synthesised, but not included in537

the regression. As the published implementation of RAP [2] does not support a mix of two- and538

three-way marginals, we replace the two-way marginals with three-way marginals for RAP. As in the539

Adult experiment, we set � = n�2, and vary ✏.540

As in the adult experiment, we use nSyn = n for all algorithms except RAP. For PGM-repeat and541

NAPSU-MQ, we choose m with a preliminary experiment. For NAPSU-MQ, we set m = 100,542

although the differences between the choices are not large. For PGM-repeat, we set m = 10. We set543

the other hyperparameters for all algorithms after testing runs to the same values used in the Adult544

experiment, except we increased the number of optimisation iterations for PGM to 5000 from the545

default of 1000, and dropped the number of NUTS chains to 2 and the number of warmup samples546

to 400 for NAPSU-MQ. We did not use the trick of dropping estimates with very high variances, or547

using very small regularisation in the logistic regression with the US Census data.548

The results are shown in Figure S8. While PGM is calibrated with ✏ = 1, it is severely overconfident549

with ✏ = 0.1. This is likely caused by the large size of the dataset: at ✏ = 1, there is little noise550

compared to the large sample size, while at ✏ = 0.1, the noise has a clear effect.551

NAPSU-MQ and PGM-repeat are able to produce calibrated results at ✏ = 0.1. Of these, NAPSU-MQ552

produces clearly narrower confidence intervals for both values of ✏.553

For some reason, PEP fails completely with this dataset. We are not sure what causes this, as the554

algorithm should work in this setting as well as it did with the Adult dataset, and the size of the555

dataset should not be an issue.556

The runtimes for each algorithm are shown in Table S2. The difference between PGM-repeat and557

NAPSU-MQ is much smaller than in the Adult data experiment, but is still large. Note that the558

runtimes are not comparable the Adult experiment runtimes in Table S1, as we could not use the559

cluster that was used in the Adult experiment due to technical issues.560

2 The columns are dYrsserv, iSex, iVietnam, iKorean, iMilitary, dPoverty, iMobillim, iEnglish and iMarital.
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Table S2: Runtimes of each inference run for the US Census experiment. Does not include the time
taken to generate synthetic data, or run any downstream analysis. The LA rows record the runtime for
obtaining the Laplace approximation for NAPSU-MQ that is used in the NUTS inference, so the total
runtime for a NAPSU-MQ run with NUTS is the sum of the LA and NUTS rows. The experiment
was run on a M1 Macbook Air, because we could not use the cluster that was used for the Adult
experiment due to technical issues. This means that the runtimes are not comparable to the Adult
data experiment runtimes.

Mean Standard Deviation
Algorithm Epsilon

LA 0.1 42 s 11.3 s
1.0 52 s 24.6 s

NUTS 0.1 49 min 3 s 667 s
1.0 21 min 25 s 255 s

PEP 0.1 11 s 2.6 s
1.0 12 s 2.4 s

PGM 0.1 28 s 5.6 s
1.0 29 s 4.9 s

PGM-repeat-10 0.1 4 min 53 s 52.6 s
1.0 4 min 57 s 54.6 s

PGM-repeat-5 0.1 2 min 12 s 17.9 s
1.0 2 min 27 s 34.8 s

RAP 0.1 21 s 4.7 s
1.0 19 s 2.9 s
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