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1 ARCHITECTURES, ALGORITHMS, METRICS, ENVIRONMENTS AND
HYPERPARAMETER DETAILS

1.1 HYPERPARAMETER DETAILS AND ARCHITECTURES

All of the experiments are conducted in Arcade Learning Environment (ALE) Bellemare et al. (2013)
with OpenAI wrappers Brockman et al. (2016). The state-of-the-art imitation learning policies are
trained with the inverse Q-learning algorithm with the exact hyperparameter details provided in the
original paper Garg et al. (2021) for Pong and Breakout MDPs. Thus,

• Replay memory size : 200000

• Initial memory : 5000

• Epsilon step : 1× 106

• Epsilon window : 10

• Learning steps : 1× 106

• Critic target update frequency : 1000

• Subsampling frequency : 1

• Batch size : 64

• Demo size : 20

• α : 0.5

• Mix coefficients : 1

• Initial temperature parameter : 1× 10−3

for Breakout. For Pong the replay memory size is 100000, initial memory is 5000, epsilon step is
1× 106, epsilon window is 10, learning steps is 1× 106 with evaluation interval 5× 103, number of
seeds 1000, critic target update is 1000 and the batch size is 64 with same demo size, mix coefficients
and α. However, the authors of the inverse Q-learning paper did not share the hyperparameters for
Seaquest. We tuned ourselves and we actually achieved slightly higher results than what was reported
in the original paper.

For the straightforward vanilla trained deep reinforcement learning policy we use Deep Double
Q-Network (DDQN) initially proposed by Hasselt et al. (2016). For completeness we will provide
the exact hyperparameters used in here too. For yet more details please see Dhariwal et al. (2017).

• Buffer size : 50000

• Learning rate for Adam optimizer : 5× 10−5

• Value for action probability : 0.02

• Discount factor is 0.99

• Batch size is 32
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1.2 ADVERSARIAL DIRECTIONS

Not that for consistency with prior study we used the exact same hyperparameters with Korkmaz
(2022). In this paper, the authors use the ENR technique to optimize the adversarial directions.

min
sadv∈S

c · J(sadv) + λ ‖sadv − s‖ + λ ‖sadv − s‖ (1)

As has been explained in Section 4 in Definition 4.1 the algorithm and MDP independent adversarial
direction Arandom

alg+M computes a direction from a randomly sampled state of a randomly sampled
episode of the policy trained with an algorithm A in an MDPM and introduces this direction to the
observation of the policy trained with algorithm B in a completely different MDPM′.

1.3 PEARSON CORRELATION COEFFICIENT

LetRi
M represent a sample from the distribution of the cumulative rewards obtained from the MDP

by the policy and letRi
IQ represent a sample from the distribution of the reward predictions of the

inverse Q-learning algorithm. Thus the Pearson correlation coefficient is,

ρRM,RIQ =
cov(RIQ,RM)

σRMσRIQ

(2)

where σRM represents the standard deviation of the distribution of RM and σRIQ represents the
standard deviation of the distribution ofRIQ. Note that the covariance ofRM andRIQ is

cov(RIQ,RM) = E[(RIQ − µRIQ)(RM − µRM)] (3)

where µRIQ represents the mean of the distribution of RIQ and µRM represents the mean of the
distribution ofRM.

Figure 1: Markov Decision Processes from the Arcade Learning Environment proposed by Bellemare
et al. (2013). Rows represents the rollout of the states from an episode in BeamRider.

1.4 SPEARMAN CORRELATION COEFFICIENT

Let R(RM) represent the rank variables of Ri
M and R(RIQ) represent the rank variables of Ri

IQ.
Thus, the Spearman correlation coefficient is defined as

ρR(RM),R(RIQ) =
cov(R(RIQ),R(RM))

σR(RM)σR(RIQ)
(4)

Note that results reported on Pearson correlation coefficient and Spearman correlation coefficient in
Section 5.2 in Table 3 are computed as described above.
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1.5 ENVIRONMENTS

Note that to provide a fair assessment we used the exact same MDPs with the prior study that
introduced the inverse Q-learning algorithm. Figure 1 and Figure 2 show the rollout of states from
multiple Markov Decision Process from the Arcade Learning Environment (ALE). All of the MDPs
considered have high-dimensional state representations.

Figure 2: Markov Decision Processes from the Arcade Learning Environment proposed by Bellemare
et al. (2013). Rows represent the rollout of the states from an episode in Seaquest.

Figure 3: Markov Decision Processes from the Arcade Learning Environment proposed by Bellemare
et al. (2013). Rows represent the rollout of the states from an episode in Pong.
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