
Under review as a conference paper at ICLR 2020

POISONING ATTACKS WITH GENERATIVE
ADVERSARIAL NETS

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning algorithms are vulnerable to poisoning attacks: An adversary
can inject malicious points in the training dataset to influence the learning process
and degrade the algorithm’s performance. Optimal poisoning attacks have already
been proposed to evaluate worst-case scenarios, modelling attacks as a bi-level
optimization problem. Solving these problems is computationally demanding and
has limited applicability for some models such as deep networks. In this paper we
introduce a novel generative model to craft systematic poisoning attacks against
machine learning classifiers generating adversarial training examples, i.e. sam-
ples that look like genuine data points but that degrade the classifier’s accuracy
when used for training. We propose a Generative Adversarial Net with three com-
ponents: generator, discriminator, and the target classifier. This approach allows
us to model naturally the detectability constrains that can be expected in realistic
attacks and to identify the regions of the underlying data distribution that can be
more vulnerable to data poisoning. Our experimental evaluation shows the effec-
tiveness of our attack to compromise machine learning classifiers, including deep
networks.

1 INTRODUCTION

Despite the advancements and the benefits of machine learning, it has been shown that learning
algorithms are vulnerable and can be the target of attackers, who can gain a significant advantage
by exploiting these vulnerabilities (Huang et al., 2011). At training time, learning algorithms are
vulnerable to poisoning attacks, where small fractions of malicious points injected in the training set
can subvert the learning process and degrade the performance of the system in an indiscriminate or
targeted way. Data poisoning is one of the most relevant and emerging security threats in applica-
tions that rely upon the collection of large amounts of data in the wild (Joseph et al., 2013). Some
applications rely on the data from users’ feedback or untrusted sources of information that often
collude towards the same malicious goal. For example, in IoT environments sensors can be compro-
mised and adversaries can craft coordinated attacks manipulating the measurements of neighbour
sensors evading detection (Illiano et al., 2016). In many applications curation of the whole training
dataset is not possible, exposing machine learning systems to poisoning attacks.

In the research literature optimal poisoning attack strategies have been proposed against different
machine learning algorithms (Biggio et al., 2012; Mei & Zhu, 2015; Muñoz-González et al., 2017;
Jagielski et al., 2018), allowing to assess their performance in worst-case scenarios. These attacks
can be modelled as a bi-level optimization problem, where the outer objective represents the at-
tacker’s goal and the inner objective corresponds to the training of the learning algorithm with the
poisoned dataset. Solving these bi-level optimization problems is challenging and can be computa-
tionally demanding, especially for generating poisoning points at scale. This limits its applicability
against some learning algorithms such as deep networks or where the training set is large. In many
cases, if no detectability constraints are considered, the poisoning points generated are outliers that
can be removed with data filtering (Paudice et al., 2018a). Furthermore, such attacks are not realistic
as real attackers would aim to remain undetected in order to be able to continue subverting the sys-
tem in the future. As shown in (Koh et al., 2018), detectability constraints for these optimal attack
strategies can be modelled, however they further increase the complexity of the attack, limiting even
more the application of these techniques.

1

Under review as a conference paper at ICLR 2020

Taking an entirely different and novel approach, in this paper we propose a poisoning attack strategy
against machine learning classifiers with Generative Adversarial Nets (GANs) (Goodfellow et al.,
2014). This allows us to craft poisoning points in a more systematic way, looking for regions of
the data distribution where the poisoning points are more influential and, at the same time, difficult
to detect. Our proposed scheme, pGAN, consists on three components: generator, discriminator
and target classifier. The generator aims to generate poisoning points that maximize the error of the
target classifier but minimize the discriminator’s ability to distinguish them from genuine data points.
The classifier aims to minimize some loss function evaluated on a training dataset that contains a
fraction of poisoning points. As in a standard GAN, the problem can be formulated as a minimax
game. pGAN allows to systematically generate adversarial training examples (Koh & Liang, 2017),
which are similar to genuine data points but that can degrade the performance of the system when
used for training. The use of a generative model allows us to produce poisoning points at scale,
enabling poisoning attacks against learning algorithms where the number of training points is large
or in situations where optimal attack strategies with bi-level optimization are intractable or difficult
to compute, as it can be the case for deep networks. Additionally, our proposed model also includes
a mechanism to control the detectability of the generated poisoning points. For this, the generator
maximizes a convex combination of the losses for the discriminator and the classifier evaluated on
the poisoning data points. Our model allows to control the aggressiveness of the attack through
a parameter that controls the weighted sum of the two losses. This induces a trade-off between
effectiveness and detectability of the attack. In this way, pGAN can be applied for systematic testing
of machine learning classifiers at different risk levels. Our experimental evaluation in synthetic and
real datasets shows that pGAN is capable of compromising different machine learning classifiers,
including deep networks. We analyse the trade-off between detectability and effectiveness of the
attack: Too conservative strategies will have a reduced impact on the target classifier but, if the
attack is too aggressive, most poisoning points can be detected as outliers.

2 RELATED WORK

The first practical poisoning attacks were proposed in the context of spam filtering and anomaly
detection (Nelson et al., 2008; Kloft & Laskov, 2012). But these attacks do not easily generalize to
different learning algorithms. Biggio et al. (2012) presented a more systematic approach, modelling
optimal poisoning attacks against SVMs for binary classification as a bi-level optimization problem,
which can be solved by exploiting the Karush-Kuhn-Tucker conditions in the inner problem. A sim-
ilar approach is proposed by Xiao et al. (2015) for poisoning embedded feature selection methods,
including LASSO, ridge regression, and elastic net. Mei & Zhu (2015) proposed a more general
framework to model and solve optimal poisoning attacks for convex classifiers. They exploit the
implicit function theorem to compute the gradients required to solve the corresponding bi-level op-
timization problem. Muñoz-González et al. (2017) proposed back-gradient optimization to estimate
the gradients required to solve bi-level optimization problems for optimal poisoning attacks against
multi-class classifiers. This approach allows to attack a broader range of learning algorithms and re-
duces the computational complexity with respect to previous works. However, all these techniques
are limited to compromise deep networks trained with a large number of training points, where
many poisoning points are required even to compromise a small fraction of the training dataset.
Previous attacks did not model explicitly appropriate detectability constraints. Thus, the resulting
poisoning points can be far from the genuine data distribution and can be easily identified as outliers
(Paudice et al., 2018a; Steinhardt et al., 2017; Paudice et al., 2018b). Recently, Koh et al. (2018)
showed that it is still possible to craft attacks capable of bypassing outlier-detection-based defences
with an iterative constrained bi-level optimization problem, where, at each iteration, the constraints
change according to the current solution of the bi-level problem. However, the high computational
complexity of this attack limits its practical application in many scenarios.

Koh & Liang (2017) proposed a different approach to craft targeted attacks against deep networks
by exploiting influence functions. This approach allows to create adversarial training examples by
learning small perturbations that, when added to some specific genuine training points, change the
predictions for a target set of test points. Shafahi et al. (2018) showed that it is possible to perform
targeted attacks when the adversary is not in control of the labels for the poisoning points. Yang
et al. (2017) introduced a poisoning attack with generative models using autoencoders to generate the
malicious points. Although this method is more scalable than attacks based on bi-level optimization,
the authors do not provide a mechanism to control the detectability of the poisoning points.

2

Under review as a conference paper at ICLR 2020

3 POISONING ATTACKS WITH GENERATIVE ADVERSARIAL NETS

Our model, pGAN, is a GAN-based model with three components (generator, discriminator and
target classifier) to generate systematically adversarial training examples. First, we shortly describe
the considered model for the attacker. Then, we introduce the formulation of pGAN and, finally, we
provide some practical considerations for the implementation of pGAN.

3.1 ATTACKER’S MODEL

The attacker’s knowledge of the targeted system depends on different aspects: the learning algo-
rithm, the objective function optimized, the feature set or the training data. In our case we consider
perfect knowledge attacks, where we assume the attacker knows everything about the target sys-
tem: the training data, the feature set, the loss function and the machine learning model used by
the victim. Although unrealistic in most practical scenarios, this assumption allows us to perform
worst-case analysis of the performance of the system under attack. However, our proposed attack
strategy also supports limited knowledge, exploiting the transferability property of poisoning attacks
(Muñoz-González et al., 2017). For the attacker’s capabilities, we consider here a causative attack
(Barreno et al., 2006; 2010), where the attacker can manipulate a fraction of the training data to
influence the learning algorithm. We assume that the attacker can manipulate all the features to craft
the poisoning points as long as the resulting points are within the feasible domain for the distribution
of genuine training points. Finally, we also assume that the attacker can also control the labels of
the injected poisoning points.

3.2 PGAN

In a multi-class classification task, letX ∈ Rd be the d-dimensional feature space, where data points
x are drawn from a distribution px(x) and Y is the space of class labels. The learning algorithm,
C, aims to learn the mapping f : X → Y by minimizing a loss function, LC , evaluated on a set of
training points Str. The objective of the attacker is to introduce a fraction, λ ∈ (0, 1), of malicious
points in Str to maximize LC when evaluated on the poisoned training set.

The Generator, G, aims to generate poisoning points by learning a data distribution that is effective
at increasing the error of the target classifier, but that is also close to the distribution of genuine data
points, i.e. the generated poisoning points are similar to honest data points to evade detection. Thus,
G receives some noise z ∼ pz(z|Yp) as input and implicitly defines a distribution of poisoning
points, pp(x), which is the distribution of the samples G(z|Yp) conditioned on Yp ⊂ Y , the set of
target class labels for the attacker. The Discriminator,D, aims to distinguish between honest training
data and the generated poisoning points. It estimates D(x|Yp), the probability that x came from
the genuine data distribution px rather than pp. As in G, the samples used in the discriminator are
conditioned on the set of labels Yp. The Classifier, C, is representative for the attacked algorithm.
In perfect knowledge attacks C can have the same structure as the actual target classifier. For black-
box attacks we can exploit attack transferability, and then, use C as a surrogate model that can be
somewhat similar to the actual (unknown) classifier. During the training of pGAN, C is fed honest
and poisoning training points from px and pp respectively, where the fraction of poisoning points is
controlled by a parameter λ ∈ [0, 1].

In contrast to traditional GAN schemes, G in pGAN plays a game against both D and C. This can
also be formalized as a minimax game where the maximization problem involves both D and C.
Similar to conditional GANs (Mirza & Osindero, 2014), the objective function for D (which also
depends on G) can be written as:

V(D,G) = Ez∼pz(z|Yp)[log(1−D(G(z|Yp)))] + Ex∼px(x|Yp)[log(D(x|Yp)]. (1)

The objective function for C is given by:

W(C,G) = −
(
λ Ez∼pz(z|Yp)[LC(G(z|Yp))] + (1− λ) Ex∼px(x)[LC(x)]

)
, (2)

where λ is the fraction of poisoning points introduced in the training dataset and LC is the loss
function used to train C. Note that the poisoning points in (2) belong to a subset of poisoning
class labels Yp, whereas the genuine points used to train the classifier are from all the classes. The

3

Under review as a conference paper at ICLR 2020

objective in (2) is just the negative loss used to train C evaluated on a mixture of honest and poisoning
points (from the set of classes in Yp) controlled by λ.

Given (1) and (2), pGAN can then be formulated as the following minimax problem:

min
G

max
D,C

α V(D,G) + (1− α) W(C,G) (3)

with α ∈ [0, 1]. In this case, the maximization problem can be seen as a multi-objective optimization
problem to learn the parameters of both the classifier and the discriminator. Whereas for C andD the
objectives are decoupled, the generator optimizes a convex combination of the two objectives in (1)
and (2). The parameter α controls the importance of each of the two objective functions towards the
global goal. So, for high values of α, the attack points will prioritize evading detection, rendering
attacks with (possibly) a reduced effectiveness. Note that for α = 1 we have the same minimax
game as in a standard conditional GAN (Mirza & Osindero, 2014). On the other hand, low values
of α will result in attacks with higher impact in the classifier’s performance. However the generated
poisoning points will be more detectable by outlier detection systems. For α = 0, pGAN does not
consider any detectability constraint and the generated poisoning points are only constrained by the
output activation functions in the G. In this case pGAN can serve as a suboptimal approximation of
the optimal attack strategies in (Biggio et al., 2012; Mei & Zhu, 2015; Muñoz-González et al., 2017)
where no detectability constraints are imposed.

Similar to (Goodfellow et al., 2014) we train pGAN following a coordinated gradient-based strategy
to solve the minimax problem in (3). We sequentially update the parameters of the three components
using mini-batch stochastic gradient descent/ascent. For the generator and the discriminator data
points are sampled from the conditional distribution on the subset of poisoning labels Yp. For the
classifier, honest data points are sampled from the data distribution including all the classes. A
different number of iterations can be considered for updating the parameters of the three blocks.
The details of the training algorithm are provided in Appendix A.

3.3 PRACTICAL CONSIDERATIONS

The formulation of pGAN in (3) allows to perform both error-generic and error-specific poisoning
attacks (Muñoz-González et al., 2017), which aim to increase the error of the classifier in an indis-
criminate or a specific way. However, the nature of these errors can be limited by Yp, i.e. the classes
for which the attacker can inject poisoning points. To generate targeted attacks or to produce more
specific types of errors in the system we need to use a surrogate model for the target classifier in
pGAN, including only the classes or samples considered in the attacker’s goal. For example, if the
attacker wants to inject poisoning points labelled as i to increase the classification error for class j,
we can use a binary classifier in pGAN considering only classes i and j, where the generator aims
to produce samples from class i. As in other GAN schemes, pGAN can also be difficult to train and
can be prone to mode collapse. To mitigate these problems, we used in our experiments some of the
standard techniques proposed to improve GANs training, such as dropout or batch-normalization
(Salimans et al., 2016). We also applied one-side label smoothing, not only for the labels in the dis-
criminator but also for the labels of the genuine points in the classifier. As suggested by Goodfellow
et al. (2015), to avoid small gradients for G from the discriminator’s loss function (1), especially
in early stages where the quality of the samples produced by G is poor, we train G to maximize
log(D(G(z|Yp))) rather than minimizing log(1−D(G(z|Yp))).

In contrast to standard GANs, in pGAN the learned distribution of poisoning points pp is expected
to be different from the distribution of genuine points px. Thus, the accuracy of the discriminator
in pGAN will always be greater that 0.5. Then, the stopping criteria for training pGAN cannot be
based on the discriminator’s accuracy. We need to find a saddle point where the objectives in (1) and
(2) are maximized for D and G respectively (i.e. pGAN finds local maxima) and the the combined
objective in (3) is minimized w.r.t. G (i.e. pGAN finds a local minimum). Finally, the value of λ
plays an important role in the training of pGAN. If λ is small, the gradients for G from the classifier’s
loss in (2) can be very small compared to the gradients from the discriminator’s loss in (1). Thus,
the generator focuses more on evading detection by the discriminator rather than increasing the error
of the target classifier, resulting in blunt attacks. Then, even if the expected fraction of poisoning
points to be injected in the target system is small, larger values of λ are preferred to generate more
successful poisoning attacks. In our experiments in Sect. 4 we analyse the effectiveness of the attack
as a function of λ.

4

Under review as a conference paper at ICLR 2020

Figure 1: Synthetic experiment: Distribution of genuine (green and blue dots) and poisoning (red
dots) data points for different values of α. The poisoning points are labelled as green.

4 EXPERIMENTS

To illustrate how pGAN works we first performed a synthetic experiment with a binary classification
problem, generating two bivariate Gaussian distributions that slightly overlap. We trained pGAN for
different values of α with 500 training points from each Gaussian distribution. We targeted a logistic
regression classifier with λ = 0.8. In Fig. 1 we show the distribution of poisoning (red dots) and
genuine (green and blue dots) data points. The poisoning points are labelled as the green data points.
Thus, G aims to generate malicious points, similar to the green ones (i.e. D aims to discriminate
between red and green data points). For α = 1 we have the same result as in a standard GAN, so
that the distribution of red points matches the distribution of the green ones. But, as we decrease
the value of α, the distribution of red points shifts towards the region where both green and blue
distributions overlap. We can observe that for α = 0.2 the poisoning points are still close to genuine
green points, i.e. we cannot consider the red points as outliers in most cases. For α = 0 the generator
does not have detectability constraints, focusing only on increasing the error of the classifier. It is
interesting to observe that, in this case, pGAN does not produce points interpolating the distribution
of the two genuine classes, but the distribution learned by the generator is far from the region where
the distributions of the blue and green points overlap.1 This suggests that for α 6= 0 pGAN is not
just producing a simple interpolation between the two classes, but G looks for regions close to the
decision boundary where the classifier is weaker. The complete details of the experiment and the
effect on the decision boundary after injecting the poisoning points can be found in Appendix B.

We performed our experimental evaluation on MNIST (LeCun et al., 1998) and Fashion-MNIST
(FMNIST) (Xiao et al., 2017) datasets, using Deep Neural Networks (DNNs) for the differenct
components of pGAN. All details about the datasets used and the experimental settings in our ex-
periments are described in Appendix C. To test the effectiveness of pGAN to generate stealthy
poisoning attacks we applied the defence strategy proposed by Paudice et al. (2018a): We assumed
that the defender has a fraction of trusted data points that can be used to train one outlier detector
for each class in the classification problem. Thus, we pre-filter the (genuine and malicious) train-
ing data points with these outlier detectors before training. As in (Paudice et al., 2018a) we used
the distance-based anomaly detector proposed by Wu & Jermaine (2006), which was proven to be
effective against optimal poisoning attacks (Biggio et al., 2012; Muñoz-González et al., 2017). The
outlierness score is computed based on the euclidean distance between the tested data point and its
k-nearest neighbours from a subset of s points, which are sampled without replacement from the set
of points used to train the outlier detector. In our experiments we used the same values proposed in
(Paudice et al., 2018a): k = 5 for the number of neighbours and s = 20 for the number of training
points to be sampled. We set the threshold of the outlier detector so that the α-percentile is 0.95. The
α-percentile controls the fraction of genuine points that is expected to be retained after applying the
outlier detector (i.e. 95% in our case). To provide a better understanding of the behaviour of pGAN
we first trained and tested our attack targeting binary classifiers. For this, in MNIST we selected
digits 3 and 5 and for FMNIST we picked the classes sneaker and ankle boot. The poisoning points
were labelled as 5 and ankle boot respectively.

First, we analysed the effectiveness of the attack as a function of α. For each dataset we trained 5
different generators for each value of α explored, [0.1, 0.3, 0.5, 0.7, 0.9]. We set λ = 0.9 · Pr(Yp),
where Pr(Yp) is the prior probability of the samples from the poisoning class, Yp (i.e. digit 5 and
ankle boot). For testing, we used 500 (genuine) samples per class to train the outlier detectors and
500 samples per class to train a separate classifier. We evaluated the effectiveness of the attack

1Note that the result would be significantly different if the target classifier were non-linear.

5

Under review as a conference paper at ICLR 2020

Figure 2: Test classification error (%) as a function of the percentage of poisoning points using
pGAN with different values of α for MNIST (left) and FMNIST (right).

Figure 3: Examples from pGAN (with α = 0.3) for MNIST (left) and FMNIST (right).

varying the fraction of poisoning points, exploring values in the range 0 − 40%. To preserve the
ratio between classes we substitute genuine samples from the poisoning class with the malicious
points generated by pGAN (rather than adding the poisoning points to the given training dataset).
For each pGAN generator and for each value of the fraction of poisoning points explored, we did 10
independent runs with independent splits for the outlier detectors and the classifier training sets. In
Fig. 2 we show the test classification error for MNIST and FMNIST as a function of the fraction of
poisoning points averaged over the 5 generators and the 10 runs for each generator.

In MNIST, the attack is more effective for α = 0.1, increasing the error from 2.5% when there’s
no attack to more than 12% when 40% of the training dataset is compromised. For bigger values
of α the effect of the attack is more limited. Similarly, for FMNIST the attack with α = 0.1
produces more effective poisoning data points, although the overall effect of the attack is more
limited compared to MNIST. It is interesting to observe that, despite the baseline error (i.e. when
there is no attack) is lower for MNIST (2.5% vs 4.75% in FMNIST), it is more difficult to poison
FMNIST. This suggests that the impact of the attack not only depends on the separation between
the two classes but also on the topology of the classification problem. In Fig. 3 we show some of
the poisoning examples generated by pGAN (with α = 0.3). For MNIST the malicious data points
(labelled as 5) exhibit features from both, digits 3 and 5. In some cases, although the poisoning
digits are similar to a 3, it is difficult to automatically detect these points as outliers, as many of the
pixels that represent these malicious digits follow a similar pattern compared to genuine 5s, i.e. they
just differ in the upper trace of the generated digits. In other cases, the malicious digits look like a
5 that have some characteristics that make them closer to 3s. In the case of FMNIST, the samples
generated by pGAN (labelled as ankle boots) can be seen as an interpolation of the two classes. The
malicious images look like high-top sneakers or low-top ankle boots. Thus, it is difficult to detect
them as malicious points, as they clearly resemble some of the genuine ankle boots in the genuine
training set. Actually, for some of the genuine images, it is difficult to identify them as a sneaker or
an ankle boot. More examples for different values of α are also shown in Appendix D.

In Fig. 4 (centre) we show the fraction of data points pre-filtered by the outlier detectors in MNIST
dataset as a function of α. We explored two values for the α-percentile (the threshold of the detec-
tors): 0.90 and 0.95. As expected, the fraction of rejected genuine data points is, on average, 10%
and 5% respectively. However, the fraction of rejected malicious points for α ≥ 0.1 is smaller than
for the genuine points for the two detectors. This is because the generator pays less attention to
samples that are in low density regions for the data distribution of the genuine points, and then, the
generated poisoning points are conservative. For α = 0 the fraction of rejected malicious points is

6

Under review as a conference paper at ICLR 2020

Figure 4: (Left) Average test error on MNIST as a function of λ′ = λ/Pr(Yp). (Centre) Outlier
detection on MNIST as a function of α for α-percentiles of 0.95 and 0.90. (Right) Average test
error on MNIST as a function of of the number of training examples for a clean and a poisoned
classifier (with 20% of poisoning points).

Figure 5: Average test error (left), false positive (centre) and false negative rates (right) as a function
of the percentage of poisoning points for pGAN and label flipping attacks on MNIST.

also not very high. This can be due to the similarity between the two classes. Then, even if the gen-
erated poisoning points, labelled as 5, look like a 3 they are still close to the distribution of genuine
5s when targeting a non-linear classifier.

For analysing the sensitivity of pGAN w.r.t. λ, the fraction of poisoning points used for C, we
performed an experiment on MNIST dataset (digits 3 and 5). We set α = 0.2 and explored different
values for λ′ = λ/Pr(Yp) ranging from 0.1 to 1. With the same experimental settings as before we
trained 5 generators for each value of λ′. We also tested the effectiveness of the attack on a separate
classifier, with 10 independent runs for each generator and value of λ′ explored. For the attacks we
injected 20% of poisoning points. In Fig. 4 (left) we show the averaged classification error on the
test dataset as a function of λ′. We can observe that, for small λ′, the effect of the attack is more
limited. The reason is that, when training pGAN the effect of the poisoning points on C is very
reduced, and then, the gradients of (2) w.r.t. the parameters of G can be very small compared to the
gradients coming from the discriminator. Then, G focuses more on optimizing the discriminator’s
objective. In this case, even for λ′ = 1 the attack is still effective, just slightly decreasing the error
rate compared to λ′ = 0.9.

Comparison with existing poisoning attacks in the research literature is challenging: Optimal poi-
soning attacks as in Muñoz-González et al. (2017) are computationally very expensive for the size
of the networks and datasets used in our experiments in Fig. 2. This is even worse if we consider
detectability constraints as in Koh et al. (2018). On the other side, comparing with standard label
flipping results in an unfair comparison for pGAN, as label flipping do not consider detectability
constraints. In other words, we can expect label flipping to be more effective than pGAN when no
defence is applied, but this attack is clearly more detectable (Paudice et al., 2018b). To provide a
fairer comparison, we implemented an heuristic for generating label flipping attacks with detectabil-
ity constraints. Thus, we flipped the labels of training samples from the target class that are closer
to the source class. For this, we computed the distance of the training points from the target class to
the mean of the training points of the source class. Then, we flipped the labels of the closest points,
so that the malicious points should be more difficult to detect. In Fig. 5 we show the comparison
of this label flipping strategy with pGAN (α = 0.1) for MNIST, using the same settings as in the
experiment in Fig. 2. We can observe that pGAN is more effective than the label flipping attack and
that the effect of the two attacks is different. Label flipping increases both the false positive and
false negative rates of the target classifier, whereas pGAN aims only to increase the false positive

7

Under review as a conference paper at ICLR 2020

Figure 6: (Left) Overall classification error and error of digit 3 being classified as 5 in MNIST (with
all classes), as a function of the attack strength with pGAN. (Right) Difference in the confusion
matrix between the clean and the poisoned classifier (4% poisoning).

rate, i.e. pGAN is producing an error-specific attack, giving the attacker more control on the kind of
errors to be produced in the classifier.

In Fig. 4 (right) we show how the number of training data points impact the effect of the attack. For
this, we trained 5 pGAN generators with α = 0.1 and tested on classifiers with different number
of training points ranging from 1, 000 to 10, 000 and injecting 20% of poisoning points. For each
generator and value of the number of training points explored we did 5 independent runs. We also
used 500 samples per class to train the outlier detectors. The results in Fig. 4 (right) show that
the difference in performance between the poisoned and the clean classifier reduces as the number
of training samples increases. This is expected, as the stability of the learning algorithm increases
with the number of training data points, limiting the ability of the attacker to perform indiscriminate
poisoning attacks. This does not mean that learning algorithms trained with large datasets are not
vulnerable to data poisoning, as attackers can still be very successful at performing targeted attacks,
focusing on increasing the error on particular instances or creating backdoors (Gu et al., 2017). In
these scenarios we can also use pGAN to generate more targeted attacks using a surrogate model for
the classifier including the subset of samples that the attacker aims to misclassify.

Finally we performed an error-specific attack on MNIST using the 10 classes. In this case the
objective of the attacker is to increase the error of digit 3 being misclassified as a 5. For this, we
trained pGAN using a surrogate classifier including only digits 3 and 5, and then, tested against
a multi-class classifier trained on 10, 000 data points (see the details of the architecture used in
Appendix C). For pGAN we used α = 0.1 and λ = 0.9 ·Pr(Yp). We varied the fraction of poisoning
points exploring values in the range 0 − 4%. The results in Fig. 6 (left) show that, although the
overall test classification error only increases slightly, the test error of digit 3 being classified as a
5 is significantly affected by the attack, increasing from 1.1%, when there is no attack, to 13.1%
with just 4% of poisoning points. In Fig. 6 (right) we show the average difference in the confusion
matrix evaluated on the clean dataset and the poisoned dataset (4% poisoning). We can observe that
the detection rate of digit 3 decreases up to 11%, and that this decrease is due to an increase of 12%
on the error of digit 3 being incorrectly classified as a 5. This experiment support the usefulness of
pGAN to generate targeted attacks, showing that even with a small fraction of poisoning points we
can craft successful targeted (error-specific) attacks.

5 CONCLUSION

The pGAN approach we introduce in this paper allows to naturally model attackers with different
levels of aggressiveness and the effect of different detectability constraints on the robustness of
the algorithms. This allows to a) study the characteristics of the attacks and identify regions of
the data distributions where poisoning points are more influential, yet more difficult to detect, b)
systematically generate in an efficient and scalable way attacks that correspond to different types of
threats and c) study the effect of mitigation measures such as improving detectability. In addition
to studying the tradeoffs involved in the adversarial model, pGAN also allows to naturally study
the tradeoffs between performance and robustness of the system as the fraction of poisoning points
increases.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug Tygar. Can Machine
Learning be Secure? In Symposium on Information, Computer and Communications Security,
pp. 16–25, 2006.

Marco Barreno, Blaine Nelson, Anthony D Joseph, and J Doug Tygar. The Security of Machine
Learning. Machine Learning, 81(2):121–148, 2010.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning Attacks against Support Vector Ma-
chines. In International Conference on Machine Learning, pp. 1807–1814, 2012.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680, 2014.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial
Examples. In International Conference on Learning Representations, 2015.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying Vulnerabilities in the
Machine Learning Model Supply Chain. arXiv preprint arXiv:1708.06733, 2017.

Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and JD Tygar. Adversarial
Machine Learning. In Workshop on Security and Artificial Intelligence, pp. 43–58, 2011.

Vittorio P Illiano, Luis Muñoz González, and Emil C Lupu. Don’t Fool Me!: Detection, Char-
acterisation and Diagnosis of Spoofed and Masked Events in Wireless Sensor Networks. IEEE
Transactions on Dependable and Secure Computing, 14(3):279–293, 2016.

Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li. Ma-
nipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning.
In IEEE Symposium on Security and Privacy, pp. 19–35, 2018.

Anthony D Joseph, Pavel Laskov, Fabio Roli, J Doug Tygar, and Blaine Nelson. Machine Learning
Methods for Computer Security (Dagstuhl Perspectives Workshop 12371). Dagstuhl Manifestos,
3(1), 2013.

Marius Kloft and Pavel Laskov. Security Analysis of Online Centroid Anomaly Detection. Journal
of Machine Learning Research, 13:3681–3724, 2012.

Pang Wei Koh and Percy Liang. Understanding Black-box Predictions via Influence Functions. In
International Conference on Machine Learning, pp. 1885–1894, 2017.

Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger Data Poisoning Attacks Break Data
Sanitization Defenses. arXiv preprint arXiv:1811.00741, 2018.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based Learning Applied
to Document Recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Shike Mei and Xiaojin Zhu. Using Machine Teaching to Identify Optimal Training-Set Attacks on
Machine Learners. In AAAI, pp. 2871–2877, 2015.

Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets. arXiv preprint
arXiv:1411.1784, 2014.

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee,
Emil C Lupu, and Fabio Roli. Towards Poisoning of Deep Learning Algorithms with Back-
Gradient Optimization. In Workshop on Artificial Intelligence and Security, pp. 27–38, 2017.

Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D Joseph, Benjamin IP Rubinstein,
Udam Saini, Charles A Sutton, J Doug Tygar, and Kai Xia. Exploiting Machine Learning to
Subvert Your Spam Filter. LEET, 8:1–9, 2008.

9

Under review as a conference paper at ICLR 2020

Andrea Paudice, Luis Muñoz-González, Andras Gyorgy, and Emil C Lupu. Detection of Ad-
versarial Training Examples in Poisoning Attacks through Anomaly Detection. arXiv preprint
arXiv:1802.03041, 2018a.

Andrea Paudice, Luis Muñoz-González, and Emil C Lupu. Label Sanitization against Label Flipping
Poisoning Attacks. In Nemesis’18 Workshop on Recent Advancements in Adversarial Machine
Learning, 2018b.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved Techniques for Training GANs. In Advances in Neural Information Processing Systems,
pp. 2234–2242, 2016.

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
and Tom Goldstein. Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks.
In Advances in Neural Information Processing Systems, pp. 6103–6113, 2018.

Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified Defenses for Data Poisoning
Attacks. In Advances in Neural Information Processing Systems, pp. 3517–3529, 2017.

Mingxi Wu and Christopher Jermaine. Outlier Detection by Sampling with Accuracy Guarantees.
In International Conference on Knowledge Discovery and Data Mining, pp. 767–772, 2006.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms. arXiv preprint arXiv:1708.07747, 2017.

Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and Fabio Roli. Is Fea-
ture Selection Secure against Training Data Poisoning? In International Conference on Machine
Learning, pp. 1689–1698, 2015.

Chaofei Yang, Qing Wu, Hai Li, and Yiran Chen. Generative Poisoning Attack Method against
Neural Networks. arXiv preprint arXiv:1703.01340, 2017.

10

Under review as a conference paper at ICLR 2020

A PGAN TRAINING ALGORITHM

We train pGAN following a coordinated gradient-based strategy by sequentially updating the param-
eters of the three components using mini-batch stochastic gradient descent/ascent. The procedure is
described in Algorithm 1. For the generator and the discriminator data points are sampled from the
conditional distribution on the subset of poisoning labels Yp. For the classifier, honest data points
are sampled from the data distribution including all the classes. We alternate the training for the
three components with the i, j and k number of steps for the discriminator, classifier, and generator
respectively. In practice, we choose i, j > k, i.e. we update more often the discriminator and the
classifier. For example, in our experiments we set i, j = 4 and k = 1.

Algorithm 1 pGAN Training

for number of training iterations do
for i steps do

sample mini-batch of m noise samples {zn|Yp}mn=1 from pz(z|Yp)
get mini-batch of m training samples {xn}mn=1 from px(x|Yp)
update the discriminator by ascending its stochastic gradient

∇θD
α

m

m∑
n=1

[logD(xn|Yp) + logD(G(zn|Yp))]

end for
for j steps do

sample mini-batch of m noise samples {zn|Yp}mn=1 from pz(z|Yp)
get mini-batch of m training samples {xn}mn=1 from px(x)
update the classifier by ascending its stochastic gradient

∇θC −
1− α
m

m∑
n=1

[λLC(G(zn|Yp)) + (1− λ)LC(xn)]

end for
for k steps do

sample mini-batch of m noise samples {zn|Yp}mn=1 from pz(z|Yp)
update the generator by descending its stochastic gradient

∇θG
1

m

m∑
n=1

[α log(1−D(G(zn|Yp))− (1− α)LC(G(zn|Yp))]

end for
end for

B SYNTHETIC EXAMPLE: EXPERIMENTAL SETTINGS AND EFFECT ON THE
DECISION BOUNDARY

For the synthetic experiment shown in the paper we sample our training and test data points from
two bivariate Gaussian distributions, N (µ0,Σ0) and N (µ1,Σ1), with parameters:

µ0 =

[
2.5
−1.0

]
,Σ0 =

[
0.8 0.7
0.7 2.0

]
µ1 =

[
0.5
1.0

]
,Σ1 =

[
1.0 0.3
0.3 1.4

]
We trained pGAN with 500 training data points for each class with λ = 0.8 and α ∈ [0, 0.2, 0.8, 1].
We set the number of epochs to 3, 000, the batch-size to 500, and the parameters in Algorithm 1,
i, j, k = 1. For the generator and the discriminator we used one-hidden-layer neural networks with
Leaky ReLU activation functions. For the classifier we used logistic regression with cross-entropy
loss function. The details about the architecture of the three components are detailed in Table 1.

11

Under review as a conference paper at ICLR 2020

Table 1: pGAN architecture for the Synthetic experiment (Notation: SGD stands for Stochastic
Gradient Descent)

Generator Architecture: DNN (2× 20× 2)
Hidden layer act. functions: Leaky ReLU (negative slope = 0.1)
Output layer act. functions: Linear
Optimizer: Adam (learning rate = 10−4)

Discriminator Architecture: DNN (2× 250× 1)
Hidden layer act. functions: Leaky ReLU (negative slope = 0.1)
Output layer act. functions: Sigmoid
Optimizer: SGD (learning rate = 10−3, momentum = 0.9)

Classifier Architecture: Logistic Regression
Loss function LC : Cross-entropy
Optimizer: SGD (learning rate = 10−3, momentum = 0.9)

Figure 7: Synthetic experiment: Distribution of genuine (green and blue dots) and poisoning (red
dots) data points for different values of α. The poisoning points are labelled as green.

In Fig. 7 we show the effect of the poisoning attack on the decision boundary. For testing pGAN we
trained a separate logistic regression classifier with 40 genuine training examples (20 per class) and
adding extra 20% poisoning points (8 samples). We trained the classifier using Stochastic Gradient
Descent (SGD) with a learning rate of 0.01 for 1, 000 epochs. In this case, no outlier detector is
applied to pre-filter the training points. The results in Fig. 7 show that for α = 0 the attack is very
effective, although the poisoning points depicted in red (which are labelled as green) are far from
the genuine distribution of green points. Then, as we increase the value of λ the attack is blunt.
In this synthetic example, the classifier is quite stable: the number of features is very small (two),
and the topology of the problem is simple (the classes are linearly separable and the overlapping
between classes is small) and the classifier is simple. Thus, the effect of the poisoning attack when
detectability constraints are considered, i.e. α 6= 0, is very reduced. Note that the purpose of this
synthetic example is just to illustrate the behaviour of pGAN as a function of λ rather than showing
an scenario where the attack can be very effective.

C EXPERIMENTAL SETTINGS

Here we provide complete details about the settings for the experiments described in the paper.
In Table 2 we show the characteristics of the datasets used in our experimental evaluation. The
parameters for training pGAN for MNIST and FMNIST are shown in Table 3. In all cases, for
pGAN generator we used (independent) Gaussian noise with zero mean and unit variance.

12

Under review as a conference paper at ICLR 2020

Table 2: Characteristics of the datasets used in the experiments

Name # Training Examples # Test Examples # Features
MNIST (3 vs 5) 6, 131/5, 421 1, 010/892 784
MNIST (all) 10, 000 10, 000 784
FMNIST (sneaker vs ankle boot) 6, 000/6, 000 1, 000/1, 000 784

Table 3: pGAN architecture for MNIST and FMNIST

Generator Architecture: DNN (100× 784× 1, 024× 784)
Hidden layer act. functions: Leaky ReLU (negative slope = 0.1)
Output layer act. functions: Tanh
Optimizer: Adam (learning rate = 10−4)
Dropout: p = 0.5

Discriminator Architecture: DNN (784× 1, 024× 512× 1)
Hidden layer act. functions: Leaky ReLU (negative slope = 0.1)
Output layer act. functions: Sigmoid
Optimizer: SGD (learning rate = 10−3, momentum = 0.9)
Dropout: p = 0.5

Classifier Architecture: DNN (784× 1, 024× 512× 1)
Loss function LC : Cross-entropy
Hidden layer act. functions: Leaky ReLU (negative slope = 0.1)
Output layer act. functions: Sigmoid
Optimizer: SGD (learning rate = 10−3, momentum = 0.9)
Dropout: p = 0.5

For MNIST we trained pGAN for 2, 000 epochs using a batch-size of 200, setting i, j = 4 and
k = 1 in Alg. 1. For FMNIST we used similar settings but training for 3, 000 epochs. Finally, the
architecture of the Deep Neural Networks (DNNs) trained to test the attacks is described in Tables
4 and 5.

D GENERATION OF POISONING SAMPLES WITH PGAN

In Figs. 8 and 9 we show samples generated with pGAN for different values of α in MNIST and
FMNIST respectively. The class labels of the poisoning points are 5 and ankle bootfor each of the
datasets. In all cases we can observe that for small values of α (but with α > 0), the generated
examples exhibit characteristics from the two classes involved in the attack, although pGAN tries to
preserve features from the (original) poisoning class to evade detection. For values of α close to 1,
the samples generated by pGAN are similar to those we can generate with a standard GAN.

Table 4: Architecture of the classifiers to test the attacks on MNIST and FMNIST.

Classifier binary MNIST and FMNIST

Architecture: DNN (784× 1, 024× 512× 1)
Loss function LC : Cross-entropy
Hidden layer act. functions: Leaky ReLU (negative slope = 0.1)
Output layer act. functions: Sigmoid
Optimizer: SGD (learning rate = 10−3, momentum = 0.9)
Batch size: 200
Epochs: 2, 000
Dropout: p = 0.5

13

Under review as a conference paper at ICLR 2020

Table 5: Architecture of the classifiers to test the attacks on multi-class MNIST (i.e. using all the 10
class labels).

Classifier multi-class MNIST

Architecture: DNN (784× 1, 024× 512× 10)
Loss function LC : Cross-entropy
Hidden layer act. functions: Leaky ReLU (negative slope = 0.1)
Output layer act. functions: Softmax
Optimizer: SGD (learning rate = 0.01, momentum = 0.9)
Batch size: 500
Epochs: 1, 000
Dropout: p = 0.5

Figure 8: Examples from pGAN on MNIST dataset for different values of α.

14

Under review as a conference paper at ICLR 2020

Figure 9: Examples from pGAN on FMNIST dataset for different values of α.

15

	Introduction
	Related Work
	Poisoning Attacks with Generative Adversarial Nets
	Attacker's Model
	pGAN
	Practical Considerations

	Experiments
	Conclusion
	pGAN Training Algorithm
	Synthetic Example: Experimental Settings and Effect on the Decision Boundary
	Experimental Settings
	Generation of Poisoning Samples with pGAN

