
Under review as a conference paper at ICLR 2020

RECURRENT LAYER ATTENTION NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Capturing long-range feature relations has been a central issue on convolutional
neural networks (CNNs). To tackle this, attempts to integrate end-to-end trainable
attention module on CNNs are widespread. Main goal of these works is to adjust
feature maps considering spatial-channel correlation inside a convolution layer.
In this paper, we focus on modeling relationships among layers and propose a
novel structure, ‘Recurrent Layer Attention network,’ which stores the hierarchy
of features into recurrent neural networks (RNNs) that concurrently propagating
with CNN and adaptively scales feature volumes of all layers. We further introduce
several structural derivatives for demonstrating the compatibility on recent attention
modules and the expandability of proposed network. For semantic understanding
on learned features, we also visualize intermediate layers and plot the curve of
layer scaling coefficients(i.e., layer attention). Recurrent Layer Attention network
achieves significant performance enhancement requiring a slight increase on param-
eters in an image classification task with CIFAR and ImageNet-1K 2012 dataset
and an object detection task with Microsoft COCO 2014 dataset.

1 INTRODUCTION

Concatenating all features in the order of layers in convolutional neural network (CNN) provides
new interpretation, features form a sequence, consisting of features with small receptive fields to
large receptive fields. Interestingly, recurrent neural network (RNN) is one of the representatives
for modeling the sequential information. (Sutskever et al., 2014; Hochreiter & Schmidhuber, 1997).
On the other hands, Recent attempts to utilize attention mechanism for empowering CNN a better
representational power are prevalent (Hu et al., 2018b; Wang et al., 2017).

Motivated by intrinsic characteristics of CNN and RNN, and recent attention works on computer
vision, we present the Recurrent Layer Attention Network (RLA network), which is differentiable
and light-weight while improving the representational power of CNN by a slightly different way
from other attention works in computer vision. The main goal of our work is applying global weights
balance among layers by inheriting the feature hierarchy from previous CNN layers. We accomplish
the goal by two main structural designs: employing our inter-layer attention mechanism to make the
network re-adjust features, and utilizing RNN to memorize the feature hierarchy with concurrently
propagating parallel with CNN.

We hypothesize that RLA network gains additional class discriminability through inheriting the
informative feature hierarchy, such as repetitive appearances of important features or relevant features
with different receptive fields. For example, our network raises the activation of neurons that is
responsible to the whole body of zebra, using a history of features of relatively smaller receptive field.
We demonstrate our hypothesis through the Grad-CAM visualization of intermediate features and
corresponding layer attention value (i.e., the importance of layer.)

We evaluate RLA network on image classification and object detection tasks using benchmark
datasets: CIFAR, ImageNet-1K, and Microsoft COCO. On both tasks, RLA network gets comparable
results with the state-of-the-arts, Squeeze-and-Excitation network (Hu et al., 2018b), and superior
results than original ResNet architecture. Moreover, we suggest the compatibility of the RLA network
by introducing the expansion of RLA network combining our inter-layer attention mechanism toward
recent attention works (Hu et al., 2018b) on ablation study. Incorporating RLA network to recent
attention works (Call these networks as intra-layer attention networks), further variations of RLA
network can be recognized as the generalized attention network considering correlations among both
inside and outside a layer.
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Figure 1: Concept diagram of Recurrent Layer Attention network (RLA network). Through concur-
rently propagating with CNN, RNN stores summarized feature and infers a scaling coefficient of
feature volume considering a feature hierarchy. Recurrently applying this operation for every layer of
CNN, RLA network applies overall weight balance of layers.

We summarize our contributions as follows:

• We propose two new concepts: the weight balancing of CNN features along layers (call it inter-layer
attention), and the connection from shallow CNN layers to deep CNN layers through concurrently
propagating RNN.

• We demonstrate the effectiveness of proposed RLA network for an image classification task and
an object detection task on benchmark datasets. RLA network achieves similar or superior results
compared with leading deep network while requiring small model parameters increase.

• Ablation studies investigate the effectiveness of two proposed concepts and show the compatibility
towards existing intra-attention models, and the further expandability by tuning architectural
designs. We show and discuss how RLA network is learned to interpret images by visualizing
intermediate layers and plotting layer attention values.

• RLA network is easy to implement requiring basic operations of modern deep learning frameworks.

2 RELATED WORK

Attention mechanism in computer vision. Attention mechanism can be interpreted as a methodol-
ogy to bias the allocation of available neurons to the most informative components of input signal (Hu
et al., 2018b). Recent main application of attention mechanism on computer vision is integrating
end-to-end trainable attention module for deep CNNs. These attention modules are divided into two
categories; spatial attention module, and channel-wise attention module. Spatial attention module
learns spatial masks on feature maps for regulating the activations of neurons (Wang et al., 2017;
Zhang et al., 2019a). Channel-wise attention module earns channel-wise distribution and then utilizes
it to refine feature maps (Hu et al., 2018b;a). Several architectural designs both benefitting spatial and
channel-wise attention are also stressed out (Woo et al., 2018; Zhang et al., 2019b; Chen et al., 2017;
Hu et al., 2018a; Chen et al., 2018b).

However, all these spatial and channel-wise attention modules, as we call intra-layer attention, only
handles interaction inside a CNN layer. Therefore, currently suggested modules structurally lack
to model relation among visual features captured in different CNN layers. Therefore, we suggest
inter-layer attention mechanism. Through global weight balancing along CNN layers, our module
models complex relationships among visual features of different receptive fields.

RNN in computer vision. Numbers of computer vision papers utilize RNN for various tasks contain-
ing visual question answering (Ren et al., 2015a; Malinowski et al., 2015), image captioning (Xu et al.,
2015), multi-object classification (Chen et al., 2018a; Wang et al., 2016), and video description (Don-
ahue et al., 2015). They share common ground on the way that exploiting RNN; extracting visual
features from images using pre-trained CNNs, then employ RNN to model sequential procedures
of each task. For example, obtained CNN features per subsequent time frame series are becoming
inputs to belonging RNN units, and RNN conduct a prediction over video recognition and description
tasks (Donahue et al., 2015). However, there are only few works to exploit RNN for directly enhancing
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Figure 2: The structure of Recurrent Layer Attention network (∗ = 1), RLA-vector (∗ = Cl), and
IA+RLA (including a dotted line). ⊗ denotes scale operations belonging to intra-layer attention.

the performance of deep neural networks on vision tasks that do not require sequential decisions
such as image classification or single object detection. One trial (Mnih et al., 2014) propose the deep
network that employs RNN and region attending mechanism, but is non-differentiable.

In contrast to earlier works, we manipulate CNN and RNN to simultaneously affect to each other
at every layer of CNN so that enhancing the representational power of CNN. To the best of our
knowledge, our concept of conveying information from shallow CNN layer to deep CNN layer
through the use of concurrently propagating memory units is the first attempt.

3 RECURRENT LAYER ATTENTION NETWORK

We start by defining several expressions to reduce unnecessary ambiguity. In our works, local patterns
denote class-specific characteristics in images such as a head of a cat, which are collected as a
response of the convolution operation. G denotes a convolution operation alone, or the arbitrary
combinations of convolution operations and other mapping functions, such as residual block (He
et al., 2016) or inception Module (Szegedy et al., 2016). Features are the results of convolution
operation G. Precisely, A = [A1, A2, · · · , AL] and Al = [A1

l , A
2
l , · · · , AC

l ] denote the set of feature
volumes and maps in CNN, where Ac

l ∈ RH×W is the response of c-th convolution filter of the l-th
CNN layer.

RLA network consists of three operations: summarizing features, storing summarized features in
LSTM, and inferring the layer attention. Right after the convolution operation G, RLA module
“summarizes” the feature volume into a statistic, which is a bag of the local patterns in images. Then
it “stores” the context in LSTM hidden units, and finally “infers” the layer attention of how much to
concentrate on feature volume from G. The concept figure describing this procedure is in Figure 1.

The intuition of utilzing RNN is derived from recognizing concatenated feature volumes along
CNN layers as a sequence. Because each element of the feature sequence is a prior information
implying which local patterns emerged, we hypothesize that LSTM hidden units which is carrying
the hierarchy of features can provide meaningful information to CNN such as the importance of
latter layer. Therefore, we utilize the attention mechanism (Xu et al., 2015; Bahdanau et al., 2014) to
empower CNN reducing the activation of overlapped local patterns, or emphasizing the activation of
important local patterns which highly contribute to the class discriminability.

Following subsections are organized as follows. The formulation of RLA network is described in
Subsection 3.1, several architectural derivatives for showing the expandability and the compatibility
toward intra-attention modules are introduced in Subsection 3.2, and the light-weightness of the RLA
network is described in Subsection 3.3.

3.1 FORMULATION

We present our RLA network by describing one forward-passing procedure of l-th layer. The feature
volume Al is yielded by passing Gl:

Al = Gl(Al−1). (1)

Summarizing Feature. Feature volume Al is summarized as the context. Here, the context Sl ∈ RN

signifies a simplified representation of local patterns in the image, and is computed at every layer of
CNN through:

Sl = Fcontext(Al), (2)
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where Fcontext is a combination of feature volume summarizing operation and consequent down-
sampling (or up-sampling) operation. We investigate various types of feature summarizing operations
for finding proper statistics that embeds the feature volume on Section 3.2. In order to feed Sl

into LSTM cell, down-sampling and up-sampling techniques must be adaptively applied per layers,
because RNN requires a fixed size of input to each cell. Note here, all the same feature summarizing
operation is used on every layer.

Storing Context. The context captured in each earlier layer of CNN is recurrently inserted into
LSTM hidden units hl ∈ RM , and selectively embedded in hl through the updating functions of
LSTM with hl−1:

hl = FLSTM (hl−1, Sl). (3)

Here, FLSTM is a LSTM cell updating operation described in (Hochreiter & Schmidhuber, 1997).
The LSTM hidden states and cell states of the first stage, h1 is initialized with zero.

Inferring Layer Attention. Considering the sequence of contexts previously fed into LSTM through
the cascades of convolution operations and memory mechanism of LSTM until l-th layer, hl infers
the layer attention, αl ∈ [0, 1], the scalar value for scaling the feature volume Al:

αl = Fatt(hl) = σ(W2δ(W1hl)), (4)

where Fatt is composed of two fully-connected layers with W1 ∈ RM
r ×M and W2 ∈ R1×M

r . δ and
σ refer to the ReLU (Nair & Hinton, 2010) and sigmoid operations, respectively. Reduction ratio r
denotes compressing ratio of the first fully-connected layer. Finally, the scaled feature volume Ãl is
computed by element-wise multiplication Fscale between αl and all elements of Al:

Ãl = Fscale(αl, Al) = αl ·Al, (5)

3.2 INSTANTIATION

We introduce several derivatives of RLA network based on two key design variables, the attention
structure and the context. All instances are experimented and discussed on Subsection 4.1.

Adoption of intra-layer attention mechanism. We show the compatibility of RLA network toward
intra-layer attention mechanism. Adopting the intra-layer attention module, the scale operation for
c-th channel of feature volume on l-th layer is given by:

Ãc
l = Fscale(αl,F ′scale(Ac

l )) = αl · F ′scale(Ac
l ), (6)

where Ac
l denotes a c-th feature map of Al = [Ã1

l , Ã
2
l , · · · , ÃC

l ], and F ′scale denotes an arbitrary
intra-layer attention mechanism which calibrate a feature volume inside the layer. Figure 2 depicts the
integration of RLA with intra-layer attention module. We call this structure as Intra-layer Attention +
RLA network (IA+RLA). To evaluate the performance of IA+RLA, we select Squeeze-and-Excitation
block (Hu et al., 2018b) as IA module.

Distilling advantages from feature hierarchy. RLA network inherits two advantages: utilizing
feature hierarchy to affect on subsequent features using RNN, and adaptively scaling features
layer by layer. Because both two factors are latently contributing on guiding CNN to have better
representational power, it’s hard to discriminate effects of them. To evaluate different effectiveness of
two factors, we additionally design a structure named RLA-vector. Between previously mentioned
two concepts, RLA-vector only adopt the concept of exploiting feature hierarchy with concurrently
propagating RNN, while not applying inter-layer attention mechanism. Utilizing the intra-layer
attention mechanism in Squeeze-and-Excitation module (SE module) (Hu et al., 2018b), RLA-vector
adjust feature volumes channel-wisely. In the other words, LSTM hidden units of RLA-vector predict
a channel-sized vector, not a layer attention scalar. Through the comparison between Squeeze-and-
Excitation block that does not inherits a feature hierarchy and RLA-vector, we can examine a pure
impact on the usage of co-propagating RNN.

Context: simplified representation of feature volume. We focus on finding the context, a sum-
marized feature volume, that assures preserving the information of local patterns during feature
summarization procedure. Here, we concentrate on employing statistics that only summarize in
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spatial (H ×W ) dimensions of the feature volume, while not exploiting the channel-wise summary
of feature volume. This intuition comes from the existence information of local patterns is less related
to it’s location.

First, we adopt global average pooled feature and global max pooled feature introduced in (Hu et al.,
2018b; Woo et al., 2018) as contexts. Correspondingly, they summarize the spatial dimensions of
the feature volume using average pooling and max pooling. We call these statistics as global average
pooled features (GAP) and global max pooled features (GMP). The meaning of exploiting GAP for
our works is considering the size or multiple appearances of local patterns in spatial dimensions of
feature volume. On the other hand, GMP is used for catching the most salient part of local patterns.

Second, we additionally apply non-linear operations on GAP and GMP by attaching two fully
connected layers, and call them as GAP+MLP and GMP+MLP. These statistics are for modeling the
multiple appearance of similar local patterns at different channels. Seemingly, these statistics have
same structure with SE module (Hu et al., 2018b). However, the goal for exploiting non-linearity
is different. We use non-linearity for producing more informative context, while SE network is for
predicting channel-wise scaling coefficients of the feature volume.

3.3 MODEL COMPLEXITY

Additional model parameters required for utilizing RLA module is given by:

4(M2 +NM +M) +
1

r

L∑
l=1

(M2 +M), (7)

where M is number of neurons in LSTM cell, N is a dimension of context, L is a number of layers
in CNN, and r denotes the reduction ratio. As the formula implies, the additional model complexity
caused by exploiting RLA module doesn’t depend on the depth of backbone CNN. This is by the
virtue of weight-sharing property from RNN. In contrast to ResNet-56 with SE module causes 1.51%
parameters increase, ResNet-56 with our module (RLA) only increases 0.14% parameters compared
to original ResNet-56.

4 EXPERIMENTS AND ANALYSIS

In this section, we conduct ablation experiments for analyzing proposed instances and introduce
experimental results on CIFAR and ImageNet-1K datasets for an image classification task, and
Microsoft COCO datasets for an image detection task. We adopt ResNet (He et al., 2016) as a
backbone CNN architecture for all experiments. Ensuring a fair comparison with our works, we
re-implement the results of ResNet and Squeeze-and-Excitation network. Considering the readibility,
implementation details over experiments are described on Appendix A and the parametric study for
examining the effects of hyper-parameters (i.e., M , N , r) are reported on Appendix B.

4.1 ABLATION STUDY

The main goal of ablation study is demonstrating the expandability of RLA network. Key concepts
illustrated in this part are as follows: the compatibility of RLA toward intra-layer attention mecha-
nism, the impacts of inheriting feature hierarchy using RNN for empowering CNN to have better
representational power, the effectiveness of introduced statistics for context. We adopt ResNet-56 as
backbone structure for the ablation study.

Adopting Channel Attention. Table 1 shows every instances outperform ResNet-56 on CIFAR-10
and CIFAR-100 dataset. Interestingly, we find out a IA+RLA, the integrated structure of intra-layer
attention and our approach, works worse than SE and RLA alone, but still better than ResNet. Note
here, these results might have different tendency belonging to the backbone structure and dataset. The
reason for that is two designs are on the complementary positions. Specifically, intra-layer attention
mechanism adjusts features with similar size of receptive fields, while inter-layer attention mechanism
focus on calibrating features with different size of receptive fields. We leave further experiments and
analysis on this observation as future works.
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Table 1: Ablation experimental results on instances showing the number of parameters and Top-1 er-
rors for CIFAR-10/100 datasets. All ablation experiments utilize ResNet-56 as backbone architecture.

Instance Params CIFAR-10 CIFAR-100

Backbone − 0.862M 6.98 29.19

Baseline RLA 0.864M 6.42 27.15

Channel
attention

SE 0.870M 6.30 28.08
IA+RLA 0.870M 6.42 28.49

RLA-vector 0.876M 6.28 27.33

Context
GMP 0.864M 6.79 28.87

GAP+MLP 0.871M 6.50 28.23
GMP+MLP 0.871M 6.18 28.73

Distillation of Feature Hierarchy. Supporting a key design concept of RLA network, the exploita-
tion of concurrently propagating RNN, we observe RLA-vector significantly works well compared to
SE network. These experimental results claims that utilizing the feature hierarchy through RNN alone
also remarkably aids CNN to interpret an image better. This result is interesting since it suggests the
potential that the proposed concept of inheriting feature hierarchy through RNN can be solely applied
to other neural network architectural designs.

Utilizing Various Context. Various feature summary statistics for the context differently affects on
performance. Similar to the results reported in (Hu et al., 2018b; Woo et al., 2018), GMP reports higher
error than GAP. Interestingly, the results on GAP+MLP and GMP+MLP are different depending on
the dataset. Through this observation, we could recognize considering multiple appearances of local
patterns on different channels in feature volume has negligible impact. We confirm GAP is the most
appropriate context considering the performance increase and the model complexity.

4.2 IMAGE CLASSIFICATION

CIFAR (Krizhevsky & Hinton, 2009) dataset is consist of 50K training images and 10K validation
images. We train networks for 160 epochs with the learning rate is initialized with 0.1 and divided
by 10 when reached 80 and 120 epochs. The training and validation curve over CIFAR dataset are
depicted in Figure 3. Through the optimization schedule, we observe that RLA network achieves lower
training/validation error. Table 2 (left) summarizes experimental results. RLA distinctly surpasses an
original ResNets and most of them also outperform the state-of-the-art channel-wise attention, SE
network. At the view of model complexity, the requiring increase of parameters when applying RLA
module to ResNet-56 is about 11 times smaller than applying SE module.
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Figure 3: Training and validation error curve on the CIFAR-100 dataset of the ResNet-56 base-
bone(left) and ResNet-110 backbone(right).
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Table 2: Image classification results on CIFAR-10/100 dataset(left), ImageNet-1K dataset(top-right).
Object detection results on Microsoft COCO dataset(bottom-right). Correspondingly, Top-1 Errors
for CIFAR, Top-1/5 Errors for ImageNet-1K, and mAP@.5 and mAP@[.5, .95] for Microsoft COCO
are reported. We highlight cases that achieves the highest score on each metric.

Params 4Params CIFAR-10/100

ResNet-20 0.275M − 8.75 / 32.21
SE-20 0.278M 0.86% 7.96 / 31.08
RLA-20 0.276M 0.30% 7.48 / 31.77

ResNet-32 0.471M − 7.51 / 31.90
SE-32 0.475M 0.84% 7.32 / 30.34
RLA-32 0.471M 0.20% 6.83 / 29.65

ResNet-44 0.667M − 7.17 / 31.13
SE-44 0.672M 0.83% 6.64 / 29.54
RLA-44 0.668M 0.17% 6.68 / 28.75

ResNet-56 0.858M − 6.97 / 29.19
SE-56 0.871M 1.51% 6.30 / 28.08
RLA-56 0.859M 0.14% 6.40 / 27.15

ResNet-110 1.735M − 6.61 / 28.95
SE-110 1.755M 1.15% 6.04 / 27.01
RLA-110 1.737M 0.11% 5.92 / 26.40

Params 4Params Top-1/5%

ResNet-18 1.169M − 29.61 / 10.47
SE-18 1.178M 0.76% 28.81 / 9.83
RLA-18 1.190M 1.83% 29.35 / 10.31

ResNet-50 2.555M − 24.84 / 7.55
SE-50 2.808M 9.90% 23.64 / 7.03
RLA-50 2.897M 13.35% 23.83 / 7.08

ResNet-101 4.454M − 22.99 / 6.51
SE-101 4.933M 10.72% 21.93 / 6.14
RLA-101 4.824M 8.29% 22.35 / 6.37

mAP@.5 mAP@[.5, .95]

ResNet-50 47.4 27.7
RLA-50 48.2 27.8

ResNet-101 50.3 30.5
RLA-101 51.2 30.7

ImageNet-1K 2012 (Deng et al., 2009) dataset is comprised of around 1.28M training images and
50K validation images. We train networks for 100 epochs on ImageNet-1K 2012 dataset with the
learning rate is set to 0.1 and divided by 10 every 30 epochs. Data augmentation and optimization
details follows the methods that ResNet (He et al., 2016) adopts. More implementation details are
discussed on Appendix A. Table 2 (top-right) describes the experimental results. We notice that RLA
network outperforms ResNet, but ranks below the SE network on performance. We interpret these
results come from structural limitation of RLA module, when applied to backbone CNNs with large
channels. Giving an example of ResNet-50 as a backbone architecture, RLA scale the network only
using 16 scale coefficients (total numbers of residual blocks), while SE module adjusts the network
using 15104 scale coefficients (total numbers of adjusting channels over all residual blocks). As
mentioned in ablation study, we expect the integration of intra-layer mechanism and RLA network
produces better results.

4.3 OBJECT DETECTION

Microsoft COCO 2014 (Lin et al., 2014) dataset contains 83K training images and 41K validation
images. We adopt Faster R-CNN (Ren et al., 2015b) as a detection method and replace the baseline
network from ResNet to RLA network. We train networks for 490K iterations with ImageNet-1K 2012
pre-trained ResNet and RLA networks. More implementation details are discussed on Appendix A.
Table 2 (bottom-right) summarizes the experimental results. Here, we observe the improvements
from original ResNet baseline, verifying a generalization performance on the object detection task.

5 VISUALIZATION

Grad-CAM visualziation. We hypothesized that RLA network gains additional class discriminability
by considering repetitive appearances of unimportant features or relevant features with different
receptive fields. For demonstrating above hypothesis and semantically understanding the way how
RLA network learned, we applied Grad-CAM visualization (Selvaraju et al., 2017) over intermediate
CNN layers. This visualization technique is of interest to our work since it provides a measure of
importance of each pixel in a feature map towards the overall decision of the CNN (Chattopadhay
et al., 2018).

Grad-CAM visualization is generally applied for the last CNN layer because the last CNN layer
is normally recognized as the most semantically salient layer. Instead, we apply the Grad-CAM
technique for the layers which are located directly before scale operation with layer attention
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ResNet-18(Top), ResNet-18 + RLA(Bottom)
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Figure 4: Grad-CAM visualization on the intermediate layers of RLA network(left) and normalized
layer attention curve(right). Layer attention is layer-wisely normalized by substracting sample mean
and dividing by sample standard deviation. The layer that achieve the highest layer attention value
marked with red border, and a representative of layers that captures class-agnostic local patterns
marked with yellow border.

values (i.e., every last layer of each residual block). Figure 4 depicts the Grad-CAM visualization
results on intermediate layers (left) and normalized layer attention curve (right). Interpreting with
corresponding layer attention value, we could gain several insight about how RLA network induces
their model parameters to be learned.

We select three target class having local patterns of different visual characteristics; racer, ostrich,
freight car. Here, different visual characteristics signify different receptive fields of seemingly salient
local patterns for discriminating target class. Sorting in ascending order, we recognize racer class has
local patterns of smallest receptive fields such as a wing, wheels, ostrich class has local pattern of
medium receptive field, head. Third, freight car class seems to have no specific local pattern or parts
by itself. As results, we observe following interesting facts.

First, RLA network learns to enhance the layer attention value on layers that catch more seemingly
salient features for each target class. The layers marked with red border denote layers that achieve
the highest layer attention value. The first layer that captures simple pattern or small parts of racer
class, the fifth layer that focus to catch head part of ostrich class, the seventh layer that captures
global information or relations among locally ambiguous features for freight car class belongs that
category. Through these observation, we hypothesize that RLA network emphasize the layer that
catches class-specific local patterns for each target class.

Second, deep layers of RLA network tend to learn class-agnostic features after acquiring class-specific
or semantically salient features in previous layers. The layers marked with yellow border denote a
representative that less focus on class-specific local patterns in the images. Giving an example of
ostrich class, the last layer of RLA network tend to learn class-agnostic local patterns, background.
More visualizations on different target classes are on Appendix E. Comparing with original ResNet
keeps allocating more class-specific neurons until deep layers, these observations are quite interesting.
We additionally note that distinctly different highlighting pattern between close layers is because the
residual architecture learns the ‘residual’ while keeping previously obtained features in earlier layers.

Furthermore, This observation accords with the investigation about the class selectivity (Morcos et al.,
2018) on Gather-Excite network (Hu et al., 2018a); the intra-attention mechanism applied CNN has
lower class selectivity in deeper layers compared to original backbone. We understand this finding is
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Figure 5: Mean layer attention curve over layers of RLA-18 (left), RLA-50 (middle), and RLA-
101 (right). Data points signify mean layer attention value calculated on ImageNet 1K validation
dataset. Vertical range on each point denotes an ±1 standard deviation. We mark the first layer of
each bottleneck block as red for visibility.

identically applied to our inter-attention mechanism (i.e., RLA network) and our results support the
results of previous work.

Mean layer attention curve. Figure 5 shows a mean layer attention curve along RLA network layers.
Investigation on layer attention values over RLA network enable deeper understanding on the residual
architecture, and traditional debates on CNN.

First, layer attention values are relatively high in shallow layers and rather lower values in middle
layers. We recognize this observation could be another way for further understanding residual
architecture. The intuition behind the residual learning is to let the layers learn the perturbations
with reference to an identity function, and original paper (He et al., 2016) supports their intuition
via displaying the standard deviation of feature responses along layers. Here, feature responses are
defined as the outcomes (batch-normalized) of residual blocks. Comparing with that, we notice that
our plot provides similar information but more straightforward. Through the observation on layer
attention values decrease along layers, we could reason the intuition of the residual learning as latter
layers learn less important layers.

Second, the variance of layer attention values increase along the layers except the last residual block,
and layers in last residual block of RLA network has the biggest layer attention values that close to 1.
We interpret traditional debates on CNN, shallow layers in CNN learn simple or “low-level” features
while deep layers in CNN learn powerful, semantic, or “high-level” features (Donahue et al., 2014;
Zeiler & Fergus, 2014) supports these observation. Supported by previous investigation, we think
it’s natural that RLA network learns large layer attention close to the latest CNN layers which are
semantically salient, and layer attention values drastically vary on deep layers that contains abstract
features.

6 CONCLUSION

In this paper, we first propose inter-layer attention mechansim to enhance the representational power
of CNN. We structurized our mechanism as ‘Recurrent Layer Attention network’ by utilizing two
new concepts: the weight balancing of CNN features along layers and the link from shallow CNN
layers to deep CNN layers via RNN for directly conveying the feature hierarchy. We introduce
structural derivatives of RLA network: ‘IA+RLA’ for proving an applicability of our work toward
recent intra-layer attention mechanism, and ‘RLA-vector’ for distilling the impacts of proposed two
new concepts. We also precisely select statistics for the context by focusing local patterns preserved
in feature summarization procedure. We evaluate RLA network using CIFAR and ImageNet-1k
2012 datasets for an image classification task, and also verify it’s generalization ability toward an
object detection task via experiments on Microsoft COCO dataset. For demonstrating our hypothesis
that RLA network gains additional class discriminability and semantically understanding how RLA
network induce their model parameters to be learned, we visualize RLA network utilizing Grad-CAM
visualization, plot the layer attention value curve, and report several interesting findings.

For future works, we are planning to integrate our inter-layer attention mechanism to intra-layer
attention mechanism with heavier experiments first, and to utilize the concept of making any kinds of
arbitrary connection from earlier layer to latter layer through RNN in other domains.
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A IMPLEMENTATION

Image recognition task. Data augmentation and optimization details follow He et al. (2016). We
exploit scale augmentation, random-size cropping, and random horizontal flipping, not using the
color augmentation. For optimization, we use nesterov SGD with momentum 0.9 with weight decay
of 0.0001, and initialize weights by the strategy described in He et al. (2015).

Object detection task. For fast implementation on object detection tasks, we utilize ImageNet-
1K pretrained ResNet, SE networt, and RLA network. Implementation details follows the works
investigating the fast implementation of faster R-CNN (Yang et al., 2017; Chen & Gupta, 2017).

B PARAMETRIC STUDY

We present hyperparameters for designs of RLA such as a reduction ratio r of layer attention, a
dimension of context N , the number of neurons M in LSTM cell. Since hyper-parameters are highly
related to model complexity, it’s a crucial issue to select them. In this section, we explain the standard
to select hyper-parameters and demonstrate effects on the performance of the network.

Dimension of Context. Because feature volumes over the layers of CNN have different number of
channels, summarized feature volume must be downsampled or upsampled for being inserted into
LSTM. However, these operations cause an unintended lack or lost of information. Therefore, we
select a dimension of context as a minimum number of downsampling or upsampling to be executed.

Size of LSTM Units. In our works, the size of LSTM hidden units, M , highly affects model and
computational complexity. Following other works to find proper RNN hidden units size by rule-of-
thumb or conducting experiments (Wang et al., 2016; Donahue et al., 2015), we perform experiments
for finding the trade-off among the performance and complexities. Table 3 shows experimental results
on varying M ∈ [2, 4, 8, 16]. Surprisingly, the performance of RLA does not drop as M decrease,
rather increase. We deduce the reason of this observation is because the distributions of contexts are
clearly separable, only small numbers of LSTM hidden units are enough for reducing considerable
bias.

Reduction Ratio. Neither the reduction ratio, r, has golden rule as hidden units. Accordingly, we
conduct experiments on the reduction ratio r ∈ [2, 4, 8, 16], and found out there exists only slight
differences on top-1%-error contrast to experimental results with varying hidden units. Therefore,
we compress model complexity of RLA network by choosing small M which also affects model
performance, and further regulate the complexity using reduction ratio.

C DETAILS ON EXPERIMENTS

Exploiting big M on RLA-vector. Following interesting tendency that smaller M induce per-
formance increase, we conduct an ablation experiments with M = 4. However, we found that
RLA-vector with small M yields prominent performance decrease. We interpret this as, reduced
model capacity by decreasing M can not scale channel-sized vector of each layer in CNN. For the
fair comparison with SE network, we set M = 32 considering that the average size of global average
pooled feature volumes also equals to 32 in SE-ResNet-56.

hyperparameter selection in ImageNet-1K experiments. We observe the tendency on performance
by changing hyperparameter in parametric study. However, This tendency does not always fit in other
dataset too. Considering the data diversity of ImageNet-1K 2012 datasets, we exploit commonly used
RNN hidden units size for ResNet-56, M = 512, as exploited in previous CNN-RNN paper (Wang
et al., 2016). We note that further consideration on differing LSTM hidden units size M possibly
reports better performance even with smaller parameters, as shown in the parametric study on CIFAR
dataset. About reduction ratio, we apply r = 8 for RLA-18/50 and r = 16 for RLA-101.

D STRUCTURE OF RESNET-50 + RLA

We describe the location of connection between CNN and RNN in RLA-50 network. When exploiting
vanila CNN, applying RLA to backbone CNN is straightforward, making connections with concur-
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rently propagating RNN just after every convolution layer of the network. However, it’s confusing to
apply RLA when using residual architecture He et al. (2016). Table 4 shows the structure of backbone
CNN using ResNet-50 and ResNet-50 + RLA. Note here, RNN that concurrently propagating with
CNN is not depicted for ResNet-50 + RLA. In short, RLA network stores the context and infers the
layer attention for scaling features per each residual block.

E GRAD-CAM VISUALIZATION ON VARIOUS OBJECT CLASS

For aiding semantic understanding of how RLA network induces their model paramters to be learned,
we provide Grad-CAM visualization Selvaraju et al. (2017) results of the intermediate feature maps
over the CNN layers. We could find out similar observations debated on the main article on other
target class; the tendency to enhance the layer attention value of layers such that catches the most
semantically important visual features, and another tendency to learn non class-specific features in
deep layers. Figure 6 depicts visualization results on the target class of junco, achidna, killer whales,
leonberg, tiger cat, sleeping bags.

Table 3: Comparison on model performance with different size of LSTM hidden units (M ) and
reduction ratios (r). All parametric experiments exploit a ResNet-56 as backbone architecture, and
the context of "GAP" on CIFAR-10 and CIFAR-100 datasets.

LSTM units size (M ) CIFAR-10/100

2 6.58 / 27.47
4 6.42 / 27.15
8 6.35 / 27.92
16 6.54 / 27.72

Reduction ratio (r) CIFAR-10/100

2 6.32 / 28.13
4 6.58 / 28.06
8 6.49 / 28.84
16 6.54 / 28.12

Table 4: The structure of ResNet50 + RLA, where M denotes the size of LSTM hidden units.

Output size ResNet-50 ResNet-50 + RLA
112× 112 conv, 1× 1, 64, stride 2

56× 56

max-pool, 3× 3, stride 2conv, 1×1, 64
conv, 3×3, 64
conv, 1×1, 256

× 3


conv, 1×1, 64
conv, 3×3, 64
conv, 1×1, 256
fc, [M, 1]

× 3

28× 28

conv, 1×1, 128
conv, 3×3, 128
conv, 1×1, 512

× 4


conv, 1×1, 128
conv, 3×3, 128
conv, 1×1, 512
fc, [M, 1]

× 4

14× 14

conv, 1×1, 256
conv, 3×3, 256
conv, 1×1, 1024

× 6


conv, 1×1, 256
conv, 3×3, 256
conv, 1×1, 1024
fc, [M, 1]

× 6

7× 7

conv, 1×1, 512
conv, 3×3, 512
conv, 1×1, 2048

× 3


conv, 1×1, 512
conv, 3×3, 512
conv, 1×1, 2048
fc, [M, 1]

× 3

1× 1 global average-pool, 1000-d, fc, softmax
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ResNet-18(Top), ResNet-18 + RLA(Bottom)
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Figure 6: Grad-CAM visualization on the intermediate layers of RLA network. Target class of Junco,
achidna, killer whales, leonberg, tiger cat, sleeping bags(top to bottom) are depicted.
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