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ABSTRACT

Deep artificial neural networks can achieve an extremely small difference between
training and test accuracies on identically distributed training and test sets, which
is a standard measure of generalization. However, the training and test sets may
not be sufficiently representative of the empirical sample set, which consists of
real-world input samples. When samples are drawn from an underrepresented or
unrepresented subset during inference, the gap between the training and inference
accuracies can be significant. To address this problem, we first reformulate a
classification algorithm as a procedure for searching for a source code that maps
input features to classes. We then derive a necessary and sufficient condition for
generalization using a universal cognitive similarity metric, namely information
distance, based on Kolmogorov complexity. Using this condition, we formulate an
optimization problem to learn a more general classification function. To achieve
this end, we extend the input features by concatenating encodings of them, and
then train the classifier on the extended features. As an illustration of this idea, we
focus on image classification, where we use channel codes on the input features
as a systematic way to improve the degree to which the training and test sets are
representative of the empirical sample set. To showcase our theoretical findings,
considering that corrupted or perturbed input features belong to the empirical
sample set, but typically not to the training and test sets, we demonstrate through
extensive systematic experiments that, as a result of learning a more general
classification function, a model trained on encoded input features is significantly
more robust to common corruptions, e.g., Gaussian and shot noise, as well as
adversarial perturbations, e.g., those found via projected gradient descent, than the
model trained on uncoded input features.

1 INTRODUCTION

Generalization error in deep learning is typically defined as the difference between training and
test errors measured on identically distributed training and test sets. This traditional approach
fails to take into account how representative these sets are of the empirical sample set from which
input samples are drawn at inference time. When the training and test sets are not sufficiently
representative of the empirical sample set, the difference between training and inference errors can be
significant, thus rendering the learned classification function ineffective. The lack of the latter kind
of generalization results in unreliable decisions, raising questions about how robust, fair, and safe a
learned classification function is (Varshney & Alemzadeh, 2017).

A natural question then arises: is there a necessary and sufficient condition ensuring that deep learning
classifiers generalize in this broader sense? If so, how can this condition be satisfied in a real-world
setting? To answer these questions, we draw on algorithmic information theory, which proposes
a complexity measure, Kolmogorov complexity, as the absolute information content of any object,
e.g., a computer program, function, or set. After deriving a necessary and sufficient condition for
generalization using the information distance (Bennett et al., 1998), which is a universal cognitive
similarity metric based on Kolmogorov complexity, and formulating an optimization problem for
generalization, we turn our attention to coding theory in order to learn a more general classification
function by extending the input features to a classifier with systematically generated encodings of the
original features.
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1.1 OUR CONTRIBUTIONS

For a classification task, we assume that there exists a true classification function. Given training and
test sets, neither of which are sufficiently representative of the the empirical sample set from which
input samples are drawn during inference, a learning algorithm is asked to find the true classification
function. In this work, we study how well the learned classification function generalizes with respect
to the true classification function. In other words, we study the problem of how to minimize the
generalization error, which we define as the difference between the training error and inference error,
as opposed to the difference between the training error and test error.

Universal cognitive similarity metric. In order to find a necessary and sufficient condition for
generalization in deep learning, we use the normalized information distance. A key finding in
algorithmic information theory is that the normalized information distance is a universal cognitive
similarity metric: the normalized information distance between two objects minorizes any other
admissible distance up to an additive logarithmic term (Bennett et al., 1998). In other words, although
different learning algorithms will pick up on different dominating input features, depending on the
classification task that they perform, every such dominating feature will be detected by the normalized
information distance.

Classification function as a source code. We formulate a learning algorithm as a procedure for
searching for a source code based on training examples. We show that the learned classification
function is a lossy compressor: the classifier discards some information. The input features thus
cannot be recovered from the class label. We use the normalized information distance between the
true source code (true classification function) and the learned source code (learned classification
function) to find a necessary and sufficient condition ensuring generalization, and then formulate the
problem of learning a more general classification function as an optimization problem.

Compression-based similarity metric. The normalized information distance provides the theo-
retical tools needed to learn more general source codes, but in practice the normalized information
distance is not effectively computable. We therefore use a compression-based similarity metric (Cili-
brasi & Vitányi, 2005) based on a real-world compressor to approximate this theoretical construct.
Specifically, we use the normalized compression distance between the true source code and learned
source code to derive an effectively computable condition on the compressed size of the learned
source code to identify encodings of the input features that help to learn a more general source code.

Encoding input features. In a typical communication system, a source code is followed by a
channel code which is then followed by a physical channel. In this paper, the learned source code
(learned classification function) is preceded by one or more input codes that help ensure the learned
classifier is more general by generating relations between input features that are not captured by the
set of available input features. In order to showcase our findings for a specific classification task,
we use channel codes on the input features for CIFAR-10 image classification. Precisely, we use
a four-dimensional (4-D) five-level pulse-amplitude modulation (5-PAM) trellis-coded modulation
(TCM) scheme (Ungerboeck, 1982; Hatamian et al., 1998; IEEE, 2015) to systematically generate
multiple encodings of the set of available input features. In doing so, we enable the deep neural
network (DNN) to learn information from the empirical sample set which it could not learn from the
uncoded input features alone. The generalization error is thereby reduced.

The impact of generalization. Through image classification experiments, we show that a model
trained on arbitrarily encoded input features is significantly more robust to common corruptions, such
as Gaussian noise and shot noise, and to adversarial perturbations, like those generated via projected
gradient descent (PGD) (Madry et al., 2018), than a model trained on uncoded input features.

The role of code design. The code used on the input features can be designed in various ways
for a classification task, and designing input codes is an important step to learning a more general
classification function from the set of available input features. We show that merely increasing the
number of input channels of a DNN does not confer any robustness to Gaussian noise or to PGD.
How to design efficient input codes to build encoded DNNs is an intriguing research direction for
achieving generalization in deep learning.
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1.2 RELATED WORK

The literature on generalization, e.g. (Zhang et al., 2017; Neyshabur et al., 2017), is largely concerned
with minimizing the generalization error, defined as the difference between training and test errors
measured on identically distributed training and test sets. Minimizing this form of generalization
error does not address the problem of generalizing to input samples drawn from an empirical sample
set of which the training and test sets are not sufficiently representative, as we do herein.

There is, however, a substantial body of literature on domain generalization (Muandet et al., 2013; Li
et al., 2017; Motiian et al., 2017; Shankar et al., 2018), which aims to better generalize to unknown
domains by training on samples drawn from different domains, not a single source, which is a
limitation that our work does not have. In this work, there is no need to draw training samples from
a different domain. We show that encoding the given training set enables a DNN to learn different
relations between features that it could not learn from the uncoded training set alone.

There has also been much work on domain adaptation (Daumé III & Marcu, 2006; Saenko et al.,
2010; Ganin & Lempitsky, 2015; Tzeng et al., 2017; Sun & Saenko, 2016; Morerio et al., 2018;
Volpi et al., 2018a) that addresses the problem of generalization to a priori fixed target domains,
which is a different approach from ours because these algorithms need to access samples from
the target distributions during an adaptation phase. Importantly, our approach does not require
accessing new samples during an adaptation phase in order to achieve generalization to the empirical
sample set. Similar to the domain adaptation work, there has been some work on adversarial training
(Goodfellow et al., 2015; Lee & Raginsky, 2018; Sinha et al., 2018), which aims to achieve robustness
(Zhang et al., 2019) to adversarial perturbations by using training samples perturbed by a specific
adversarial-perturbation method. Adversarial training can be computationally costly because it
requires generating adversarially perturbed training samples in each epoch of training, unlike in our
work where input encodings need to be generated only once before training. Furthermore, as there are
numerous adversarial-perturbation methods (Goodfellow et al., 2015; Kurakin et al., 2017b; Madry
et al., 2018), an adversarially trained DNN does not necessarily generalize well to samples subjected
to an adversarial perturbation method that was not used for training (Madry et al., 2018).

There is also a substantial body of work on data-augmentation techniques (LeCun et al., 1995; Volpi
et al., 2018b), which perform simple label-preserving transformations of the training samples to
provide a DNN with additional data points to learn from. In this work, we do not generate new
samples to increase the diversity of the training set; instead, we take a theoretically-grounded approach
to extend the input features with their encodings in order to enable a DNN to learn a sufficiently
complex classification function from the set of available input samples.

2 ALGORITHMIC INFORMATION-THEORETIC APPROACH TO DEEP LEARNING

Our goal is to minimize the generalization error for a classification task, defined as the difference
between training error and inference error, given a training set and a test set, both of which are
not sufficiently representative of the empirical sample set from which input samples are drawn at
inference time. To accomplish this goal, we derive a necessary and sufficient condition under which a
classifier will generalize well, and, based on that condition, cast the search for a classifier with good
generalization as an optimization problem. Our approach requires that we describe and compute
the absolute information content of any object, e.g., a computer program, function, or set, in order
to determine which of a pair of learned classification functions contains more information of the
true classification function. The appropriate tool here is a concept in algorithmic information theory:
Kolmogorov complexity. Defining the amount of information in individual objects in terms of their
Kolmogorov complexity has the advantage that it refers to these objects in isolation, not as outcomes
of a known random source. In contrast, quantifying the amount of information in individual objects
based on their Shannon entropy requires that these objects be treated as members of a set of objects
with an associated probability distribution. This understanding is fundamental to our study because
applying Shannon entropy to “an estimate of the quantity of information contained in a novel or in the
translation of a novel into another language relative to the original” would not be clear (Kolmogorov,
1983). As a DNN may be employed to learn a classification function from a set of features contained
in such an object as, for example, a document, image, video, or sound, we study the Kolmogorov
complexity of the set of input features, model, and outputs of the DNN.
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2.1 NORMALIZED INFORMATION DISTANCE AS UNIVERSAL COGNITIVE SIMILARITY

In our quest to find a condition ensuring our running definition of generalization, we require a distance
function that measures how similar two objects are in any aspect so we can decide which of two
learned classification functions is closer to the true classification function. The closer a learned
classification function is to the true classification function, the better its generalization error. This
distance function should satisfy the metric (in)equalities in order for it to have a meaning in the
context of generalization. For example, this distance function would have to be symmetric; i.e., the
distance from object a to object b must be equal to that from object b to object a.

The normalized information distance (Bennett et al., 1998) between objects a and b, defined as

DI(a, b) =
max(K(a|b),K(b|a))
max(K(a),K(b))

(1)

where K(a) denotes the Kolmogorov complexity of object a and K(a|b) denotes the Kolmogorov
complexity of object a given b, satisfies the metric (in)equalities and is also a universal cognitive
similarity metric because DI(a, b) minorizes all other normalized admissible distances up to a
negligible additive error term. This means that all effective similarities between a pair of objects
are discovered by the normalized information distance; i.e., two objects that are close according
to some effective similarity are also close according to the normalized information distance. The
main intuition behind normalizing the information distance max(K(a|b),K(b|a)) is that two larger
objects that differ by a small amount are closer than two smaller objects that are different by the same
amount: the absolute difference between two objects does not measure similarity as such, but the
relative difference does.

2.2 DEEP-LEARNING CLASSIFIER AS A SOURCE CODE

A successful DNN distills information useful for its classification task T from its input features ~x. In
doing so, the DNN has to learn a classification function f(.) from the set Xn of its input features to
an m-ary alphabet A of classes u in such a way that some information in its input features is given
less weight in determining its relevance to the class decision û, and then entirely discarded by the
argmax operation (Goldfeld et al., 2019). A deep learning classifier is thus acting as a source code
C. Proofs of the following mathematical statements are given in Appendix A.

Lemma 1. For a classification task T wherein each n-dimensional input sample ~x is mapped to a
class u drawn from an m-ary signal alphabet A, the true output function f(·) of a learning algorithm
is a source code C for a multivariate random variable ~X .

Lemma 1 reformulates a learning algorithm as a procedure for searching for a source code C for a
multivariate random variable ~X , which compresses the values that this random variable takes, namely
the input samples ~x. When a DNN generalizes well with respect to the true classification function
f(·), it is able to decide which information in its input features is more relevant to making a particular
class decision. A DNN is a lossy compressor when the absolute information content of any of its
input samples ~x is larger than that of the class u to which it is mapped.

Corollary 1. The true source code C = f(·) of a learning algorithm used for the classification task
T is a lossy compressor when the Kolmogorov complexity K(~x) of one of its input samples is larger
than the number of bits required to represent the corresponding class u.

Corollary 1 formalizes a deep learning classifier as a lossy compressor, so the source code C that
corresponds to the true output function f(·) is not uniquely decodable; i.e., its input samples ~x cannot
be recovered from the class u to which they are mapped. A DNN can be trained to learn a source
code that generalizes well with respect to the true source code, but first we will analyze the similarity
between these two source codes by using the normalized information distance.

2.3 ACHIEVING GENERALIZATION IN DEEP LEARNING

The normalized information distance

DI(C, C̃) =
max(K(C|C̃),K(C̃|C))

max(K(C),K(C̃))
, (2)
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Figure 1: Encoded model architecture.

between the true source code C and learned source code C̃ reveals how general C̃ is with respect to
C. A necessary and sufficient condition ensuring that learned source code C̃0 is more general than
learned source code C̃1 with respect to the true source code C is

DI(C, C̃0) < DI(C, C̃1), ∀C̃0 6= C̃1. (3)

The normalized information distance DI(C, C̃) between the true source code C and the learned
source code C̃ must thus be minimized in order to minimize the generalization error.

Theorem 1. When a learning algorithm used for the classification task T finds a suboptimal source
code C̃ instead of the true source code C, the optimization problem for the generalization of C̃ is
minC̃(DI(C, C̃)) = minC̃ max(K(C|C̃),K(C̃|C)).
Theorem 1 has formulated the optimization objective for generalization as the minimization of
DI(C, C̃) and states that to achieve generalization we should make the learned function sufficiently
complex for the classification task T . Theorem 1 states that the Kolmogorov complexity K(C|C̃) of
the program that computes how to go from the learned source code C̃ to the true source code C or
the Kolmogorov complexity K(C̃|C) of the program that computes how to go from the true source
code C to the learned source code C̃, whichever is larger, must be minimized in order to minimize
generalization error. Thus, the goal is to increase the complexity of the learned source code C̃, but
not beyond the complexity of the true source code C. Therefore, Occam’s first razor (Domingos,
1999) still holds: simpler classifiers generalize better than complex ones. However, a classifier that
does not perform well on its empirical sample set is too simple for its classification task. Ideally,
the learning algorithm would learn the true source code C, achieving the best possible performance
metrics determined by its classification task T . In practice, because the learning algorithm will
see only a small subset of the possible inputs at training time, the learned source code C̃ will be a
partial function of the true source code C at perfect training accuracy (that is, when the classifier has
sufficient capacity to memorize the training samples (Zhang et al., 2017)).

In this work, we increase the complexity of the learned source code C̃ by generating I encodings
E0, E1, . . . EI−1 of the available input features ~xS that capture relationships between the features
which are not learned well from the original features, and then append these encodings to the original
features. By providing a different view of the relations between the features, the encodings Ei help
the learning algorithm to learn a more complex source code C̃E whose normalized information
distance DI(C, C̃E) to the true source code C is less than DI(C, C̃). This results in learning a more
general source code.

Theorem 2. For classification task T , a more general suboptimal code C̃E is learned from the
concatenation {~xS, Ei(~xS)}, where Ei : Xn

S → Yn
S is an encoding of the input sample ~xS such that

Yn
S 6⊆ Xn

S .

The effective capacity of several successful DNN architectures is sufficiently large to memorize the
set Xn

S of available input samples (Zhang et al., 2017). Any encoding Ei : Xn
S → Yn

S , where Yn
S

is the set of available encoded samples such that Yn
S 6⊆ Xn

S , when concatenated with the uncoded
input samples ~xS, thus increases the Kolmogorov complexity of the learned source code, which is
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now called C̃E . The task of the source code is to find the most efficient representation of its input
data. In a typical communication system, the source code compresses the input, then a channel code
adds redundancy to guard against noise in the channel, then the encoded information is transmitted
over the physical channel. The design goal for the source and channel codes is to achieve the channel
capacity (maximum mutual information between the channel input and output). In contrast, Theorem
2 considers a learning system in which an input code is followed by a learned source code, the
classification function, and the design goal is for the composition of the input and source codes to
generalize as well as possible (see Figure 1). In other words, in a learning system the “physical
channel” precedes the source code, and it can be seen as a process whereby the empirical sample
set is reduced to the set of available input samples and/or whereby common corruptions, such as
Gaussian noise, and adversarial perturbations, such as those generated by PGD, are applied to the set
of available input samples. Because the “physical channel” comes first in a learning system, there
is no access to the set of information bits. Only a subset of these information bits can be accessed,
which which may have been subjected to common corruptions or adversarial perturbations. It is
therefore crucial for a learning algorithm to compress its features while retaining information useful
for its classification task. One way to accomplish this is to extend the input features with encodings
that capture relations between features that are useful for classification and not captured well by the
original set of input features.

2.4 APPROXIMATING NORMALIZED INFORMATION DISTANCE BY NORMALIZED
COMPRESSION DISTANCE

The normalized information distance is based on the notion of Kolmogorov complexity, which is not a
partial recursive function; i.e., it is not effectively computable. While we can use normalized informa-
tion distance to analyze whether a source code C̃E learned from the concatenation {~xS, Ei(~xS)} of
the encoded input samples Ei(~xS) with the uncoded input samples ~xS is more general with respect to
the true source code C, in practice we may need to approximate the normalized information distance
with the normalized compression distance, so we can determine which of any pair of source codes is
more general with respect to the true source code C.

Based on a real-world compressor, the normalized compression distance (Cilibrasi & Vitányi, 2005)

DC(C, C̃E) =
Z({C, C̃E})−min(Z(C), Z(C̃E))

max(Z(C), Z(C̃E))
, (4)

approximates the normalized information distance DI(C, C̃E), where Z is a real-world compres-
sor. Thus, the generalization condition and minimization of DI(C, C̃E) can be cast in effectively
computable forms.

Proposition 1. For the classification task T , DI(C, C̃E) < DI(C, C̃) ⇐⇒ Z(C̃E) > Z(C̃).

Proposition 1 states for classification task T that the compressed size Z(C̃E) of the source code C̃E

learned from the concatenation {~xS, Ei(~xS)} of the encoded input samples Ei(~xS) and the uncoded
input samples ~xS is larger than the compressed size Z(C̃) of the source code C̃ learned from the
uncoded input samples alone ~xS.

Proposition 2. When a learning algorithm used for classification task T finds a suboptimal source
code C̃E instead of the true source code C, the effectively computable optimization problem for the
generalization of C̃E is minC̃E

DC(C, C̃E) = maxC̃E
Z(C̃E),∀C̃E : Z(C̃E) < Z(C).

Proposition 2 shows that the compressed size Z(C̃E) of the source code C̃E learned from the
concatenation {~xS, Ei(~xS)} of the encoded input samples Ei(~xS) and the uncoded input samples ~xS
must be maximized until it reaches the compressed size Z(C) of the true source code C to learn the
most general source code with respect to the true source code C for the classification task T .

2.5 USING CHANNEL CODES ON INPUT FEATURES FOR IMAGE CLASSIFICATION

A channel encoder generates encodings from its input features that enable a classifier to learn relations
between these features not captured by the set of available input samples. Concatenated together,

6



Under review as a conference paper at ICLR 2020

4-D
5-PAM
TCM

Symbol
Mapper

Bit
Mapper

Ei(~xS)

encoded
input

features
×2 ×2

×2 ×2

flattening input features

Convolutional
Encoder

Figure 2: Flattening and encoding input features.

these features are then input to a model to produce a class decision. For example, we use a 4-D
5-PAM TCM scheme (Ungerboeck, 1982; Hatamian et al., 1998; IEEE, 2015) as a systematic way to
generate multiple encodings of input features.

The channel encoder first flattens the input features as shown in Figure 2. It divides them into 2× 2
patches of features, then, starting from the upper left feature and ending at the lower left feature, input
features are ordered in a sequence going in the clockwise direction. The features are traversed twice
in order to avoid the initialization length of the channel code. This particular flattening scheme is
used because it focuses on local relations between features. Exploration of other flattening schemes
is left for future research.

The features in the CIFAR-10 dataset are represented by eight bits. The flattened features are fed
to the convolutional encoder, which produces one extra bit out of the two least significant bits of
the eight bits representing each feature. The 4-D 5-PAM TCM symbol mapper then maps each
nine bits into four equidistant 5-PAM symbols, which are then mapped to 12 bits by the bit mapper.
The bit mapper uses different symbol-to-bit mappings to generate different encodings of the input
features, and the matrix used for generating these encodings is given in Appendix B.1. Each encoding
has the same size as the original input samples. Figure 3 shows three CIFAR-10 images and four
of their encodings, which are arbitrarily chosen. As seen in this figure, each encoding conveys a
different view of the input features, which helps the source code (learned classification function)
model relations between the features that are useful for the image classification task. Note that using
channel codes on the input features is not a data-augmentation technique: the encodings are appended
to the input features, not treated as new input samples. These encodings enable the classifier to learn
from the set of available input samples a source code that is sufficiently complex for its classification
task. As in a data-transmission or data-storage system, the source code is designed for the most
efficient representation of the data, which is the set of available input features for the classification
task at hand, and the channel code is independently designed for the channel. This combination is
key to achieving generalization in deep learning, and how best to design a channel code for a given
classification task is an intriguing future research direction.

3 EXPERIMENTAL RESULTS

Let the set of available input samples subjected to common corruptions and adversarial perturbations
belong to the empirical sample space from which input samples are drawn during inference. To
show that using channel codes on the input features results in learning a more general source code
with respect to the true source code, we conduct experiments on the CIFAR-10 and CIFAR-10-
C (Hendrycks & Dietterich, 2019) datasets to show increased robustness to common corruptions
and adversarial perturbations. All models are trained in PyTorch with 16 random initializations. For
CIFAR-10 and CIFAR-10-C, we train an uncoded VGG-11 model, encoded VGG-11 models, and an
uncoded ResNet-18 model over 450 epochs with a batch size of 128 and with a dynamic learning rate
equal to 0.1 until epoch 150, 0.01 until epoch 250, and 0.001 until epoch 450 (Kuang, 2019). A test
accuracy of 92.54% is achieved for the uncoded VGG-11 model, and 92.12%, 91.45%, and 90.19%
for the VGG-11 model with 2, 8, and 32 encodings, respectively. The uncoded ResNet-18 model,
which is used for transfer attacks, achieves 95.34% test accuracy.
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Uncoded Encoding 0 Encoding 1 Encoding 2 Encoding 3

Figure 3: CIFAR-10 uncoded and encoded images. Top, middle, and bottom rows correspond to red,
green, blue channels, respectively.
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Figure 4: The uncoded VGG-11 model and encoded VGG-11 models tested on the corrupted samples
in the CIFAR-10-C dataset.

In all experiments conducted on the encoded VGG-11 models, we use arbitrary encodings. Increasing
the number of encodings may reduce the generalization error, but at the expense of increased run
time. However, encoding the training and test samples is a one-time process that can be done prior to
training, unlike adversarial training, which requires generating perturbed input samples in each epoch.
In Appendix B.3, we show that increasing the number of input channels does not, as such, confer
robustness to Gaussian noise or to PGD. Designing efficient input codes for a given classification task
considering the generalization error and the required number of encodings is a direction for future
research.

3.1 ROBUSTNESS TO COMMON CORRUPTIONS

The set of available input samples may be subjected to common corruptions before reaching a real-
world image classifier. For example, Gaussian noise can appear in low-lighting conditions, and shot
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Figure 5: Black-box and white-box attacks on the uncoded VGG-11 model and encoded VGG-11
models on the CIFAR-10 dataset. Robustness is tested with samples perturbed by the black-box
boundary attack (left) and white-box PGD attack (right).
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Figure 6: Transfer attacks on the uncoded VGG-11 model and encoded VGG-11 models on the
CIFAR-10 dataset. Robustness is tested with samples generated by the uncoded VGG-11 model (left)
and ResNet-18 model (right) by using the PGD attack.

noise is caused by the discrete nature of light. To show robustness to such corruptions, we conduct
experiments on the CIFAR-10-C and CIFAR-10 datasets. We use four common corruptions in our
experiments, namely Gaussian noise, shot noise, impulse noise, and speckle noise.

The CIFAR-10-C dataset consists of the 10,000-sample CIFAR-10 test set subjected to five different
noise levels, called severity, so it has 50,000 samples in all. As shown in Figure 4, increasing the
number of arbitrary encodings concatenated to the original input features increases robustness to
Gaussian noise, shot noise, impulse noise, and speckle noise. For example, when test samples are
subjected to impulse noise with a severity level of 4, we see a sharper increase in the number of test
errors for the uncoded VGG-11 model than that for the VGG-11 model with 32 encodings. Note that
the vertical axis in these plots is cumulative: the number of test errors made at the previous severity
level is added to that at the current severity level.

To show the robustness of the encoded VGG-11 models to Gaussian noise at levels beyond those
in the CIFAR-10-C dataset, we add Gaussian noise to the CIFAR-10 test set with signal-to-noise
ratios from 25 to 0 dB. In Figure 7 in Appendix B.2, we show that increasing the number of arbitrary
encodings concatenated to the input features significantly increases robustness to Gaussian noise.
For example, at a signal-to-noise ratio of 12 dB, the test accuracy of the VGG-11 model with 32
encodings is 61.15%, whereas that of the uncoded VGG-11 model is 21.49%.

3.2 ROBUSTNESS TO ADVERSARIAL PERTURBATIONS

To show robustness to adversarial perturbations without adversarial training, we conduct experiments
on the CIFAR-10 dataset. We use the black-box boundary attack (Brendel et al., 2018), the white-box
PGD attack (Madry et al., 2018), and transfer attacks from an uncoded VGG-11 and an uncoded
ResNet-18 model to evaluate the adversarial robustness of the encoded VGG-11 models. The white-
box PGD attacks use the gradient of the loss function with respect to the uncoded input features in
the encoded VGG-11 models because the channel encoder is part of the encoded VGG-11 models.

For the CIFAR-10 experiments, we use different numbers of encodings, and robustness to all
adversarial perturbations in our experiments systemically increased with an increasing number of
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Table 1: Comparison of the encoded model with prior defense models under white-box PGD attacks
with 20 iterations, a step size of 0.003, and an epsilon of 0.031 (`∞) on the CIFAR-10 dataset.

Reference Defense type Adversarial training Atest Ainference

Kurakin et al. (2017a) regularization Yes 85.25% 45.89%
Madry et al. (2018) robust optimization Yes 87.30% 47.04%
Wong et al. (2018) robust optimization Yes 27.07% 23.54%
Zhang et al. (2019) regularization Yes 84.92% 56.61%

This work channel coding No 90.19% 25.39%

arbitrary encodings concatenated to the input features. Figure 5 shows the results for the black-box
boundary and white-box PGD attacks. On the left plot, we see that the encoded VGG-11 models
are significantly more robust to the boundary attack than the uncoded VGG-11 model. For example,
at a normalized `2 distance of 0.01, an inference accuracy of approximately 50% is achieved by
the VGG-11 model with 32 encodings, whereas the inference accuracy of the uncoded VGG-11
model already drops to 0% at an `2 distance much closer to 0. The plot on the right shows the
increase in robustness to white-box PGD starting from a random perturbation around the natural
example and using 20 iterations and a step size of 0.003. For example, at an `∞ distance of 0.031, the
inference accuracy of the VGG-11 model with 32 encodings is 25.39% while keeping a test accuracy
of 90.19%. To test the robustness of the encoded VGG-11 models against transfer attacks using the
same PGD settings, we generate adversarial examples on the uncoded VGG-11 model and uncoded
ResNet-18 model. As before, the encoded VGG-11 models show more robustness with an increasing
number of encodings as shown in Figure 6. For example, when adversarial examples generated on
the ResNet-18 model are used to test the robustness of the uncoded VGG-11 model and the encoded
VGG-11 models, at an epsilon of 0.2 (`∞), the inference accuracy of the uncoded VGG-11 model is
19.83%, whereas that of the VGG-11 model with 32 encodings is 51.86%.

Table 1 compares the encoded VGG-11 model with previously published defenses on the CIFAR-10
dataset (Zhang et al., 2019). The adversarial attack type used for all the works listed in this table
is the white-box PGD starting from a random perturbation around the natural example, using 20
iterations, a step size of 0.003, and an epsilon of 0.031 (`∞). It can be observed from this comparison
that this work achieves a sizable inference accuracy Ainference of 25.39% while keeping the highest
test accuracy Atest of 90.19% among all the works listed in this table, and importantly does not use
adversarial training. That is, the defense method, which in fact we consider as a generalization
method, achieves these performance figures without training on adversarially perturbed input samples.
Generating input encodings can be done just once prior to training. In contrast, adversarial training
requires generating adversarial examples in each epoch, which becomes expensive when an iterative
method such as PGD is used (Madry et al., 2018). That being said, if adversarial robustness is a
primary goal, combining input encodings with adversarial training could be a viable option.

4 CONCLUSION

In this work, we presented a theoretical and experimental framework for defining and understanding
generalization in deep learning defined as the difference between training and inference errors. The
theoretical findings and experimental results show that a learned classification function must be
sufficiently complex for a classification task in order to be closer to the true classification function.
Another insight from this study is that concatenating encodings of the input features to the original
input features helps to achieve generalization in deep learning by enabling the classifier to learn
relations between features not captured by the original inputs. Experiments demonstrate that a model
trained on arbitrarily encoded input features is more robust to common corruptions and adversarial
perturbations as a result of learning a more general classification function and that using more
encodings may be beneficial to minimize the generalization error. Consequently, designing input
codes assisting a DNN to learn a more general classification function with a minimum number of
encodings poses an intriguing research direction to achieve reliability in machine learning.
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A PROOF OF MATHEMATICAL STATEMENTS

Proof of Lemma 1. For classification task T , a learning algorithm is asked to produce the true
output function f(·) : Xn → A. There exists a source code C for a random variable ~X , which is also
a mapping from the sample space Xn of ~X to the m-ary signal alphabet A from which a class u is
drawn. The true output function f(·) is equivalent to the source code C for the random variable ~X
because their domain Xn and codomain A are equal and the image of both functions is the same for
each input sample ~x in the domain Xn.

Proof of Corollary 1. If the Kolmogorov complexity K(~x) of an input sample ~x is larger than the
number of bits required to describe the class u to which it is mapped, which is at most dlog2me bits,
then some information about the input sample ~x is lost. Satisfying this condition, the true source code
C is a lossy compressor.

Proof of Theorem 1. The normalized information distance

DI(C, C̃) =
max(K(C|C̃),K(C̃|C))

max(K(C),K(C̃))
(5)

is a universal cognitive similarity metric that minorizes all other admissible distances up to a negligible
additive error term. This means that decreasing the normalized information distanceDI(C, C̃) ensures
that the true source code C and the learned source code C̃ are more similar; i.e., the learned source
code C̃ is more general with respect to the true source code C. In a real-world setting, because the
empirical sample space Xn may be too large, the learning algorithm sees an input sample ~xS drawn
from a subset Xn

S of Xn. Because a sufficiently high-capacity neural network can memorize its input
samples (Zhang et al., 2017), the Kolmogorov complexity of the true source code is larger than that
of the learned source code: i.e., K(C) > K(C̃). Therefore,

min
C̃

(DI(C, C̃)) = min
C̃

max(K(C|C̃),K(C̃|C)) (6)

is an optimization problem for the generalization of the learned source code C̃ with respect to the
true source code C.

Proof of Theorem 2. Any encoding Ei : Xn
S → Yn

S that bears information useful for the clas-
sification task T that is not entirely represented by the subset Xn

S of uncoded input samples; i.e.,
Yn

S 6⊆ Xn
S , when concatenated with the uncoded input samples ~xS, increases the Kolmogorov com-

plexity of the learned source code, which is now called C̃E , because a sufficiently high-capacity
neural network can memorize its input samples (Zhang et al., 2017). The conditional Kolmogorov
complexities {K(C|C̃),K(C̃|C)} are thus both larger than {K(C|C̃E),K(C̃E |C)}, respectively,
because the program that computes how to go from C̃E to C is shorter in length than the pro-
gram that computes how to go from C̃ to C. The same holds in the reverse direction. Therefore,
max(K(C|C̃E),K(C̃E |C)) < max(K(C|C̃),K(C̃|C)), which results in DI(C, C̃E) < DI(C, C̃).
The source code C̃E learned from the concatenation {~xS, Ei(~xS)} is thus more general than the
source code C̃ learned from ~xS.

Proof of Proposition 1. As the normalized information distance DI(C, C̃E) is not effectively
computable, it can be approximated for practical purposes by the normalized compression distance

DC(C, C̃E) =
Z({C, C̃E})−min(Z(C), Z(C̃E))

max(Z(C), Z(C̃E))
, (7)

where Z is a real-world compressor. The learning algorithm sees an input sample ~xS drawn from
a subset Xn

S of Xn as the empirical sample space Xn may be too large. Because a sufficiently
high-capacity neural network can memorize its input samples (Zhang et al., 2017), the compressed
size of the true source code is larger than that of the learned source code; i.e., Z(C) > Z(C̃E). At
perfect training accuracy, the compressed size Z({C, C̃E}) of the concatenation {C, C̃E} is equal to
Z(C), as C̃E is a partial function of C. For a sufficiently high training accuracy, we can consider
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|Z({C, C̃E}) − Z(C)| to be negligible for the purposes of generalization. As the generalization
conditionDI(C, C̃E) < DI(C, C̃) is not effectively computable, an equivalent effectively computable
condition is useful for practical purposes. As DI(C, C̃E) < DI(C, C̃) ⇐⇒ DC(C, C̃E) <

DC(C, C̃) for the purposes of generalization, the effectively computable condition

Z({C, C̃E})−min(Z(C), Z(C̃E))

max(Z(C), Z(C̃E))
<
Z({C, C̃})−min(Z(C), Z(C̃))

max(Z(C), Z(C̃))
(8)

is equivalent to
Z(C̃E) > Z(C̃). (9)

Proof of Proposition 2. By the Proof of Proposition 1, the effectively computable optimization
problem for the generalization of C̃E with respect to C is

min
C̃E

DC(C, C̃E) = max
C̃E

Z(C̃E), ∀C̃E : Z(C̃E) < Z(C). (10)

B SUPPLEMENTARY EXPERIMENTAL INFORMATION

B.1 SYMBOL-TO-BIT MAPPING

The bit mapper in Figure 2 uses the matrix

0 1 0 0 0 1 0 0 0 0 1 1 1 0 0
1 1 1 0 1 1 0 0 0 0 1 0 1 1 0
1 0 0 0 1 1 0 0 1 1 0 1 0 0 0
0 0 0 1 0 0 0 1 0 1 1 0 1 1 1
1 0 1 1 0 0 0 0 1 1 1 1 0 1 1
1 1 0 1 1 1 0 0 1 0 0 0 1 0 1
1 0 1 1 1 0 0 1 0 1 0 0 0 0 1
0 1 1 1 0 1 0 1 0 0 0 1 1 1 0
0 0 0 0 1 0 0 0 1 0 1 1 1 0 0
0 0 0 1 1 1 0 1 1 0 1 0 1 1 0
0 0 1 1 0 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 1 0 0 1 1 0 1 1 1
0 0 1 1 0 1 1 0 0 1 1 1 0 1 1
0 0 1 1 1 0 1 1 1 0 0 0 1 0 1
0 1 0 1 0 1 1 1 0 1 0 0 0 0 1
0 1 0 0 1 1 1 0 1 0 0 1 1 1 0
0 1 0 0 0 0 0 0 1 0 1 1 1 0 0
1 1 1 0 0 0 0 1 1 0 1 0 1 1 0
1 0 0 0 0 1 0 1 1 1 0 1 0 0 0
0 0 0 0 1 0 1 0 0 1 1 0 1 1 1
1 0 1 0 0 1 1 0 0 1 1 1 0 1 1
1 1 0 0 0 1 1 1 1 0 0 0 1 0 1
1 0 1 0 1 0 1 1 0 1 0 0 0 0 1
0 1 1 0 1 0 1 0 1 0 0 1 1 1 0
0 1 0 0 0 1 0 1 1 0 0 0 1 0 0
1 1 1 0 1 1 0 1 0 0 0 0 1 1 0
1 0 0 0 1 1 1 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 1 0 0 1 0 1 1 1
1 0 1 1 0 0 1 1 1 0 0 1 0 1 1
1 1 0 1 1 1 0 0 0 0 0 1 1 0 1
1 0 1 1 1 0 1 0 0 0 1 0 0 0 1
0 1 1 1 0 1 0 0 1 0 1 0 1 1 0


to map four 5-PAM symbols into 12 bits. In this symbol-to-bit mapping matrix, the ith row cor-
responds to the encoding Ei, where 0 ≤ i ≤ 31. Each symbol in the 5-PAM symbol alphabet is
converted into three bits by using the corresponding three columns in this matrix. For example, the
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Figure 7: The uncoded VGG-11 model and encoded VGG-11 models tested on the CIFAR-10 test set
corrupted by Gaussian noise.
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Figure 8: Impact of increasing the number of input channels in the uncoded VGG-11 model on
robustness. Robustness to Gaussian noise (left) and the PGD attack (right) is tested by providing
identical samples from the CIFAR-10 test set to the increased number of input channels.

first symbol in the 5-PAM symbol alphabet for the encoding E3 is converted to [1 0 0] by drawing
the bits from the third row and third, fourth, and fifth columns of the symbol-to-bit mapping matrix.
After all four of the 5-PAM symbols are converted into their respective three bits, these bits are
concatenated to each other, determining the value of the corresponding feature in the encoded sample.

B.2 GAUSSIAN NOISE EXPERIMENTS ON CIFAR-10

To show the robustness of the encoded VGG-11 models to Gaussian noise beyond the noise levels
included in the CIFAR-10-C dataset, we apply Gaussian noise with zero mean and variance σ2

w to the
CIFAR-10 test set. The average input-feature energy equals

1

kn

kn−1∑
i=0

~x2i , (11)

where ~xi is a feature of the input sample ~x, k is the number of input samples in the test set, and n is
the number of features in an input sample. We define the signal-to-noise ratio to be

1

knσ2
w

kn−1∑
i=0

~x2i . (12)

In Figure 7, we show that increasing the number of arbitrary encodings concatenated to the input
features significantly increases robustness to Gaussian noise. For example, at a signal-to-noise ratio
of 12 dB, the test accuracy of the uncoded VGG-11 model is 21.49%, whereas that of the VGG-11
model with 32 encodings is 61.15%.

B.3 IMPACT OF INCREASING THE NUMBER OF INPUT CHANNELS OF A DNN ON ITS
ROBUSTNESS

To study the impact of increasing the number of input channels of the uncoded VGG-11 model, we
conducted experiments on the encoded VGG-11 models that use identical encodings; i.e., the input
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features are replicated across additional input channels (the “encoders” are just identity functions). In
Figure 8, we see on the left that increasing the number of input channels of the uncoded VGG-11
model confers no robustness to Gaussian noise whatsoever. The plot on the right shows that increasing
the number of input channels of the uncoded VGG-11 model does not confer robustness to white-box
PGD either.
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