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ABSTRACT

Presence of bias and confounding effects is inarguably one of the most critical
challenges in machine learning applications that has alluded to pivotal debates in
the recent years. Such challenges range from spurious associations of confound-
ing variables in medical studies to the bias of race in gender or face recognition
systems. One solution is to enhance datasets and organize them such that they
do not reflect biases, which is a cumbersome and intensive task. The alterna-
tive is to make use of available data and build models considering these biases.
Traditional statistical methods apply straightforward techniques such as residual-
ization or stratification to precomputed features to account for confounding vari-
ables. However, these techniques are not in general applicable to end-to-end deep
learning methods. In this paper, we propose a method based on the adversarial
training strategy to learn discriminative features unbiased and invariant to the con-
founder(s). This is enabled by incorporating a new adversarial loss function that
encourages a vanished correlation between the bias and learned features. We apply
our method to a synthetic, a medical diagnosis, and a gender classification (Gender
Shades) dataset. Our results show that the learned features by our method not only
result in superior prediction performance but also are uncorrelated with the bias or
confounder variables. The code is available at http://blinded_for_review/.

1 INTRODUCTION

A central challenge in practically all machine learning applications is the consideration of confound-
ing bias in the study. Confounders are extraneous variables that distort the relationship between
the input (independent) and output (dependent) variables and hence lead to erroneous conclusions
Pourhoseingholi et al. (2012). In a variety of applications ranging from disease diagnosis predic-
tion to face recognition, where machine learning models are built to predict labels from images,
demographic variables (such as age, sex, race) of the study may confound the training process if the
distribution of image labels is skewed with respect to them. In this situation, the predictor may learn
the influence of the confounder and bias present in the data instead of the actual discriminative cues.

It is a cumbersome task to account for all bias inclinations when curating large-scale datasets Yang
et al. (2019). An alternative approach is to account for the bias in the model. Traditionally, con-
founding variables are often controlled by statistical methods in either design or analytical stages
Aschengrau & Seage (2013). In the design stage, one can utilize randomization or matching of the
confounding variables across different study groups. In the analytical stage, confounding can be
controlled by standardization or stratification Pourhoseingholi et al. (2012); Aschengrau & Seage
(2013). Another common solution is to learn the influence of the confounding variables on the in-
put (independent) variables by regression analysis. Then, the residuals derived from the optimal
regression model are regarded as the confounder-free input to train the predictor Wodtke (2018).

The regression analysis works reasonably well under the assumption that the input variables repre-
sent deterministic features that are comparable across a population, e.g., morphometric measure-
ments extracted from medical images or engineered features extracted from face images. The
method fails, however, when this assumption does not hold such as for the pixel intensity values
in images. Note, the raw intensities are only meaningful within a neighborhood but variant across
images. Therefore, these regression approaches cannot be used in connection with deep learning
methods that are directly applied to images, such as convolutional neural networks (CNNs). Re-
moving confounding factors for CNNs is an open question we aim to address here. We propose
a feature learning scheme to produce features that are predictive of class labels while being unbi-
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ased to confounding variables. The idea is inspired by the domain-adversarial training approaches
Ganin et al. (2016) with controllable invariance Xie et al. (2017) within the context of generative
adversarial networks (GANs) Goodfellow et al. (2014), but we argue that generic and widely used
loss functions are not designed for controlling the invariance with respect to bias variables. Hence,
we introduce an adversarial loss function that aims to quantify the statistical dependence between
the learned features and bias variables with the correlation coefficient. This strategy improves over
the commonly used cross-entropy or mean-squared error (MSE) loss that only aims to predict the
exact value of the bias variables and thereby achieves stabler results within the context of adversar-
ial training. Since our proposed model injects resilience towards the bias during training to produce
confounder-invariant features, we refer to our approach as Bias-Resilient Neural Network (BR-Net).

We evaluate BR-Net on three datasets to examine different aspects of the method and compare it with
a wide range of baselines. First, we test on a synthetic dataset to outline how the learned features
by our method are unbiased to controlled confounding variables. Then, as a important application
of this method, we test it on a medical application, i.e., predicting the human immunodeficiency
virus (HIV) diagnosis directly from T1-weighted Magnetic Resonance Images (MRIs). As widely
explored in the HIV literature, HIV disease accentuates brain aging Cole et al. (2017) and if a
predictor is learned not considering age as a confounder, the predictor may actually be learning the
brain aging patterns rather than actual HIV markers. As the last set of experiments, we evaluate BR-
Net for gender classification using the Gender Shades dataset Buolamwini & Gebru (2018). We use
different backbones pre-trained on ImageNet Deng et al. (2009) and fine-tune them for predicting
gender from face images. The vanilla models show poor results for darker faces, while BR-Net
can successfully close the gap. Race in this dataset is quantified by the ‘shade’ variable, which is
counted as the bias in our study. Our comparison with methods based on multi-task Lu et al. (2017)
prediction (i.e., predicting gender and shade as two tasks) and categorical GAN Springenberg (2015)
(i.e., predicting shade as a categorical variable in the adversarial component) shows that BR-Net is
not only able to learn features impartial to the bias of race (verified by feature embedding and
saliency visualization), it also results in better performance in gender prediction.

2 RELATED WORK

Fairness in Machine Learning: In recent years, developing fair machine learning models have
been the center of many discussions Liu et al. (2018); Hashimoto et al. (2018); Barocas et al. (2017)
even in the news outlets and media Khullar (2019); Miller (2015). It has been argued that the bias
essentially comes from human or society biases induced by the training datasets Barocas & Selbst
(2016). Recent efforts in solving this problem have been focused on building fairer and more diverse
datasets Yang et al. (2019); Celis et al. (2016). However, this approach is not always applicable for
large-scale datasets or especially in medical applications, where data is scarce and valuable. In this
work, we propose to use all existing sets of data but to build models that are mindful of biases and
learn to refrain from predicting the biases instead of the actual outputs.

Domain-Adversarial Training: Ganin et al. (2016) proposed for the first time to use adversarial
training for domain adaptation tasks by creating a component in the network that uses the learned
features to predict which domain the data is coming from (a binary variable; source or target). Ever
since, several other works built on top of the same idea explored different loss functions Bousmalis
et al. (2017), domain discriminator setting Tzeng et al. (2017), or cycle-consistency Hoffman et al.
(2017). The focus of all these works was to close the domain gap, which is often encoded as a binary
variable. To learn generic bias-resilient models, we argue that we need to go beyond this and learn
features that are invariant to either discrete or continuous confounders.

Invariant Feature Learning: There have been different attempts in the literature for learning rep-
resentations that are invariant to specific factors in the data. For instance, Zemel et al. (2013) took
an information obfuscation approach to obfuscate membership in the protected group of data during
training, and Bechavod & Ligett (2017) introduced a regularization-based method. Recently, Xie
et al. (2017); Akuzawa et al. (2019); Ranzato et al. (2007) proposed to use domain-adversarial train-
ing strategies for controllable invariant feature learning with respect to existing variables in the data.
These methods used similar adversarial loss functions as in domain adaptation that aim at predict-
ing exact values of the bias variables. Our study shows that this strategy fails at creating resilience
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Figure 1: BR-Net architecture: FE learns features, F, that successfully classify (C) the input while
being invariant (not correlated) to the bias variable(s), b, using BP and the adversarial loss compo-
nent, −λLbp, which is based on correlation coefficient. Forward arrows show forward paths while
the backward dashed ones indicate back-propagation with the respective gradient values.

against biases when they take continuous or categorical values. Instead, we introduce a loss function
based on correlation coefficient to naturally alleviate the bias effects on the learned features.

Distribution Matching: Some previous work attempted to learn distributionally robust techniques
to avoid learning confounded effects from data Oren et al. (2019). This can be done by matching the
distributions of the data Cao et al. (2018); Baktashmotlagh et al. (2016) across different domains.
However, distribution matching techniques only model data of a population as a whole and fall
short when it is crucial to remove the association between the learned features and a specific bias
or confounding variable for each single input data point. Whereas, to close the gap with respect to
the underlying bias in the data, our correlation-based analysis minimizes the bias-predictive power
of the learned features for every individual data point, which by construction harmonizes the data
distribution on the population level.

3 BIAS-RESILIENT NEURAL NETWORK (BR-NET)

Suppose we have an M -class classification problem, for which we have N pairs of training images
and their corresponding target label(s): {(Xi,yi)}Ni=1. Assume that the study is confounded or
biased by a set of k variables, denoted by a vector b ∈ Rk. To train a deep neural network for
classifying each image to its label(s) while not being biased by the confounders in the study, we
propose our end-to-end architecture as in Fig. 1, which is similar to domain-adversarial training
approaches Ganin et al. (2016). Given the input image X, we first apply a Feature Extraction (FE)
network, resulting in a feature vector F. A Classifier (C) is built on top of this feature vector to
predict the class label y for the input X, and it forces FE to learn discriminative futures for the
classification task. Now, to guarantee that these features are not biased to b, we build another
network (denoted by BP) with a new loss function for predicting the bias variables from F. We
propose to back-propagate this loss to the feature extraction module in an adversarial way. As a
result, the feature extractor learns features that minimize the classification loss, while maximizing
the loss of the bias predictor.

Each network has its underlying trainable parameters, defined as θfe for FE, θc for C, and
θbp for BP. If the predicted probability that subject i belongs to class m is defined by ŷim =
C(FE(Xi;θfe);θc), the classification loss can be characterized by a cross-entropy:

Lc(X,y;θfe,θc) = −
N∑
i=1

M∑
m=1

yim log(yim). (1)

Similarly, with b̂i = BP(FE(Xi;θfe);θbp), we can define the adversarial component of the loss
function. Standard methods for designing this loss function suggest to use a cross-entropy for bi-
nary/categorical variables (e.g., in Ganin et al. (2016); Xie et al. (2017)) or an `2 MSE loss for
continuous variables. However, we argue that in the context of bias control, the ultimate goal of
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adversarial training is to remove statistical association with respect to the bias variables, as opposed
to maximizing the prediction error of them. In fact, the adversarial training based on MSE leads
to the maximization of the `2 distance between and b̂ and b, which could be trivially achieved by
uniformly shifting the magnitude of b̂, thereby potentially resulting in an ill-posed optimization and
oscillation in the adversarial training. To address this issue, we define the following surrogate loss
for predicting the bias confounders while quantifying the statistical dependence with respect to b:

Lbp(X,b;θfe,θbp) = −
k∑
κ=1

corr2(bκ, b̂κ), (2)

where corr2(·, ·) is the squared Pearson correlation between its inputs and bκ defines the vector of
κth bias variable across all inputs. Note, BP deems to maximize correlation while FE minimizes for
it. Since corr2(·, ·) is bounded in the range [0, 1], both minimization and maximization schemes are
deemed feasible. Having these loss functions defined, the overall objective of the network is

min
θfe,θc

max
θbp

Lc(X,y;θfe,θc)− λLbp(X,b;θfe,θbp). (3)

where hyperparameter λ controls the trade-off between the two objectives.

This scheme is similar to GAN Goodfellow et al. (2014) and domain-adversarial training Ganin
et al. (2016); Xie et al. (2017), in which a min-max game is portrayed between two networks. In our
case, FE extracts features that minimize the classification criterion, while fooling BP (i.e.making BP
incapable of predicting the bias variables). Hence, the saddle point for this optimization objective is
obtained when the parameters θfe minimize the classification loss while maximizing the loss of the
bias prediction module. Simultaneously, θc and θbp minimize their respective network losses.

Implementation Details. Similar to the training of GANs, in each iteration, we first back-propagate
the Lc loss to update θfe and θc. With θfe fixed, we then minimize the Lbp loss to update θbp.
Finally, with θbp fixed, we maximize the Lbp loss to update θfe. The last step can be considered as
the bias effect removal component. Furthermore, in the present study, Lbp depends on the correlation
operation, which is a population-based operation, as opposed to cross-entropy or MSE losses that
are individual-level error metrics. Therefore, we calculate the correlations over each training batch,
making this a batch-level operation. Depending on the application, we can use different architectures
for each of the three subnetworks. We use a 3D CNN for FE to extract features from 3D medical
images and use VGG16 Simonyan & Zisserman (2015) and ResNet50 He et al. (2015) backbones
for Gender Shades. For each of C and BP, we use a two-layer fully connected network.

4 EXPERIMENTS

In this section, we evaluate our method on three different scenarios. First, we run a synthetic ex-
periment to verify the validity of our assumptions. Then, we apply BR-Net to a medical diagnosis
application confounded by the subjects’ age. Finally, we test the model for predicting gender from
face images and show how controlling for variables related to race (e.g., face color shade) can ro-
bustly enhance prediction performance. We compare BR-Net with several baselines, and evaluate
how the features learned by our method are invariant to the bias or confounding variables.

Baseline Methods. In line with the implementation of our approach, the baseline for all three
experiments is a vanilla CNN, whose architecture is exactly the same as BR-net except that there is
no bias prediction sub-network and hence the adversarial loss. We emphasize that BR-Net aims to
remove the association between prediction and bias by encouraging vanished correlation, which is
different from simply maximizing the prediction loss (w.r.t bias) as usually performed in many GAN
settings. Therefore, the second comparison method is a BR-Net with the adversarial loss being the
MSE, denoted by ‘BR-Net (w/ MSE).’ For the Gender Shades experiment, we further add two other
baseline methods, one predicting both ‘gender’ and ‘shade’ in a multi-task setting Lu et al. (2017),
denoted by ‘Multi-Task’; and one replacing correlation loss function Lbp with a cross-entropy loss
as the ‘shade’ variable has a ordinal but categorical value. The adversarial training then relies on
maximizing the entropy of BP predictions as motivated in Categoral GAN models (‘CatGAN’)
Springenberg (2015). These baselines show how the correlation loss plays an important role in
delineating the bias and confounding effects.
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Figure 2: Comparison of results on the synthetic dataset.

4.1 SYNTHETIC DATA

We generate a synthetic dataset comprised of two groups of data, each containing 512 images of
resolution 32 × 32 pixels. Each image is generated by 4 Gaussians (see Fig. 2a), the magnitude
of which is controlled by σA and σB . For each image from Group 1, we sample σA and σB from
a uniform distribution U(1, 4) while we generate images of Group 2 with stronger intensities by
sampling from U(3, 6). Gaussian noise is added to the images with standard deviation 0.01. Now
we assume σA represents a unknown factor linked to the true group difference, whereas σB is a
confounder. Therefore, the theoretically maximum classification accuracy is 90% due to sampling
strategy of σA. Then, we train the BR-Net on the whole dataset given the binary label and σB
of each image, and we show in the following that the resulting FE Network can learn features to
differentiate the two groups while being impartial to σB .

For simplicity, we construct the FE Network with 3 stacks of 2× 2 convolution/ReLu/max-pooling
layers to produce 32 features. Both the BP and C networks have one hidden layer of dimension 16
with tanh as the non-linear activation function. After training, the two implementations of BR-Net
achieve 89% and 90% training accuracy, respectively. The baseline model, however, achieves 95%
accuracy, indicating that the model additionally relies on the confounding effects σB for predicting
the group label, an undesired behavior. To further investigate the association between the learned
features and σB , we measure their squared distance correlation (dcor2) Székely et al. (2007) for the
training samples in Group 1. Distance correlation is a widely-used measure of dependence between
two paired vectors of arbitrary dimensions. Fig. 2b shows that our method successfully removes the
statistical association w.r.t σB as the distance correlation drops dramatically with training iterations.
On the other hand, the baseline model without the BP component learns features that constantly
yield high correlation. Note that the adversarial loss based on MSE yields unstable dcor2 measures
potentially due to the ill-posed optimization of maximizing `2 distance. Finally, the above results
are further supported by the 2D tSNE Maaten & Hinton (2008) projection of the learned features as
shown in Fig. 2c. The feature space learned by the baseline model forms a clear correlation with
σB , whereas our method results in a space with no apparent bias. This confirms that the proposed
adversarial technique successfully removes the bias from the confounding variable.

4.2 PREDICTION OF HIV DIAGNOSIS BASED ON MEDICAL IMAGES

Our second task aims at predicting the diagnosis of HIV patients vs.control subjects (CTRL) based
on medical images. The study cohort includes 223 CTRLs and 122 HIV patients who are seropos-
itive for the HIV-infection with CD4 count > 100 cells

µL (average: 303.0). Since the HIV subjects
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Table 1: Balanced accuracy, F1-score, and area
under curve (AUC) of HIV diagnosis prediction.
Best results in each column are typeset in bold.

Method bAcc F1 AUC
Resid+SVM 69.5 0.65 71.2
Baseline (3D CNN) 71.8 0.64 80.8
BR-Net (w/ MSE) 64.8 0.58 75.2
BR-Net (Ours) 74.2 0.67 80.9
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Figure 3: Distance correlation between the
learned features and age for the CTRL cohort.
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Figure 4: Accuracy, true negative, and true positive rates of the HIV diagnosis experiment, as a
function of the number of iterations for (a) the 3D CNN baseline, (b) BR-Net. The results show
that our adversarial training with a correlation loss function is robust against the imbalanced age
distribution between HIV and CTRL subjects and achieves balanced prediction for both cohorts.

are significantly older in age than the CTRLs (CTRL: 45 ± 17, HIV: 51 ± 8.3, p < .001) in this
study, age becomes a potential confounder; the predictor may as well predict subjects’ age instead
of diagnosis labels. Participants are all scanned with a T1-weighted MRI, which is minimally pre-
processed by skull striping, affine registration to the SRI24 template, and resizing into a 64×64×64
volume. Classification accuracy is measured with 5-fold cross validation. For each run, the training
folds are augmented by random shifting (within one-voxel distance), rotation (within one degree)
in all 3 directions, and left-right flipping based on the assumption that HIV infection affects the
brain bilaterally Adeli et al. (2018). The data augmentation results in a balanced training set of 1024
CTRLs and 1024 HIVs. As the flipping removes left-right orientation, the ConvNet is built on half
of the 3D volume containing one hemisphere. The feature extractor FE has 4 stacks of 2 × 2 × 2
3D convolution/ReLu/batch-normalization/max-pooling layers yielding 4096 intermediate features.
Both BP and C have one hidden layer of dimension 128 with tanh as the activation function. For
this experiment, as suggested in the previous work Rao et al. (2017), confounding effects can only
be reliably estimated among healthy subjects. So, in practice we only perform the adversarial loss
back-propagation step for the CTRL group.

Table 1 shows the diagnosis prediction accuracy of BR-Net in comparison with 3D CNN, BR-
Net (w/ MSE), and Resid+SVM (note, to compare with the traditional residualization methods,
we extract 298 brain regional measurements, residualize the confounders using a general linear
model, and classify with a support vector machine). Our method (BR-Net) results in the most
accurate prediction in terms of balanced accuracy (bAcc) and F1-score from the cross-validation.
These results show that our method is able to learn discriminative features while controlling for
confounders. In addition, we record the balanced accuracy, true positive, and true negative rate as
the training goes on. As shown in Fig. 4, the baseline tends to predict most subjects as CTRLs (high
true negative rate). This is potentially caused by the CTRL group having a wider age distribution.
On the other hand, when controlling age as a confounder, BR-Net reliably results in balanced true
positive and true negative rates.

Similar to the previous experiment, we train our and baseline methods on the entire dataset and
plot the squared distance correlation between the learned features and confounders for the CTRL
cohort (Fig. 3). The figure shows that with the increase of training iterations, the distance correla-
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Figure 5: tSNE visualization of the learned features by (a) the 3D CNN baseline and (b) our BR-Net.
Each point shows a subject in the CTRL cohort color-coded by their age.

Figure 6: Accuracy of gender prediction from face images across all shades (1 to 6) of the Gender
Shades dataset with two backbones, (left) VGG16 and (right) ResNet50. BR-Net consistently results
in more accurate predictions in all 6 shade categories by injecting bias-resilience into the model.

tion between the features and the confounding variable (age) decreases as a result of the adversarial
training. Whereas, the baseline model 3D CNN consistently produces features that are highly cor-
related with the confounder, and BR-Net w/ MSE produces inconsistent and unreliable associations
with respect to the confounder. The t-SNE Maaten & Hinton (2008) projection of the learned feature
spaces are visualized in Fig. 5. The feature space learned by the baseline model forms a clear asso-
ciation with age, as older subjects are concentrated on the top left region of the space. Whereas, our
method results in a space with no apparent bias to age. This confirms that the proposed adversarial
technique successfully removes the bias from the confounding variable.

4.3 GENDER PREDICTION USING THE GENDER SHADES DATASET

The last experiment is on gender prediction from face images in the Gender Shades (GS) dataset
Buolamwini & Gebru (2018). This dataset contains 1,253 facial images of 561 female and 692 male
subjects. The face shade is quantified by the Fitzpatricksix-point labeling system and is categorised
from type 1 (lighter) to type 6 (darker). This quantization was used by dermatologistsuse for skin
classification and determining risk for skin cancer Buolamwini & Gebru (2018).

Table 2: Average results over five runs of 5-fold cross-validation on the Gender Shades dataset. Best
results in each column are typeset in bold.

VGG16 Backbone ResNet50 Backbone
Method bAcc F1 AUC bAcc F1 AUC
Baseline 94.1 ± 0.2 93.5 ± 0.3 98.9 ± 0.1 75.7 ± 2.0 68.0 ± 3.0 96.2 ± 0.3
CatGAN 96.0 ± 0.5 95.7 ± 0.5 99.4 ± 0.2 90.1 ± 1.0 90.0 ± 1.0 96.3 ± 0.7
Multi-Task 94.0 ± 0.3 93.4 ± 0.3 98.9 ± 0.1 94.0 ± 0.3 93.4 ± 0.3 98.6 ± 0.3
BR-Net 96.3 ± 0.6 96.0 ± 0.7 99.4 ± 0.2 94.1 ± 0.2 93.6 ± 0.2 98.6 ± 0.1
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Figure 7: tSNE visualization of the learned features by (a) the VGG16 baseline, (b) a multi-task
baseline, and (c) our BR-Net. Each point shows an image in the dataset color-coded with ‘shade’.
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Figure 8: Average saliency map of the trained baseline and BR-Net color-coded with the normalized
saliency value for each pixel. BR-Net results in more stable patterns across all 6 shade categories.

To train our models on this dataset, we use backbones VGG16 Simonyan & Zisserman (2015) and
ResNet50 He et al. (2015) pre-trained on ImageNet Deng et al. (2009). We fine-tune each model on
Gender Shades dataset to predict the gender of subjects based on their face images using fair 5-fold
cross-validation. The ImageNet dataset for pre-training the models has fewer cases of humans with
darker faces Yang et al. (2019) and hence the resulting models have an underlying bias to the shade.

BR-Net counts the variable ‘shade’ as the bias variable. As discussed earlier, besides the vanilla
VGG16 and ResNet50 models, we compare the results with a multi-task baseline Lu et al. (2017),
which predicts both ‘gender’ and ‘shade’ simultaneously, and a model that uses the entropy loss
as the adversarial loss for the cross-entropy-based categorical prediction (proposed by CatGAN
Springenberg (2015)). Table 2 shows the results across five runs of 5-fold cross-validation. Fig. 6
plots the balanced accuracy for each individual ‘shade’ category. As can be seen from the table
and the figure, BR-Net outperforms other methods on average across all ‘shade’ categories. Since
this dataset is relatively small and the number of training images is almost balanced across different
shades, the baseline models cannot fully recover the gap among the recognition capabilities for
different ‘shade’ categories and fail significantly on darker faces. This is confirmed by the tSNE
projection of the feature spaces learned by different methods (see Fig. 7). The features learned by
the vanilla baseline or even the multi-task model show a clear bias towards the ‘shade’ while BR-Net
results in a roughly uniform distribution of subjects.

To gain more insight into the results, we visualize the saliency maps derived for the baseline and
BR-Net. For this purpose, we use a similar technique as in Simonyan et al. (2014) to extract the
pixels in the original image space highlighting the areas that are discriminative with respect to the
corresponding class labels. Generating such saliency maps for all inputs, we visualize the average
map for each individual ‘shade’ (Fig. 8). The value on each pixel corresponds to the attention from
the network to that pixel within the classification process. Compared to the baseline, BR-Net focuses
more on specific face regions and results in more stable patterns across all ‘shade’ categories.
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5 CONCLUSION

We proposed a method based on adversarial training strategies by encouraging vanished correlation
to learn features for the prediction task while being unbiased to the confounding variables in the
study. We evaluated our bias-resilient neural network (BR-Net) on a synthetic, a medical diagnosis,
and a gender prediction dataset. In all experiments, BR-Net resulted in a feature embedding space
that was agnostic to the bias in the data while all other methods failed to do so. Based on our
experiments we can conclude that, besides the attempt to improve datasets and curate unbiased ones
Yang et al. (2019), it is crucial to build models that properly account for the bias in the data during
training. Our bias-resilient model and some other recent works set on foot toward this direction.
This is crucial as machine learning models are acceding to everyday lives, or are being developed
for crucial medical applications. Failure to account for the underlying bias or confounding effects
can lead to spurious associations and erroneous decisions.
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