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ABSTRACT

We show how neural models can be used to realize piece-wise constant functions
such as decision trees. Our approach builds on ReLU networks that are piece-wise
linear and hence their associated gradients with respect to the inputs are locally
constant. We formally establish the equivalence between the classes of locally
constant networks and decision trees. Moreover, we highlight several advanta-
geous properties of locally constant networks, including how they realize decision
trees with parameter sharing across branching / leaves. Indeed, only M neurons
suffice to implicitly model an oblique decision tree with 2M leaf nodes. The neural
representation also enables us to adopt many tools developed for deep networks
(e.g., DropConnect (Wan et al., 2013)) while implicitly training decision trees.
We demonstrate that our method outperforms alternative techniques for training
oblique decision trees in the context of molecular property classification and re-
gression tasks.

1 INTRODUCTION

Decision trees (Breiman et al., 1984) employ a series of simple decision nodes, arranged in a tree, to
transparently capture how the predicted outcome is reached. Functionally, such tree-based models,
including random forest (Breiman, 2001), realize piece-wise constant functions. Beyond their status
as de facto interpretable models, they have also persisted as the state of the art models in some tab-
ular (Sandulescu & Chiru, 2016) and chemical datasets (Wu et al., 2018). Deep neural models, in
contrast, are highly flexible and continuous, demonstrably effective in practice, though lack trans-
parency. We merge these two contrasting views by introducing a new family of neural models that
implicitly learn and represent oblique decision trees.

Prior work has attempted to generalize classic decision trees by extending coordinate-wise cuts to
be weighted, linear classifications. The resulting family of models is known as oblique decision
trees (Murthy et al., 1993). However, the generalization accompanies a challenging combinatorial,
non-differentiable optimization problem over the linear parameters at each decision point. Simple
sorting procedures used for successively finding branch-wise optimal coordinate cuts are no longer
available, making these models considerably harder to train. While finding the optimal oblique
decision tree can be cast as a mixed integer linear program (Bertsimas & Dunn, 2017), scaling
remains a challenge.

In this work, we provide an effective, implicit representation of piece-wise constant mappings,
termed locally constant networks. Our approach exploits piece-wise linear models such as ReLU
networks as basic building blocks. Linearity of the mapping in each region in such models means
that the gradient with respect to the input coordinates is locally constant. We therefore implicitly
represent piece-wise constant networks through gradients evaluated from ReLU networks. We prove
the equivalence between the class of oblique decision trees and these proposed locally constant neu-
ral models. However, the sizes required for equivalent representations can be substantially different.
For example, a locally constant network with M neurons can implicitly realize an oblique decision
tree whose explicit form requires 2M−1 oblique decision nodes. The exponential complexity reduc-
tion in the corresponding neural representation illustrates the degree to which parameters are shared
across the locally constant regions.

Our locally constant networks can be learned via gradient descent, and they can be explicitly con-
verted back to oblique decision trees for interpretability. For learning via gradient descent, however,
it is necessary to employ some smooth annealing of piece-wise linear activation functions so as to
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keep the gradients themselves continuous. Moreover, we need to evaluate the gradients of all the
neurons with respect to the inputs. To address this bottleneck, we devise a dynamic programming
algorithm which computes all the necessary gradient information in a single forward pass. A number
of extensions are possible. For instance, we can construct approximately locally constant networks
by switching activation functions, or apply helpful techniques used with normal deep learning mod-
els (e.g., DropConnect (Wan et al., 2013)) while implicitly training tree models.

We empirically test our model in the context of molecular property classification and regression
tasks (Wu et al., 2018), where tree-based models remain state-of-the-art. We compare our approach
against recent methods for training oblique decision trees and classic ensemble methods such as
gradient boosting (Friedman, 2001) and random forest. Empirically, a locally constant network
always outperforms alternative methods for training oblique decision trees by a large margin, and
the ensemble of locally constant networks is competitive with classic ensemble methods.

2 RELATED WORK

Locally constant networks are built on a mixed integer linear representation of piece-wise linear
networks, defined as any feed-forward network with a piece-wise linear activation function such as
ReLU (Nair & Hinton, 2010). One can specify a set of integers encoding the active linear piece
of each neuron, which is called an activation pattern (Raghu et al., 2017). The feasible set of an
activation pattern forms a convex polyhedron in the input space (Lee et al., 2019), where the net-
work degenerates to a linear model. The framework motivates us to leverage the locally invariant
derivatives of the networks to construct a locally constant network. The activation pattern is also
exploited in literature for other purposes such as deriving robustness certificates (Weng et al., 2018).
We refer the readers to the recent work (Lee et al., 2019) and the references therein.

The class of locally constant networks is equivalent to the class of oblique decision trees. There are
some classic methods that also construct neural networks that reproduce decision trees (Sethi, 1990;
Brent, 1991; Cios & Liu, 1992), by utilizing step functions and logic gates (e.g., AND/NEGATION) as
the activation function. The methods were developed when back-propagation was not yet practically
useful, and the motivation is to exploit effective learning procedures of decision trees to train neural
networks. Instead, our goal is to leverage the successful deep models to train oblique decision trees.

Learning oblique decision trees is challenging, even for a greedy algorithm; for a single oblique split,
there are at most 2D(ND) different ways to separate N data points in D-dimensional space (Murthy
et al., 1993) (cf. ND possibilities for coordinate-cuts). Existing learning algorithms for oblique
decision trees include greedy induction, global optimization, and iterative refinements on an initial
tree. We review some representative works, and refer the readers to the references therein.

Optimizing each oblique split in greedy induction can be realized by coordinate descent (Murthy
et al., 1994) or a coordinate-cut search in some linear projection space (Menze et al., 2011; Wickra-
marachchi et al., 2016). However, the greedy constructions tend to get stuck in poor local optimum.
There are some works which attempt to find the global optimum given a fixed tree structure by for-
mulating a linear program (Bennett, 1994) or a mixed integer linear program (Bertsimas & Dunn,
2017), but the methods are not scalable to ordinary tree sizes (e.g., depth more than 4). The itera-
tive refinements are more scalable than global optimization, where CART (Breiman et al., 1984) is
the typical initialization. Carreira-Perpinán & Tavallali (2018) develop an alternating optimization
method via iteratively training a linear classifier on each decision node, which yield the state-of-the-
art empirical performance, but the approach is only applicable to classification problems. Norouzi
et al. (2015) proposed to do gradient descent on a sub-differentiable upperbound of tree prediction
errors, but the gradients with respect to oblique decision nodes are unavailable whenever the up-
perbound is tight. In contrast, our method conducts gradient descent on a differentiable relaxation,
which is gradually annealed to a locally constant network.

3 METHODOLOGY

In this section, we introduce the notation and basics in §3.1, construct the locally constant networks
in §3.2-3.3, analyze the networks in §3.4-3.5, and develop practical formulations and algorithms in
§3.6-3.7. Note that we will propose two (equivalent) architectures of locally constant networks in
§3.3 and §3.6, which are useful for theoretical analyses and practical purposes, respectively.
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3.1 NOTATION AND BASICS

The proposed approach is built on feed-forward networks that yield piece-wise linear mappings.
Here we first introduce a canonical example of such networks, and elaborate its piece-wise linearity.
We consider the densely connected architecture (Huang et al., 2017), where each hidden layer takes
as input all the previous layers; it subsumes other existing feed-forward architectures such as residual
networks (He et al., 2016). For such a network fθ : RD → RL with the set of parameters θ, we
denote the number of hidden layers asM and the number of neurons in the ith layer asNi; we denote
the neurons in the ith layer, before and after the activation function, as zi ∈ RNi and ai ∈ RNi ,
respectively, where we sometimes interchangeably denote the input instance x as a0 ∈ RN0 with
N0 , D. To simplify exposition, we denote the concatenation of (a0,a1, . . . ,ai) as ãi ∈ RÑi

with Ñi ,
∑i
j=0Ni, ∀i ∈ {0, 1, . . . ,M}. The neurons are defined via the weight matrix W i ∈

RNi×Ñi−1 and the bias vector bi ∈ RNi in each layer i ∈ [M ] , {1, 2, . . . ,M}. Concretely,

a0 , x, zi , W iãi−1 + bi, ai , σ(zi),∀i ∈ [M ], (1)
where σ(·) is a point-wise activation function. Note that both a and z are functions of the specific
instance denoted by x, where we drop the functional dependency to simplify notation. We use the
set I to denote the set of all the neuron indices in this network {(i, j)|j ∈ [Ni], i ∈ [M ]}. In this
work, we will use ReLU (Nair & Hinton, 2010) as a canonical example for the activation function

aij = σ(zi)j , max(0, zij),∀(i, j) ∈ I, (2)
but the results naturally generalize to other piece-wise linear activation functions such as leaky
ReLU (Maas et al., 2013). The output of the entire network fθ(x) is the affine transformation from
all the hidden layers ãM with the weight matrix WM+1 ∈ RL×Ñi and bias vector bM+1 ∈ RL.

3.2 LOCAL LINEARITY

It is widely known that the class of networks fθ(·) yields a piece-wise linear function. The results
are typically proved via associating the end-to-end behavior of the network with its activation pattern
– which linear piece in each neuron is activated; once an activation pattern is fixed across the entire
network, the network degenerates to a linear model and the feasible set with respect to an activation
pattern is a natural characterization of a locally linear region of the network.

Formally, we define the activation pattern O , {oij : RD → {0, 1}|∀(i, j) ∈ I} as the set of
activation indicator functions for each neuron (or equivalently, the derivatives of the ReLU units)1:

oij =
∂aij
∂zij

, I[zij ≥ 0],∀(i, j) ∈ I, (3)

where I[·] is the indicator function. Note that, for mathematical correctness, we define ∂aij/∂z
i
j = 1

at zij = 0; this choice is arbitrary, and one can change it to ∂aij/∂z
i
j = 0 at zij = 0 without affecting

most of the derivations. Given a fixed activation pattern Ō = {ōij ∈ {0, 1}|∀(i, j) ∈ I}, we can
specify a feasible set in RD that corresponds to this activation pattern {x ∈ RD|oij = ōij ,∀(i, j) ∈
I} (note that each oij is a function of x). Due to the fixed activation pattern, the non-linear ReLU can
be re-written as a linear function for all the inputs in the feasible set. For example, for an ōij = 0, we
can re-write aij = 0×zij . As a result, the network has a consistent end-to-end linear behavior across
the entire feasible set. One can prove that all the feasible sets partition the space RD into disjoint
convex polyhedra2, which realize a natural representation of the locally linear regions. Since we will
only use the result to motivate the construction of locally constant networks, we refer the readers to
Lee et al. (2019) for a detailed justification of the piece-wise linearity of such networks.

3.3 CANONICAL LOCALLY CONSTANT NETWORKS

Since the ReLU network fθ(x) is piece-wise linear, it immediately implies that its derivatives with
respect to the input x is a piece-wise constant function. Here we use Jxfθ(x) ∈ RL×D to denote

1Note that each oi
j is again a function of x, where we omit the dependency for brevity.

2The boundary of the polyhedron depends on the specific definition of the activation pattern, so, under some
definition in literature, the resulting convex polyhedra may not be disjoint in the boundary.
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Figure 1: Toy examples for the equivalent representations of the same mappings for different M .
Here the locally constant networks have 1 neuron per layer. We show the locally constant networks
on the LHS, the raw mappings in the middle, and the equivalent oblique decision trees on the RHS.

the Jacobian matrix (i.e., [Jxfθ(x)]i,j = ∂fθ(x)i/∂xj), and we assume the Jacobian is consistent
with Eq. (3) at the boundary of the locally linear regions. Since any function taking the piece-
wise constant Jacobian as input will remain itself piece-wise constant, we can construct a variety of
locally constant networks by composition.

However, in order to simplify the derivation, we first make a trivial observation that the activation
pattern in each locally linear region is also locally invariant. More broadly, any invariant quantity in
each locally linear region can be utilized so as to build locally constant networks. We thus define the
locally constant networks as any composite function that leverage the local invariance of piece-wise
linear networks. For the theoretical analyses, we consider the below architecture.

Canonical architecture. We denote õM ∈ {0, 1}ÑM as the concatenation of (o1, . . . ,oM ). We
will use the composite function g(õM ) as the canonical architecture of locally constant networks for
theoretical analyses, where g : {0, 1}ÑM → RL is simply a table.

Before elucidating on the representational equivalence to oblique decision trees, we first show some
toy examples of the canonical locally constant networks and their equivalent mappings in Fig. 1,
which illustrates their constructions when there is only 1 neuron per layer (i.e., zi = zi1, and simi-
larly for oi and ai). When M = 1, o1 = 1⇔ x1 − x2 + 1 ≥ 0, thus the locally constant network
is equivalent to a linear model shown in the middle, which can also be represented as an oblique
decision tree with depth = 1. When M > 1, the activations in the previous layers control different
linear behaviors of a neuron with respect to the input, thus realizing a hierarchical structure as an
oblique decision tree. For example, for M = 2, o1 = 0 ⇔ z1 < 0 ⇒ z2 = −4x1 + x2 + 4
and o1 = 1 ⇔ z1 ≥ 0 ⇒ z2 = −3x2 + 8; hence, it can also be interpred as the decision tree on
the RHS, where the concrete realization of z2 depends on the previous decision variable z1 ≥ 0.
Afterwards, we can map either the activation patterns on the LHS or the decision patterns on the
RHS to an output value, which leads to the mapping in the middle.

3.4 REPRESENTATIONAL EQUIVALENCE

In this section, we prove the equivalence between the class of oblique decision trees and the class
of locally constant networks. We first make an observation that any unbalanced oblique decision
tree can be re-written to be balanced by adding dummy decision nodes 0>x ≥ −1. Hence, we can
define the class of oblique decision trees with the balance constraint:

Definition 1. The class of oblique decision trees contains any functions that can be procedurally
defined (with some depth T ∈ Z>0) for x ∈ RD:
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1. r1 , I[ω>∅x + β∅ ≥ 0], where ω∅ ∈ RD and β∅ ∈ R denote the weight and bias of the
root decision node.

2. For i ∈ (2, 3, . . . , T ), ri , I[ω>r1:i−1
x+βr1:i−1

≥ 0], where ωr1:i−1
∈ RD and βr1:i−1

∈ R
denote the weight and bias for the decision node after the decision pattern r1:i−1.

3. v : {0, 1}T → RL outputs the leaf value v(r1:T ) associated with the decision pattern r1:T .

The class of locally constant networks is defined by the canonical architecture with finite M and
Ni,∀i ∈ [M ]. We first prove that we can represent any oblique decision tree as a locally constant
network. Since a typical oblique decision tree can produce an arbitrary weight in each decision node
(cf. the structurally dependent weights in the oblique decision trees in Fig. 1), the idea is to utilize a
network with only 1 hidden layer such that the neurons do not constrain one aother. Concretely,

Theorem 2. The class of locally constant networks ⊇ the class of oblique decision trees.

Proof. For any oblique decision tree with depth T , it contains 2T − 1 weights and biases. We thus
construct a locally constant network with M = 1 and N1 = 2T − 1 such that each pair of (ω, β) in
the oblique decision tree is equal to some W 1

k,: and b1k in the constructed locally constant network.

For each leaf node in the decision tree, it is associated with an output value y ∈ RL and T decisions;
the decisions can be written as W 1

idx[j],:x + b1idx[j] ≥ 0 for j ∈ {1, 2, . . . , T ′} and W 1
idx[j],:x +

b1idx[j] < 0 for j ∈ {T ′ + 1, T ′ + 2, . . . , T} for some index function idx : [T ] → [2T − 1] and
some T ′ ∈ {0, 1, . . . , T}. We can set the table g(·) of the locally constant network as

y, if

{
o1
idx[j] = 1(⇔W 1

idx[j],:x + b1idx[j] ≥ 0), for j ∈ {1, 2, . . . , T ′}, and
o1
idx[j] = 0(⇔W 1

idx[j],:x + b1idx[j] < 0), for j ∈ {T ′ + 1, T ′ + 2, . . . , T}.

As a result, the constructed locally constant network yields the same output as the given oblique
decision tree for all the inputs that are routed to each leaf node, which concludes the proof.

Then we prove that the class of locally constant netwoworks is a subset of the class of oblique
decision trees, which simply follows the construction of the toy examples in Fig. 1.

Theorem 3. The class of locally constant networks ⊆ the class of oblique decision trees.

Proof. For any locally constant network, it can be re-written to have 1 neuron per layer, by ex-
panding any layer with Ni > 1 neurons to be Ni different layers such that they do not have effective
intra-connections. Below the notation refers to the converted locally constant network with 1 neuron
per layer. We define the following oblique decision tree with T = M for x ∈ RD:

1. r1 , o1
1 = I[ω>∅x + β∅ ≥ 0] with ω∅ = W 1

1,: and β∅ = b11.

2. For i ∈ (2, 3, . . . ,M), ri , I[ω>r1:i−1
x + βr1:i−1 ≥ 0], where ωr1:i−1 = ∇xz

i
1 and

βr1:i−1 = zi1 − (∇xz
i
1)>x. Note that ri = I[zi1 ≥ 0] = oi1.

3. v = g.

Note that, in order to be a valid decision tree, w1:ri−1 and b1:ri−1 have to be unique for all x that yield
the same decision pattern r1:i−1. To see this, for i ∈ (2, 3, . . . ,M), as r1:i−1 = (o1

1, . . . ,o
i−1
1 ), we

know the neuron zi1 is a fixed affine function given a fixed activation pattern for all the preceding
neurons, so∇xz

i
1 and zi1 − x>∇xz

i
1 are fixed quantities given a fixed decision pattern r1:i−1.

Since r1:M = õM and v = g, we conclude that they yield the same mapping.

Despite the simplicity of the proof, it has some practical implications:

Remark 4. The proof of Theorem 3 implies that we can train a locally constant network, and convert
it to an oblique decision tree (for interpretability).

Remark 5. The proof of Theorem 3 establishes that, from the representational point of view, it
suffices to only consider the locally constant networks with one neuron per layer Ni = 1,∀i ∈ [M ].

Remark 5 is important for learning shallow locally constant networks (which can be converted to
shallow decision trees for interpretability), since representation capacity is critical for low capacity
models. In the remainder of the paper, we will only consider the setting with Ni = 1,∀i ∈ [M ].
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3.5 STRUCTURALLY SHARED PARAMETERIZATION

Although we have established the exact class-level equivalence between locally constant networks
and oblique decision trees, once we restrict the depth of the locally constant networks M , it can no
longer re-produce all the decision trees with depthM . The result can be intuitively understood by the
following reason: we are effectively using M pairs of (weight, bias) in the locally constant network
to implicitly realize 2M − 1 pairs of (weight, bias) in the corresponding oblique decision tree. Such
exponential reduction on the effective parameters in the representation of oblique decision trees
yields a “dimension reduction” of the model capacity. This section aims to reveal the implied shared
parameterization embedded in the oblique decision trees derived from locally constant networks.

In this section, the oblique decision trees and the associated parameters refer to the decision trees
obtained via the proof of Theorem 3. We start the analysis by a decomposition of ωr1:i

among the
preceding weights ω∅,ωr1:1

, . . . ,ωr1:r−1
. To simplify notation, we denote ωr1:0

, ω∅. Since
ωr1:i

= ∇xz
i+1
1 and zi+1

1 is a linear transformation of the vector (a0,a
1
1, . . . ,a

i
1),

ωr1:i =∇xz
i+1
1 =W i+1

1,1:D+

i∑
k=1

W i+1
1,D+k×

∂ak1
∂zk1
×∇xz

k
1 =W i+1

1,1:D+

i∑
k=1

W i+1
1,D+k×rk×ωr1:k−1

,

where we simply re-write the derivatives in terms of tree parameters. Since W i+1
1,1:D is fixed for all the

ωr1:i
, the above decomposition implies that, in the induced tree, all the weights ωr1:i

in the same
depth i are restricted to be a linear combination of the fixed basis W i+1

1,1:D and the corresponding
preceding weights ωr1:0

, . . . ,ωr1:i−1
. We can extend this analysis to compare weights in same layer,

and we begin the analysis by comparing weights whose `0 distance in decision pattern is 1. To help
interpret the statement, note that ωr1:j−1

is the weight that leads to the decision rj (or r′j , see below).

Lemma 6. For an oblique decision tree with depth T > 1, ∀i ∈ [T − 1] and any r1:i, r′1:i such that
rk = r′k for all k ∈ [i] except that rj 6= r′j for some j ∈ [i], we have

ωr1:i
− ωr′1:i

= α× ωr1:j−1
, for some α ∈ R.

The proof involves some algebraic manipulation, and is deferred to Appendix A. Lemma 6 charac-
terizes an interesting structural constraint embedded in the oblique decision trees realized by locally
constant networks, where the structural discrepancy rj in decision patterns (r1:i versus r′1:i) is re-
flected on the discrepancy of the corresponding weights (up to a scaling factor α). The analysis can
be generalized for all the weights in the same layer, but the message is similar.
Proposition 7. For the oblique decision tree with depth T > 1, ∀i ∈ [T − 1] and any r1:i, r′1:i such
that rk = r′k for all k ∈ [i] except for n ∈ [i] coordinates j1, . . . , jn ∈ [i], we have

ωr1:i
− ωr′1:i

=

n∑
k=1

αk × ωr1:jk−1
, for some αk ∈ R,∀k ∈ [n]. (4)

The statement can be proved by applying Lemma 6 multiple times.

Discussion. Here we summarize this section and provide some discussion. Locally constant net-
works implicitly represent oblique decision trees with the same depth and structurally shared pa-
rameterization. In the implied oblique decision trees, the weight of each decision node is a linear
combination of a shared weight across the whole layer and all the preceding weights. The analysis
explains how locally constant networks use only M weights to model a decision tree with 2M − 1
decision nodes; it yields a strong regularization effect to avoid overfitting, and helps computation by
exponentially reducing the memory consumption on the weights.

3.6 STANDARD LOCALLY CONSTANT NETWORKS AND EXTENSIONS

The simple structure of the canonical locally constant networks is beneficial for theoretical analysis,
but the structure is not practical for learning since the discrete activation pattern does not exhibit gra-
dients for learning the networks. Indeed, ∇õM g(õM ) is undefined, which implies that ∇W ig(õM )
is also undefined. Here we present another architecture that is equivalent to the canonical architec-
ture, but exhibits sub-gradients with respect to model parameters and is flexible for model extension.

Standard architecture. We assume Ni = 1,∀i ∈ [M ]. We denote the Jacobian of all the neurons
after activation ãM as JxãM ∈ RM×D, and denote ~JxãM as the vectorized version. We then define
the standard architecture as gφ( ~Jxã

M ), where gφ : R(M×D) → RL is a fully-connected network.

6



Under review as a conference paper at ICLR 2020

We abbreviate the standard locally constant networks as LCN. Note that each ai1 is locally linear
and thus the Jacobian JxãM is locally constant. We replace õM with JxãM as the invariant rep-
resentation for each locally linear region3, and replace the table g with a differentiable function gφ
that takes as input real vectors. The gradients of LCN with respect to parameters is thus established
through the derivatives of gφ and the mixed partial derivatives of the neurons (derivatives of ~JxãM ).

One can prove the equivalence between the standard architecture and the canonical architecture.
Here we provide a sketch of proof. Since the activation pattern õM uniquely identifies the Jacobian
~Jxã

M , and the table maps each region to a vector in an unconstraint manner, the canonical archi-
tecture is no less powerful than the standard architecture. To prove the other direction, we first make
an observation that given fixed o1, . . . ,oi−1, either the following condition exists: ‘oi1 = 1 always
holds and oi1 = 0 is impossible’ (it may happen when∇xz

i = 0) or ‘∇xa
i
1 = 0⇔ oi1 = 0’. Either

case implies that JxãM identifies õM1 , and we can construct a big network gθ to match the table g.

Discussion. All the previous analyses extend to the standard architecture due to the above represen-
tational equivalence. In addition, the standard architecture yields a new property that is only partially
exhibited in the canonical architecture. For all the decision and leaf nodes which no training data is
routed to, there is no way to obtain learning signals in classic oblique decision trees. However, due
to shared parameterization (see §3.5), locally constant networks can “learn” all the decision nodes
in the implied oblique decision trees (if there is a way to optimize the networks), and the standard
architecture can even “learn” all the leaf nodes due to the parameterized output function gφ.

Extensions. The construction of (standard) locally constant networks enable several natural exten-
sions due to the flexibility of the neural architecture and the interpretation of decision trees. The
original locally linear networks (LLN) fθ, which outputs a linear function instead of a constant
function for each region, can be regarded as one extension. Here we discuss two examples.
• Approximately locally constant networks (ALCN): we can change the activation function while

keeping the model architecture of LCN. For example, we can replace ReLU max(0, x) with
softplus log(1 + exp(x)), which will lead to an approximately locally constant network, as the
softplus function has an approximately locally constant derivative for inputs with large absolute
value. Note that the canonical architecture (tabular g) is not compatible with such extension.

• Ensemble locally constant networks (ELCN): since each LCN can only output 2M different val-
ues, it is limited for complex tasks like regression (akin to decision trees). We can instead use an
additive ensemble of LCN or ALCN to increase the capacity. We use g[e]φ ( ~Jxã

M,[e]) to denote a

base model in the ensemble, and denote the ensemble with E models as
∑E
e=1 g

[e]
φ ( ~Jxã

M,[e]).

3.7 LEARNING AND COMPUTATION

In this section, we discuss training algorithms and efficient computation for the proposed models.

Training LCN and ALCN. Even though LCN is sub-differentiable, the network does not ex-
hibit useful gradient information for learning each locally constant representation ∇xa

i
1 (note that

~Jxã
M = [∇xa

1
1, . . . ,∇xa

M
1 ]) whenever oi1 = 0, since, operationally, oi1 = 0 implies ai1 ← 0 and

there is no useful gradient of ∇xa
i
1 = ∇x0 = 0 with respect to model parameters. To alleviate the

problem, we propose to leverage softplus as an infinitely differentiable approximation of ReLU to
obtain meaningful learning signals for∇xa

i
1. Concretely, we conduct the annealing during training:

ai1 = λt max(0, zi1) + (1− λt) log(1 + exp(zi1)),∀i ∈ [M ], λt ∈ [0, 1], (5)

where λt is an iteration-dependent annealing parameter. Both LCN and ALCN can be constructed as
a special case of Eq. (5). We train LCN with λt equal to the ratio between the current epoch and the
total epochs, and ALCN with λt = 0. Both models are optimized via gradient descent.

We also include DropConnect (Wan et al., 2013) to the weight matrices W i ← drop(W i) during
training. Despite the simple structure of DropConnect in the locally constant networks, it entails
a structural dropout on the weights in the corresponding oblique decision trees (see §3.5), which
is challenging to reproduce in typical oblique decision trees. In addition, it also encourages the
exploration of parameter space, which is easy to see for the raw LCN: the randomization enables the
exploration that flips oi1 = 0 to oi1 = 1 to establish effective learning signal. Note that the standard
DropOut (Srivastava et al., 2014) is not ideal for the low capacity models that we consider here.

3In practice, we also include each bias ai
1 − (∇xa

i
1)

>x, which is omitted here to simlify exposition.
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Table 1: Dataset statistics

Dataset Bace HIV SIDER Tox21 PDBbind

Task (Multi-label) binary classification Regression
Number of labels 1 1 27 12 1
Number of data 1,513 41,127 1,427 7,831 11,908

Training ELCN. Since each ensemble component is sub-differentiable, we can directly learn the
whole ensemble through gradient descent. However, the approach is not scalable due to memory
constraints in practice. Instead, we propose to train the ensemble in a boosting fashion:

1. We first train an initial locally constant network g[1]φ ( ~Jxã
M,[1]).

2. For each iteration e′ ∈ {2, 3, . . . , E}, we incrementally optimize
∑e′

e=1 g
[e]
φ ( ~Jxã

M,[e]).
Note that, in the second step, only the latest model is optimized, and thus we can simply store the
predictions of the preceding models without loading them into the memory. Each partial ensemble
can be directly learned through gradient descent, without resorting to complex meta-algorithms such
as adaptive boosting (Freund & Schapire, 1997) or gradient boosting (Friedman, 2001).

Computation. The standard locally constant networks are built on the gradients of all the neurons
~Jxã

M = [∇xa
M
1 , . . . ,∇xa

1
1], which can be computationally challenging to obtain. Existing auto-

matic differentiation (e.g., back-propagation) only computes the gradient of a scalar output. Instead,
here we propose an efficient dynamic programming procedure which only requires a forward pass:

1. ∇xa
1
1 = o1

1 ×W 1.
2. ∀i ∈ {2, . . . ,M},∇xa

i
1 = oi1 × (W i

1,1:D +
∑i−1
k=1 W

i
1,D+k∇xa

k
1),

where∇xa
k
1 is the computed gradient in the preceding layers. The dynamic programming costsM+∑M

i=2(i− 1) = O(M2) multiplication and
∑M
i=2(i− 1) = O(M2) addition. Straightforward back-

propagation re-computes the partial solutions ∇xa
k
1 for each ∇xa

i
1, whose complexity is O(M3).

4 EXPERIMENT

Here we evaluate the efficacy of our models (LCN, ALCN, and ELCN) using the chemical prop-
erty prediction datasets from MoleculeNet (Wu et al., 2018), where random forest performs com-
petitively. We include 4 (multi-label) binary classification datasets and 1 regression dataset. The
statistics are available in Table 1. We follow the literature to construct the feature (Wu et al., 2018).
Specifically, we use the standard Morgan fingerprint (Rogers & Hahn, 2010), 2,048 binary indi-
cators of chemical substructures, for the classification datasets, and ‘grid features’ (fingerprints of
pairs between ligand and protein, see Wu et al. (2018)) for the regression dataset. Each dataset is
splitted into (train, validation, test) sets under the criterion specified in MoleculeNet.

We compare LCN and its extensions (LLN, ALCN, and ELCN) with the following baselines:
• (Oblique) decision trees: CART (Breiman et al. (1984)), HHCART (Wickramarachchi et al.

(2016); oblique decision trees induced greedily on linear projections), and TAO (Carreira-
Perpinán & Tavallali (2018); oblique decision trees trained via alternating optimization).

• Tree ensembles: RF (Breiman (2001); random forest) and GBDT (Friedman (2001); gradient
boosting decision trees).

• Graph networks: GCN (Duvenaud et al. (2015); graph convolutional networks on molecules).
For decision trees, LCN, LLN, and ALCN, we tune the tree depth in {2, 3, . . . , 12}. For LCN, LLN,
and ALCN, we also tune the DropConnect probability in {0, 0.25, 0.5, 0.75}. Since regression tasks
require precise estimations of the prediction values while classification tasks do not, we tune the
number of hidden layers of gφ in {0, 1, 2, 3, 4} (each with 256 neurons) for the regression task, and
simply use a linear model gφ for the classification tasks. For ELCN, we use ALCN as the base model,
tune the ensemble size E ∈ {20, 21, . . . , 26} for the classification tasks, and E ∈ {20, 21, . . . , 29}
for the regression task. To train our models, we use the cross entropy loss for the classification tasks,
and mean squared error for the regression task. Other minor details are available in Appendix B.

We follow the chemistry literature (Wu et al., 2018) to measure the performance by AUC for classi-
fication, and root-mean-squared error (RMSE) for regression. For each dataset, we train a model for
each label, compute the mean and standard deviation of the performance across 10 different random
seeds, and report their average across all the labels within the dataset. The results are in Table 2.
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Table 2: Main results. The 2nd row refers to (oblique) decision tree methods, the 3rd row refers to
single model extensions of LCN, the 4th row refers to ensemble methods, and the last row is GCN.
The results of GCN are copied from (Wu et al., 2018). The best result in each row is in bold letters.

Dataset Bace (AUC) HIV (AUC) SIDER (AUC) Tox21 (AUC) PDBbind (RMSE)

CART 0.652 ± 0.024 0.544 ± 0.009 0.570 ± 0.010 0.651 ± 0.005 1.573 ± 0.000
HHCART 0.545 ± 0.016 0.636 ± 0.000 0.570 ± 0.009 0.638 ± 0.007 1.530 ± 0.000
TAO 0.734 ± 0.000 0.627 ± 0.000 0.577 ± 0.004 0.676 ± 0.003 Not applicable
LCN 0.839 ± 0.013 0.728 ± 0.013 0.624 ± 0.044 0.781 ± 0.017 1.508 ± 0.017

LLN 0.818 ± 0.007 0.737 ± 0.009 0.677 ± 0.014 0.813 ± 0.009 1.627 ± 0.008
ALCN 0.854 ± 0.007 0.738 ± 0.009 0.653 ± 0.044 0.814 ± 0.009 1.369 ± 0.007

RF 0.869 ± 0.003 0.796 ± 0.007 0.685 ± 0.011 0.839 ± 0.007 1.256 ± 0.002
GBDT 0.859 ± 0.005 0.748 ± 0.001 0.668 ± 0.014 0.812 ± 0.011 1.247 ± 0.002
ELCN 0.874 ± 0.005 0.757 ± 0.011 0.685 ± 0.010 0.822 ± 0.006 1.219 ± 0.007

GCN 0.783 ± 0.014 0.763 ± 0.016 0.638 ± 0.012 0.829 ± 0.006 1.44 ± 0.12
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(a) Learning curve of LCN
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(b) Training performance
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(c) Testing performance

Figure 2: Empirical analysis for oblique decision trees on the HIV dataset. Fig. 2a is an ablation
study for LCN and Fig. 2b-2c compare different training methods.

Among the (oblique) decision tree training algorithms, our LCN achieves the state-of-the-art per-
formance. The continuous extension (ALCN) always improves the empirical performance of LCN,
which is expected since LCN is limited for the number of possible outputs (leaf nodes). Among
the ensemble methods, the proposed ELCN always outperforms the classic counterpart, GBDT, and
sometimes outperforms RF. Overall, LCN is the state-of-the-art method for learning oblique deci-
sion trees, and ELCN performs competitively against other alternatives for training tree ensembles.

Empirical analysis. Here we analyze the proposed LCN in terms of the optimization and general-
ization performance in the large HIV dataset. We conduct an ablation study on the proposed method
for training LCN in Figure 2a. Direct training (without annealing) does not suffice to learn LCN,
while the proposed annealing succeed in optimization; even better optimization and generalization
performance can be achieved by introducing DropConnect, which corroborates our hypothesis on
the exploration effect during training in §3.7 and its well-known regularization effect. Compared to
other methods (Fig. 2b), only TAO has a comparable training performance. In terms of generaliza-
tion (Fig. 2c), all of the competitors do not perform well and overfit fairly quickly. In stark contrast,
LCN outperforms the competitors by a large margin and gets even more accurate as the depth in-
creases. This is expected due to the strong regularization of LCN that uses a linear number of
effective weights to construct an exponential number of decision nodes, as discussed in §3.5. Some
additional analysis and the visualization of the tree converted from LCN are included in Appendix C.

5 DISCUSSION AND CONCLUSION

We create a novel neural architecture by casting the derivatives of deep networks as the representa-
tion, which realizes a new class of neural models that is equivalent to oblique decision trees. The
induced oblique decision trees embed rich structures and are compatible with deep learning meth-
ods. This work can be used to interpret methods that utilize derivatives of a network, such as training
a generator through the gradient of a discriminator (Goodfellow et al., 2014). The work opens up
many avenues for future work, from building representations from the derivatives of neural models
to the incorporation of more structures, such as the inner randomization of random forest.
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A PROOF OF LEMMA 6

Proof. We fix j and do induction on i. Without loss of generality, we assume 1 = rj 6= r′j = 0.

If i = j, since r′j = 0, we have{
ωr1:i

= W i+1
1,1:D +

∑i
k=1 W

i+1
1,D+k × rk × ωr1:k−1

,

ωr′1:1
= W i+1

1,1:D +
∑i−1
k=1 W

i+1
1,D+k × rk × ωr1:k−1

.

Hence, we have ωr1:i
− ωr′1:1

= (W i+1
1,D+i × ri)× ωr1:i−1

= α× ωr1:j−1
.

We assume the statement holds for up to some integer i ≥ j:
ωr1:i

− ωr′1:i
= α× ωr1:j−1

, for some α ∈ R.
For i+ 1, we have

ωr1:i+1
=W i+2

1,1:D +

i+1∑
k=1

W i+2
1,D+k × rk × ωr1:k−1

=W i+2
1,1:D +

j−1∑
k=1

W i+2
1,D+k × rk × ωr1:k−1

+ W i+2
1,D+j × rj × ωr1:j−1

+

i+1∑
k=j+1

W i+2
1,D+k × rk × ωr1:k−1

=W i+2
1,1:D +

j−1∑
k=1

W i+2
1,D+k × r′k × ωr′1:k−1

+ W i+2
1,D+j × rj × ωr1:j−1

+

i+1∑
k=j+1

W i+2
1,D+k × r′k × (ωr′1:k−1

+ αk × ωr1:j−1
), for some αk ∈ R

=W i+2
1,1:D +

i+1∑
k=1

W i+2
1,D+k × r′k × ωr′1:k−1

+ (W i+2
1,D+j × rj +

i+1∑
k=j+1

W i+2
1,D+k × rk × αk)× ωr1:j−1

=ωr′1:i+1
+ α× ωr1:j−1

, for some α ∈ R

The proof follows by induction.

B IMPLEMENTATION DETAILS

Here we provide the full version of the implementation details.

For the baseline methods:

• CART, HHCART, and TAO: we tune the tree depth in {2, 3, . . . , 12}.
• RF: we use the scikit-learn (Pedregosa et al., 2011) implementation of random forest. We

set the number of estimators as 500.
• GBDT: we use the scikit-learn (Pedregosa et al., 2011) implementation of gradient boost-

ing trees. We tune the number of estimators in {23, 24, . . . , 210}.

For LCN, LLN, and ALCN, we run the same training procedure. For all the datasets, we tune the
depth in {2, 3, . . . , 12} and the DropConnect probability in {0, 0.25, 0.5, 0.75}. The models are
optimized with mini-batch stochastic gradient descent with batch size set to 64. For all the classifi-
cation tasks, we set the learning rate as 0.1, which is annealed by a factor of 10 for every 10 epochs
(30 epochs in total). For the regression task, we set the learning rate as 0.0001, which is annealed
by a factor of 10 for every 30 epochs (60 epochs in total).
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Table 3: Analysis for “unobserved decision patterns” of LCN in the Bace dataset.

Depth 8 9 10 11 12

# of possible patterns 256 512 1024 2048 4096
# of training patterns 72 58 85 103 86
# of testing patterns 32 31 48 49 40
# of testing patterns - training patterns 5 2 11 8 11
Ratio of testing points w/ unobserved patterns 0.040 0.013 0.072 0.059 0.079

Testing performance - observed patterns 0.8505 0.8184 0.8270 0.8429 0.8390
Testing performance - unobserved patterns 0.8596 0.9145 0.8303 0.7732 0.8894

Both LCN and ALCN have an extra fully-connected network gφ, which transforms the derivatives
~Jxã

M to the final outputs. Since regression tasks require precise estimation of prediction values
while classification tasks do not, we tune the number of hidden layers of gφ in {0, 1, 2, 3, 4} (each
with 256 neurons) for the regression dataset, and simply use a linear gφ for the classification datasets.

For ELCN, we fix the depth to 12 and tune the number of base models E ∈ {20, 21, . . . , 26} for the
classification tasks, and E ∈ {20, 21, . . . , 29} for the regression task. We set the DropConnect prob-
ability as 0.75 to encourage strong regularization for the classification tasks, and as 0.25 to impose
mild regularization for the regression task (because regression is hard to fit). We found stochastic
gradient descent does not suffice to incrementally learn the ELCN, so we use the AMSGrad opti-
mizer (Reddi et al., 2018) instead. We set the batch size as 256 and train each partial ensemble for
30 epochs. The learning rate is 0.01 for the classification tasks, and 0.0001 for the regression task.

To train our models, we use the cross entropy loss for the classification tasks, and mean squared
error for the regression task.

C SUPPLEMENTARY EMPIRICAL ANALYSIS AND VISUALIZATION

C.1 SUPPLEMENTARY EMPIRICAL ANALYSIS

In this section, we investigate the learning of “unobserved branching / leaves” discussed in §3.6.
The “unobserved branching / leaves” refer to the decision and leaf nodes of the oblique decision tree
converted from LCN, such that there is no training data that are routed to the nodes. It is impossible
for traditional (oblique) decision tree training algorithms to learn the predictive values of such nodes
(e.g., the predictive value of a leaf node in the traditional framework is based on the training data
that are routed to the leaf node). However, the shared parameterization in our oblique decision tree
provides a means to update such unobserved nodes during training (see the discussion in §3.6).

Since the above scenario in general happens more frequently in small datasets than in large datasets,
we evaluate the scenario on the small Bace dataset (binary classification task). Here we empirically
analyze a few things pertaining to the unobserved nodes:

• # of training patterns: the number of distinct end-to-end activation / decision patterns r1:M en-
countered in the training data.

• # of testing patterns: the number of distinct end-to-end activation / decision patterns r1:M en-
countered ib the testing data.

• # of testing patterns - training patterns: the number of distinct end-to-end activation / decision
patterns r1:M that is only encountered in the testing data but not in the training data.

• Ratio of testing points w/ unobserved patterns: the number of testing points that yield unobserved
patterns divided by the total number of testing points.

• Testing performance - observed patterns: here we denote the number of testing data as n, the
prediction and label of the ith as ŷi ∈ [0, 1] and yi ∈ {0, 1}, respectively. We collect the subset
of indices I of the testing data such that their activation / decision patterns r1:M are observed
in the training data, and then compute the performance of their predictions. Since the original
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performance is measured by AUC, here we generalize AUC to measure a subset of points I as:∑
i∈I
∑n
j=1

(
I[yi > yj ]

(
I[ŷi > ŷj ] + 0.5I[ŷi = ŷj ]

)
+ I[yi < yj ]

(
I[ŷi < ŷj ] + 0.5I[ŷi = ŷj ]

))
∑
i∈I
∑n
j=1

(
I[yi > yj ] + I[yi < yj ])

) .

(6)

When I = [n], the above measure recovers AUC.
• Testing performance - unobserved patterns: the same as above, but use I for the testing data such

that their activation / decision patterns r1:M are unobserved in the training data.

The results are in Table 3. There are some interesting findings. For example, there is an exponential
number of possible patterns, but the number of patterns that appear in the dataset is quite small. The
ratio of testing points with unobserved patterns is also small, but these unobserved branching / leaves
seem to be controlled properly. They do not lead to completely different performance compared to
those that are observed during training.

C.2 VISUALIZATION

Here we visualize the learned locally constant network on the HIV dataset in the representation of
its equivalent oblique decision tree in Fig. 3. Since the dimension of Morgan fingerprint (Rogers &
Hahn, 2010) is quite high (2,048), here we only visualize the top-K weights (in terms of the absolute
value) for each decision node. We also normalize each weight such that the `1 norm of each weight
is 1. Since the task is measured by ranking (AUC), we also visualize the leaf nodes in terms of the
ranking of output probability among the 16 leaf nodes (the higher the more likely).

Note that a complete visualization requires some engineering efforts. Our main contribution here
is the algorithm to transform an LCN to an oblique decision tree, rather than the visualization of
oblique decision trees itself, so we only provide the initial visualization as a proof of concept.
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Figure 3: Visualization of learned locally constant network in the representation of oblique decision
trees using the proof of Theorem 3. The number in the leaves indicates the ranking of output proba-
bility among the 16 leaves (the exact value is not important). See the descriptions in Appendix C.2.
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