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ABSTRACT

Quantifying, enforcing and implementing fairness emerged as a major topic in
machine learning. We investigate these questions in the context of deep learning.
Our main algorithmic and theoretical tool is the computational estimation of
similarities between probability, “à la Wasserstein”, using adversarial networks.
This idea is flexible enough to investigate different fairness constrained learning
tasks, which we model by specifying properties of the underlying data generative
process. The first setting considers bias in the generative model which should be
filtered out. The second model is related to the presence of nuisance variables
in the observations producing an unwanted bias for the learning task. For both
models, we devise a learning algorithm based on approximation of Wasserstein
distances using adversarial networks. We provide formal arguments describing
the fairness enforcing properties of these algorithm in relation with the underlying
fairness generative processes. Finally we perform experiments, both on synthetic
and real world data, to demonstrate empirically the superiority of our approach
compared to state of the art fairness algorithms as well as concurrent GAN type
adversarial architectures based on Jensen divergence.

Keywords: Fair learning, Wasserstein distance, Adversarial Networks.

1 INTRODUCTION

Along the last few years, much emphasis has been laid on fairness issues in machine learning.
Actually, when the learning sample presents biases, these are learnt by algorithms based on loss
functions promoting closeness to observed data. Using such models for decision making generalizes
biases to the whole population. This drawback of machine learning, also known as unfairness, has
become a major challenge in the domain. For a recent survey on this topic we refer to Dwork et al.
(2012); Zemel et al. (2013) or Friedler et al. and references therein.

Fairness usually deals with situations where an algorithm exhibits a different behavior for two
different subgroups of the population, while these subgroups should not play any role in its outcome.
This situation is often modeled as follows : the algorithm should aims at forecasting a variable
Y based on observations X . Fairness is then defined with respect to a protected variable, called
protected attribute, S which represents membership to each population subgroup. The algorithm is
called fair if its predictions does not depend too much on S.

Defining and quantifying this notion of dependency is a complicated task and has received much
attention. One of the main tools is the so-called disparate impact which measures if the decision
taken by an algorithm differs from one group to another. Absence of disparate impact is called
demographic parity. Another measure of fairness is given by the dependency of prediction error
with respect to S. The independent case is a form of fairness called equality of odds. We refer for
instance to Chouldechova (2017), Friedler et al. (2016) or Besse et al. (2018) and references therein.
Both situations amounts to considering that either the distribution of the prediction, or its conditional
distribution given the target variable Y , does not depend on S. Hence fairness quantification can be
naturally implemented using distance between conditional distributions.

This point of view has been extensively studied when trying to “repair” data sets as described for
instance in Feldman et al. (2015), Johndrow & Lum (2017), Hacker & Wiedemann (2017) or Friedler
et al. (2019). This solution consists in changing the input data so that predictability of the protected
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attribute is impossible. The data will be blurred in order to obtain a fair treatment of the protected
class. The natural distance to measure the difference between the conditional distributions is the
so-called Wasserstein distance, which provides an alternative framework to measure the dependency
of the decision rule with respect to the protected attribute as shown in Barrio et al. (2019a) or Barrio
et al. (2019b). Yet previous methods face the difficulty of computing the Wasserstein distance which
is a challenging task as shown in Peyré & Cuturi (2019).

In this work, we aim at building fair classifiers by considering a Wasserstein type constraint. Adding
constraints to the classifiers to get fair behavior has been studied in several papers. We refer to
Friedler et al. (2019), Zafar et al. (2017a) and references therein. Our approach, yet sharing some
similarities with Edwards & Storkey (2016), based on Ganin et al. (2016), is more flexible and enables
to solve wider classes of fairness problems based on different adversarial architecture resulting in
more suited loss functions. Wasserstein constraint for fairness has also been considered in Jiang
et al. (2019) for binary logistic regression. In the following, we provide algorithms which, for
both demographic parity and equality of odds, can incorporate fairness constraints based on the
1-Wasserstein distance. Here we will consider two different mathematical models, describing the
relationships between the variables X the target variable Y and the protected variable S. Computing
Wasserstein type constraints is difficult, we use neural networks as they have been proved useful to
estimate Wasserstein type distances as discussed in Arjovsky et al. (2017). The proposed approach
can be combined with any kind of neural network predictor. Hence we are able to manage a large
variety of input data structure (e.g. images) as well as output labels (multiclass, regression, images
. . . ). We demonstrate on fairness benchmark datasets that the proposed Wasserstein approximation
framework outperforms both classical fair algorithms (e.g fair SVM) as well as similar adversarial
architectures based on Jensen / GAN losses very close to the approaches described in Beutel et al.
(2017); Madras et al. (2018).

The paper falls into the following parts. Section 2 is devoted to the presentation of Wasserstein
distance, approximation schemes and applications to fair modeling. Section 3 describes a first model
of fairness related to demographic parity. Section 4 considers a second option connected to equality
of odds. For both models, we propose an adversarial network methodology to obtain a fair classifier
for each type of fairness. Section 5 studies these algorithms on real benchmark data sets as well as
synthetic simulations.

2 FAIRNESS : DEFINITIONS AND METRICS

2.1 FRAMEWORK

The statistical model we consider is the following. The problem consists in forecasting a binary
variable Y ∈ {0, 1}, using observed covariates X ∈ Rd, d ≥ 1. We assume moreover that
the population can be divided into two categories that represent a bias, modeled by a variable
S ∈ {0, 1}. This variable is called the protected, or sensitive, attribute which takes the values
S = 0 for the “ minority” class and S = 1 for the “ majority ” class. 1 We observe n joint
realizations of these variables D = {(Xi, Si, Yi), i ∈ {1, . . . , n}}. We use the following notations
Dl = {(Xi, Yi), i ∈ {1, . . . , n}, Si = l} for l = 0, 1, Dk

l = {Xi, i ∈ {1, . . . , n}, Si = l, Yi = k}
for l = 0, 1, k = 0, 1.

The fair classification problem aims at predicting Y from the variables X , using a family of binary
classifiers g ∈ G : Rd → {0, 1} without using the information conveyed by S. For every g ∈ G, the
outcome of the classification will be the prediction Ŷ = g(X).
We consider in the following that the classifier g comes from a score given by a predictor F : Rd → R
such that Ŷ = 1F (X)>η for a chosen threshold η > 0.

Different criteria have been proposed for measuring the fairness of f̂ depending of the context. The
disparate impact (DI) measures the sensitivity of the predicted values Ŷ with respect to S.

DI(Ŷ , S) = |P (Ŷ = 1|S = 0)− P (Ŷ = 1|S = 1)|.

1Note that in the case where S is not a binary variable but multidimensional or multi-class, we can consider
one versus one fairness identifying in each case a “minority”.
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The most favorable situation in terms of fairness with respect to the protected attribute S, is achieved
when DI(Ŷ , S) = 0 (i.e. P (Ŷ = 1|S = 0) = P (Ŷ = 1|S = 1)), which corresponds to the situation
known as demographic parity. In this case, the predicted class is independent from S.
While its interpretation is clear, the mathematical properties of the disparate impact measure are
not favorable, in particular it lacks robustness and smoothness features which would be necessary
to blend algorithmic practice and mathematical theory. In the following, we propose an alternative
measure of equality of opportunity which features smoothness properties and comes with a strong
mathematical background. Given a score function F , we set L1(F (X)) = L(F (X)|S = 1) and
L0(F (X)) = L(F (X)|S = 0) the laws of conditional distribution of the score for each class and
denote the corresponding quantile functions by Q0,F and Q1,F . Independence of the decision with
the variable S would entail that the repartition of the scores is similar for the two subgroups. So the
distance between the quantiles of these two distributions acts as a measure of fairness measuring that
the repartition of the score is spread in a similar ways whatever the values of the protected attribute,
hence acting as a sensitivity index of the predicted values F (X) with respect to S. Namely define

EMD(F (X), S) :=W(L0(F (X)),L1(F (X))) =

∫ 1

0

|Q0,f (t)−Q1,f (t)|dt, (1)

which corresponds to the so-called earth-mover orW1 Wasserstein distance between the conditional
distributions. ClearlyW(L0(F (X)),L1(F (X))) = 0 implies that DI(Ŷ , S) = 0. So Wasserstein
distance appears in this framework as a smooth criterion to assess the sensitivity w.r.t to the protected
variable. This criterion corresponds to the quantity that is used to measure fairness in Barrio et al.
(2019b) and Barrio et al. (2019a). Note that Wasserstein distance for fairness has been also considered
in the seminal paper by Feldman et al. (2015).

Another important criterion is the equality of odds, which measures the influence of the S on the
accuracy of the algorithm. For this the prediction errors across the different class groups are compared
and this notion of fairness is achieved when P (Ŷ = 1|Y = 1, S = 0) = P (Ŷ = 1|Y = 1, S = 1)

and P (Ŷ = 0|Y = 0, S = 0) = P (Ŷ = 0|Y = 0, S = 1). Here again, this condition can be
interpreted as a notion of independence of the conditional distributions defined for (i, s) ∈ {0, 1}2
as Lis(f(X)) the distribution of the random variable (f(X)|Y = i, S = s). Hence as we exposed
for the notion of equality of opportunity, fairness will be assessed through the computations of the
Wasserstein distancesW(L0

0(F (X)),L0
1(F (X))) andW(L1

0(F (X)),L1
1(F (X))).

Note that in some cases, we are only interested in equality of opportunities. This corresponds to the
case where we only require that P (Ŷ = 1|Y = 1, S = 0) = P (Ŷ = 1|Y = 1, S = 1) as pointed
out in Hardt et al. (2016). Hence in this case it amounts to control onlyW(L1

0(F (X)),L1
1(F (X))).

2.2 WASSERSTEIN DIVERGENCES USING NEURAL NETWORKS AND PROPERTIES

The earth-mover, or Wasserstein-1 distances between probability distribution is defined as follows :

W(L1,L2) = inf
γ∈Π(L1,L2)

E
X,Y∼γ

‖ X − Y ‖ (2)

where Π(L1,L2) is the set of all probability measures on X,Y with marginals L1 and L2. Disparate
Impact is closely related to the notion of unpredictability of the variable S. Hence the aim in this
case is to The distance associated to these notions is the total variation distance dTV(L1,L2 but due
to intractability of this distance, it has been replaced in the machine learning literature byW . Clearly
the independent case is obtained when the distance is null and the decrease ofW leads to smaller DI
as shown in the experiments in Barrio et al. (2019a). Hence a constraint on the Wasserstein distance
promotes fairness, also in terms of Disparate Impact.

Although the infimum in Equation (2) is not tractable in general, it can be approximated by a neural
network. The first step is to reformulate (2) using the Kantorovich-Rubinstein duality Villani (2008):

W(L1,L2) = sup
f∈F1

EX∼L1
f(X)− EX∼L2

f(X) (3)

where F1 denotes the space of 1 Lipschitz function. As a second step, the approach proposed in
Arjovsky et al. (2017) is based on estimation of the supremum in (3) by replacing F1 by the set of
functions described by a fixed neural network architecture with spectral normalization Miyato et al.
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(2018). This provides a general methodology to estimate and optimize divergences à la Wasserstein
and leads to interesting empirical results Arjovsky et al. (2017). Furthermore, we demonstrate
empirically that this approach allows to control to some extent the empirical EMD divergence
introduced above. The two examples of fairness measures which we have introduced are based
on distributional divergence measured using Wasserstein distance and we propose to handle these
divergence terms computationally using the dual formulation presented in this paragraph.

One specificity of the fairness problem which we consider is that, empirically, we only have access
to a finite number of samples for each values of the protected attribute (S ∈ {0, 1}). For example,
we only have access to L0 and L1 through a fixed finite sample and the Wasserstein terms which we
manipulate are only computed on finitely many samples. This raises the following comments.

Other divergences, such as Jensen-Shannon Goodfellow et al. (2014), KL divergence or total variation
Arjovsky et al. (2017) can be approximated using neural networks. These divergences reflect
similarities between mutually absolutely continuous probability measures. However they degenerate
when considering singular measures. For the problems which we intend to attack in this work, we
aim at enforcing equality of distributions using only a fixed number of samples. Entropy or total
variation based divergences fail to capture dissimilarity between singular measures, and in particular
they degenerate when considering disjoint finite sample sets. On the other hand, Wasserstein metric
is well defined and does not degenerate on empirical distributions given by finite samples.

A second favorable property of this metric is its continuity features. When considering parametric
distributions, this translate into continuity of the metric in the parameter space as remarked by
Arjovsky et al. (2017), resulting in numerically more favorable situations compared to discontinuous
problems. Another important consequence of the continuity properties of Wasserstein distance is that
it translates into stable approximation of distribution divergence in the limit of large i.i.d samples
(see Appendix). This last property is very desirable since all we can do from an empirical perspective
is limited to finite samples.

3 TYPE 1 FAIR LEARNING : DEMOGRAPHIC PARITY

The first case where fairness is desirable corresponds to the situation where the target variable is
biased (....). For instance, it is well-known that the income of a people is biased by the gender. The
situation doesn’t arise from a biased gathering of data but from bias that exist in the real data and that
we don’t want to reproduce in our model. Thus, a fair model in this case will change the prediction in
order to make them independent from the protected variable. A suitable objective for this problem is
to obtain of disparate impact (or the SDI) as close as possible to 1.

Figure 1: Fairness type 1. Figure 2: Fairness type 2.

This situation is formally represented in Figure 1. In this situation we require that :

X ⊥⊥ S|Y and Y ∗ ⊥⊥ S|Y

where Y ∗ is not observed. Note that, as it intuitively expected, Y is not independent from S (even
conditionally to X). In this example, Y ∗ could represent an ideal case where the income level reflect
the proficiency and not the gender.

3.1 TYPE 1 FAIR NEURAL NETWORKS

The following can be applied either in multivariate regression, Y ∈ Rd, or classification Y = {0, 1},
we consider the type 1 configuration described in Figure 1. We propose a neural network model
with adversarial Wasserstein constraints on the output as described in Figure 3 In this networks, the
function F is a classifier or regressor. In order to have a prediction independent from S, we add
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Figure 3: Networks for fairness type 1

Figure 4: Fair networks for fairness type 2

Algorithm 1 Type 1 Fair learning algorithm
Require: α, the learning rate, λ the fairness constraint, m the batch size, nb_iter, the number of

iterations,nw the number of iterations for the Wasserstein estimators.
1: for k in nb_iter do
2: for j in nw do
3: sample iid {xi, yi}mi=1 ∼ L(D0), and {x′i, y′i}mi=1 ∼ L(D1)
4: update A with an by gradient ascent : ∇A0

1
m

∑m
i=1

(
A(F (xi))−A(F (x′i))

)
5: Normalize A as in Miyato et al. (2018).
6: end for
7: sample iid, D̂k = {di = (xi, si, yi)}mi=1 ∼ L(D)
8: update F by gradient descent :

∇F
1

m

m∑
i=1

l(F (xi), yi) +
1

|D̂k ∩D0|

∑
di∈D0

A(F (xi))−
1

|D̂k ∩D1|

∑
di∈D1

A(F (xi))

9: end for

Wasserstein penalization reflecting the dependency between F (X) and S, we obtain the following
optimization:

inf
F

EX [l(F (X), Y )] + λW(L0(F (X)),L1(F (X))) (4)

where l is the loss function for the problem. Note that the Wasserstein penalty term in (4) is exactly the
EMD fairness measure which we introduced in (1). Applying the approximation scheme described
in Section 2.2, we obtain the following saddle point problem :

inf
F

sup
A∈Fs

EX [l(F (X), Y )] + λ
(

E
X∼L0

[A(F (X))]− E
X∼L1

[A(F (X))]
)

λ > 0 are hyper-parameters and Fs represents the set of functions encoded by a fixed architecture
neural network with spectral normalization. Approximating expectations using empirical sample, the
learning process for this model is described in Alg. 1. As explained in Section 2.2, in the limit of
large samples, the maximization in A provide a proxy for the Wasserstein distance between the two
conditional distributions. Note that we can use a similar architecture for equality of opportunities.

4 TYPE 2 FAIR LEARNING : EQUALITY OF ODDS

The second case where fairness is desirable corresponds to the situation where the data are subject
to a bias nuisance variable which is in principle of no help for the learning task at hand and which
influence should be removed. On famous example is the dog vs wolf problem exposed in Ribeiro et al.
(2016). In this example, that data was heavily biased by the presence, for the wolfs, and the absence,
for the dogs, of snow in the picture. Although the presence of snow is not independent from the
presence of wolfs, we prefer a model that focuses on animal features rather than background. More
generally, this kind of situation appears when the descriptors or target variables show dependency
with the protected variable due to a biased data collection process or when we plan to use the model
on data that have a different distribution with respect to the protected variable (this could be the case
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if we want to detect wolfs and dogs in a snow free area). The equality of odds is a suitable objective
for this type of fairness.

We represent the underlying data generation process formally in Figure 3, we require the following
conditional independence:

X∗ ⊥⊥ S|Y, Y ⊥⊥ S|X∗

where X∗ is not observed. Note that, as it is intuitively expected, Y and X are not independent
from S (even conditionally on any other variable in the model). In this context, we suppose that
there is a representation of the data X∗ from which we can build a model to predict Y which will be
independent of S given Y . Back to our example for wolf and dog, X could be the pictures, X∗ could
be physical features of the animal. A model learnt from this X∗ could predict Y = {dog, wolf}
from a picture independently of the presence of snow (even if the probability of observing snow is
greater when the animal on a picture is a wolf).

4.1 TYPE 2 FAIR NEURAL NETWORKS FOR BINARY CLASSIFICATION

In the following, we consider the case where Y ∈ {0, 1} and type 2 configuration. We propose a
neural network model with adversarial Wasserstein constraints as described in Figure 3.1

In this networks, the function F ◦ T (X) (or F (Z) with Z = T (X)) is a classifier constructed in
two steps : a transformation T : X → Z and a classifier F : Z 7→ F (Z) ∈ 0, 1. We expect to build
T such that Z has the same properties as X∗ (i.e. X∗ ⊥⊥ S|Y ). In order to achieve this goal, we
constraint the distribution Z conditionally to Y to be independent of S. Based on this idea, we obtain
the following optimization problem :

inf
F,T

EX [l(F (T (X)), Y )] +λ
[
W(L0

0(T (X)),L0
1(T (X))) +W(L1

0(T (X)),L1
1(T (X)))

]
(5)

where l is a given loss function (binary cross entropy in our setting). We then apply the approximation
procedure of Wasserstein distance described in Section 2.2 and obtain the following saddle point
problem :

inf
F,T

EX [l(F (T (X)), Y )]

+ λ sup
A0,A1∈Fs

E
L0

0(X)
A0(T (X))− E

L0
1(X)

A0(T (X)) + E
L1

0(X)
A1(T (X))− E

L1
1(X)

A1(T (X))

where λ > 0 are hyper-parameters of the method and Fs describes all functions generated by a given
fixed architecture neural network with spectral normalization Miyato et al. (2018). Based on finite
sample approximation of the various expectations in this formulation, the learning process is similar
to Alg. 1 and is fully described in the appendix. The supremum over A0 and A1 for finite sample
approximation of the expectations is a proxy to the Wasserstein distance between the two conditional
distributions of interest in 2.1. Moreover, Property 1 states that in the limit of Wasserstein distance
between conditional distribution set to 0 the latent space Z = T (X) satisfies the same properties of
conditional Independence as X∗. Furthermore any classifier build a posteriori on Z will satisfy equal
opportunities with respect to Y .

Proposition 1 Assume that the deterministic map T satisfies

W
(
L0

0(T (X)),L1
0(T (X))

)
= 0 and W

(
L1

0(T (X)),L1
1(T (X))

)
= 0

then, we have T (X) ⊥⊥ S|Y , for any measurable map G, G(T (X)) ⊥⊥ S|Y .

Proof sketch: Both are expressions of equality in distribution. Nullity of Wasserstein distance
entails T (X) ⊥⊥ S|Y . This implies that for any deterministic map G, G(T (X)) ⊥⊥ S|Y . �
Note that, contrary to other repair procedures for which the transformation must be recomputed for
any new observations (in Barrio et al. (2019a) the transformation relies on the optimal transport map
which depends on the observations), here the optimal transformation T can be used directly for all
new observations.
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Table 1: Accuracy, Disparate impact and EMD for adult, bank and CelebA under demographic parity
and equality of odds constraint

Type 1 : demographic parity
data Adult gender Bank CelebA

PPPPPPPAlg
score ACC DI EMD ACC DI EMD ACC DI EMD

UnfairClf 84.5[0.5] 0.19 0.18 90.3[0.2] 0.14 0.16 [0.7] 77.9 [0.7] 0.46 0.38
C-SVM 79.4 [0.6] 0.02 - 90.0 [0.2] 0.02 - - - -
Wass. Alg1 λ = 0.9 80.7 [0.7] 0.01 0.02 90.0 [0.2] 0.01 0.01 71.2 [0.1] 0.06 0.05
Gan. Alg1 λ = 3 80.3 [0.7] 0.03 0.04 87.2 [0.9] 0.07 0.05 74.1 [0.3] 0.18 0.17
Wass. Alg1 λ = 0.65 83.2 [0.5] 0.07 0.03 90.2 [0.2] 0.01 0.02 74.6 [0.2] 0.18 0.17
Gan. Alg1 λ = 1 83.9 [0.4] 0.09 0.09 90.4 [0.2] 0.09 0.08 75.4 [0.3] 0.23 0.22

Type 2 : equality of odds
ACC DIY EMDY ACC DIY EMDY ACC DIY EMDY

UnfairClf 84.5[0.5] 0.19 0.18 89.9[0.5] 0.07 0.08 78.1 [0.7] 0.48 0.38
Wass. Alg1 λ = 1 81.0 [0.6] 0.03 0.05 89.2 [0.2] 0.04 0.05 77.2 [0.7] 0.27 0.23
Gan. Alg1 λ = 2 81.9 [0.7] 0.09 0.08 89.1 [0.2] 0.04 0.05 77.1 [0.6] 0.27 0.23

5 EXPERIMENTATION

We show in this section, empirical results supporting our theoretical expectations. For simplicity
and reproducibility purposes, we keep neural networks as simple as possible and try to use similar
architectures as much as we can. For all the experiments, we set the learning rate of Adam to 1e−4,
and nw to 10 (see algorithm description in Sections 3 and 4). All experiments have been implemented
with keras/tensorflow.

Fairness benchmarks: We consider three state of the art fairness benchmarks : (i) impact of gender
in adult database (predict income>50K, 48842 examples, 16 attributes) (ii) impact of age (boolean
25 < age > 60) in the bank database (predict credit acceptance, 45211 examples, 17 attributes) (iii)
impact of the gender on the attractivity in a subset of the celebA dataset (64x64 rgb images, 19670
examples).

Concurent methods: We compare our results with the C-SVM implementation proposed by Zafar
et al. (2017a;b) and a classifier based on our neural network architecture without fairness constraint
(UnfairClf). We also compare our approach with GAN type Jensen adversarial as in Beutel et al.
(2017); Madras et al. (2018). Note that the architectures that we use are slightly different from the
original papers, this was on purpose to ensure an objective comparison with our approach. Indeed we
keep our adversarial architectures and only replace Wasserstein loss and network by a classifier with
binary cross entropy and GAN trick for training.

Results: Table 1 reports accuracy (ACC), DI and EMD in a 70%train-30%test scheme with 10
repetitions to assess variability2 in both demographic parity and equality of odds scenarios. For
equality of odds, we aggregate fairness measures DI and EMD, conditioning on Y and summing
over Y = 0, 1, these aggregated measures are denoted by DIY and EMDY . For the adversarial
approaches we report one result with high fairness constraint and one result with a lesser constraint
(obtained by considering different values of λ). For the demographic parity constraint, in all examples,
our algorithm reduces the DI close to 0 with an acceptable accuracy decrease. Figure 5 illustrates that
our last hyper-parameter λ (see Equation (4)) controls the trade-off between accuracy and fairness
both in wasserstein and GAN configurations. Our approach clearly dominates concurrent methods
in all situations in terms of both accuracy and fairness level. This is further illustrated in the third
part of Figure 5 where the accuracy / fairness tradeoff is very favorable to our wasserstein approach
compared to more traditional GAN methods. Finally Table 1 illustrates difficulties for GAN models
to enforce hard fairness constraints (DI close to 0). For equality of odds, our method and GAN
approach perform similarly.

2Standard deviation is only reported for accuracy because it was negligible for other quantities
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Figure 5: Accuracy / fairness tradeoffs between our Wasserstein approach and more traditional GAN
approaches similar to Beutel et al. (2017); Madras et al. (2018) for demographic parity.

Figure 6: Fair auto encoder.a) T-shirt, b) fair representation of T-shirt, c) shirt, d)fair representation
of shirt

Learning based on fair representations: To illustrate Proposition 1 and the fact that our fairness
constrinat can be applied to other type of problem than classification, we consider classification of
T-shirts versus shirts (Y = {Tshirt, shirt}) in the fashion-MNIST dataset Xiao et al. (2017) (12000
training examples, 2000 test examples). These two classes are known to be the most challenging
to distinguish in this dataset (accuracy around 0.9). We bias the dataset by adding a color (S =
{turquoise, yellow}) correlated to the class variable Y : P (S = yellow|Y = T − shirt) = 0.9,
P (S = Turquoise|Y = shirt) = 0.9. We apply the following experimental process: train on the
biased dataset, and compare validation performances both on the biased test set and the same biased
test set, with switched colors: P (S = yellow|Y = T − shirt) = 0.1 and P (S = Turquoise|Y =
shirt) = 0.1.

We train a fair auto-encoder with two Wasserstein adversarial networks constraining equality of odds
for the decoded images. We observe in Figure 5 that equality of odds is achieved by assigning the
same color to all transformed images. We train a first network (unfairClf) on the biased database. We
train a similar network on the fair database, and construct a fair classifier (fairClf) by composition
of the second trained classifier and the auto-encoder. As expected unfairClf generalizes better on
the biased test set (accuracy 0.94 versus 0.87). However when switching the test color distribution
fairClf is far more robust (accuracy 0.82 versus 0.60). This demonstrates that in addition to building
a representation which looks fair, our auto-encoder approach is robust to fluctuations of the bias
variable distribution.

6 CONCLUSIONS

This work tackles the challenge of incorporating constraints to deal with bias issues in machine learn-
ing. We show that Wasserstein is an appropriate choice of distance between conditional distributions
to control fairness using adversarial neural networks. We also explicit mathematical models providing
abstract frameworks to understand and apply two types of fair constraints (demographic parity and
equality of odds). The predictor we obtain prove efficient on well known fairness benchmarks
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as well as synthetic problems. Our experiments designed with minimal hand tuning to overcome
reproducibility issues. As expected adversarial wasserstein constraints are more efficient to enforce
fairness than their traditional GAN counterparts.
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This is supplementary file for the paper Fairness with Wasserstein Adversarial Networks.

A SUPPLEMENTARY

A.1 CENTRAL LIMIT THEOREM FOR EMPIRICAL WASSERSTEIN IN DIMENSION 1

The behavior of the empirical transportation cost is a key issue and heavily relies on the dimension of
the problem. For general dimension we refer to Dobrić & Yukich (1995) for the asymptotic limit of
the transportation costs. The asymptotic behavior is provided for quadratic cost in general dimension
in del Barrio & Loubes (2019). For the one dimensional case, which corresponds to the situation
encountered here since the constraint is imposed on a score F (X) ∈ R, it is possible to control more
precisely for general costs the asymptotic behavior of the empirical Wasserstein’s distance. The
following theorem is an extension for the two sample case andW of the theorem found in Barrio
et al. (2019b). We provide it for sake of completeness.

Theorem 1 Assume that F and G satisfies the following assumption∫ ∞
−∞

√
F (t)(1− F (t))dt <∞ (6)

If λ(F = G) = 0 where λ is Lebesgue measure on R. Assume that n
n+m → π ∈ (0, 1). Then√

nm

n+m
(
(
W1(Fn, Gm)−W1(F,G)

)
→w (1− π)N(0, σ2

1(F,G)) + πN(0, σ2
1(G,F )),

with σ2
1(F,G) =

∫ 1

0
c21(t;F,G)dt−

( ∫ 1

0
c1(t;F,G)dt

)2

and

c1(t;F,G) :=

∫ F−1(t)

F−1( 1
2 )

sgn
(
s−G−1(F (s))

)
ds, 0 < t < 1.

Proof sketch: This results follows the proofs in Barrio et al. (2019b). It can be deduced from the
one sample case which states that

√
n
(
W1(Fn, G)−W1(F,G)

)
→w

∫
R
vF (x)dx,

where vF (x) = B(F (x)) if F (x) > G(x), vF (x) = −B(F (x)) if F (x) < G(x), vF (x) =
|B(F (x))| if F (x) = G(x) and B is a Brownian bridge on [0, 1]. In particular, then

√
n
(
W1(Fn, G)−W1(F,G)

)
→w N(0, σ2

1(F,G)),

Note that Wasserstein distance is expressed through the quantile functions but when p = 1, we have
by simple arguments that

W(Pn, Q) =

∫
R
|Fn(x)−G(x)|dx,

which allows to deal with the empirical transportation cost through the consideration of the process

αFn (x) :=
√
n(Fn(x)− F (x)), x ∈ R.

Under the assumption ∫ ∞
−∞

√
F (t)(1− F (t))dt <∞

we have that αFn converges weakly in L1(R) toBF , a centered Gaussian process on R with covariance
function

Cov (BF (x), BF (y)) = F (x ∧ y)− F (x)F (y),

see Theorem 2.1 in del Barrio et al. (1999). By the Skorohod-Dudley-Wichura Theorem (see, e.g.,
Theorem 11.7.2 in Dudley (2002)), we can, therefore, consider versions of αFn and BF such that
‖αFn −BF ‖L1

→ 0 a.s.. Now,
√
n
(
W1(Fn, G)−W1(F,G)

)
=

∫
R
un(x)dx,
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where un(x) =
√
n
(
|F (x) − G(x) + αFn (x)/

√
n| − |F (x) − G(x)|

)
. We introduce vn(x) =√

n
(
|F (x)−G(x) +BF (x)/

√
n| − |F (x)−G(x)|

)
and v(x) = BF (x) is F (x) > G(x), v(x) =

−BF (x) if F (x) < G(x) and v(x) = |BF (x)| if F (x) = G(x). We note that |un(x) − vn(x)| ≤
|αFn (x)−BF (x)|, which implies that∣∣∣ ∫

R
un(x)dx−

∫
R
vn(x)dx

∣∣∣ ≤ ‖αFn −BF ‖L1
→ 0 (7)

with probability one.

Now, if F (x) > G(x) then vn(x) will eventually equal BF (x), while if F (x) < G(x) then
vn(x) = −BF (x) for large enough n. Hence, vn(x)→ v(x) pointwise. On the other hand,

|vn(x)| ≤ |BF (x)|.
This shows that we can apply dominated convergence to conclude that∫

R
vn(x)dx→

∫
R
v(x)dx. (8)

Combining (7) and (8) we see that
√
n(W1(Fn, G) −W1(F,G)) →

∫
R v(x)dx. To conclude we

note that BF has the same distribution as B(F (·)) with B a standard Brownian bridge on [0, 1].
Normality and the expression for the variance when λ(F = G) = 0 follow from the fact that, in that
case, ∫

R
v(x)dx =

∫
R
B(F (x))h(x)dx

with h(x) = I(F (x) > G(x))− I(F (x) < G(x)). This last integral is a centered Gaussian r.v. with
variance ∫

R2

(F (x ∧ y)− F (x)F (y))h(x)h(y)dxdy =

∫ 1

0

H2(t)dt−
(∫ 1

0

H(t)dt
)2

,

where H(t) =
∫ F−1(t)

F−1( 1
2 )
h(s)ds (the last equality follows, from instance, from Proposition 7.4.2, p.

117 in Shorack (2000)). Finally, we note that F (x) > G(x) if and only if G−1(F (x)) > x and
also that x = G−1(F (x)) if and only if G(x) ≥ F (x) and G(y) < F (x) for every y < x. But
then G(x) = F (x) unless G is not continuous at x. But this can happen at most for a countable
collection of x. This means that I(F (x) > G(x)) = I(G−1(F (x)) > x) and, under the assumption
λ(F = G) = 0, that I(F (x) < G(x)) = I(G−1(F (x)) < x) for a.e. x. This completes the proof.

A.2 ASYMPTOTICS IN THE MULTIVARIATE SETTING

Proposition 2 Given X1, . . . , Xn ∼ L1 and X ′1, . . . , X
′
n′ ∼ L2 be two iid sample on Rd of com-

pactly supported distributions L1 and L2. Then we have

sup
f∈F1

1

n

n∑
i=1

f(Xi)−
1

n′

n′∑
j=1

f(X ′j) −→
n→∞,n′→∞

W(L1,L2).

Proof sketch: Let L1,n and L2,n′ be the two empirical measures associated to our two samples.
From the law of large numbers, L1,n →

n→∞
L1 and L2,n′ →

n′→∞
L2 where the limit is understood as

convergence in distribution of probability measures (or weak convergence of probability distributions).
The result follows combining the equivalence between (2) and (3) with the fact thatW metrizes this
notion of convergence (Villani, 2008, Corollary 6.9).

B ALGORITHM

C ARCHITECTURES

C.1 GENERAL PROCESS

We use RELU for all the hidden layers, and implement neither dropout nor batch normalization
(except for the celebA classifier which use batch normalization).
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Algorithm 2 Type 2 Fair learning algorithm
Require: α, the learning rate, λ the fairness constraint, m the batch size, nb_iter, the number of

iteration, nw the number of iterations for the Wasserstein estimators.
1: for k in nb_epoch do
2: for j in nw do
3: sample iid {xi}mi=1 ∼ L0

0(X), and {x′i}mi=1 ∼ L0
1(X)

4: update A0 by gradient ascent : ∇A0

1
m

∑m
i=1

(
A0(T (xi))−A0(T (x′i))

)
5: Scale A as in Miyato et al. (2018)
6: repeat for A1 and the corresponding sampling
7: end for
8: sample iid D̂k = {di = (xi, si, yi)}mi=1 ∼ L(D)
9: update T and F an by gradient descent :

∇F,T
1

m

m∑
i=1

l(F (T (xi), yi)+
1

|D̂k ∩D0
0|

∑
di∈D0

0

A0(T (xi))−
1

|D̂k ∩D0
1}|

∑
di∈D0

1

A0(T (xi))

+
1

|D̂k ∩D1
0|

∑
di∈D1

0

A1(T (xi))−
1

|D̂k ∩D1
1}|

∑
di∈D1

1

A1(T (xi)) (9)

10: end for

C.2 TYPE 1 ARCHITECTURES

We present the architecture of the network F for the unfairclf, Type
1 and type 2 architectures used for the Adult and bank dataset :

ID Layer Kernel Stride Activation Normalization Output

Input0 Input - - None None nb variables
dense1 dense - - RELU None 128× 1
dense2 dense - - RELU None 64× 1
dense3 dense - - RELU None 32× 1
OutputF Dense - - sigmoid None 1

We present the architecture of the network F for the unfair-
clf, Type 1 and type 2 architectures used for the CelebA dataset

ID Layer Kernel Stride Activation Normalization Output

Input0 Input - - None None 64× 64× 3
Conv1 Convolutional 3× 3 - RELU True 64× 64× 32
Conv2 Convolutional 3× 3 - RELU True 64× 64× 32
pool0 max pooling - - - None 32× 32× 32
Conv3 Convolutional 3× 3 - RELU True 32× 32× 64
Conv4 Convolutional 3× 3 - RELU True 32× 32× 64
Conv5 Convolutional 3× 3 - RELU True 32× 32× 64
pool1 max pooling - - - None 16× 16× 64
Conv6 Convolutional 3× 3 - RELU True 16× 16× 128
Conv7 Convolutional 3× 3 - RELU True 16× 16× 128
Conv8 Convolutional 3× 3 - RELU True 316× 16× 128
pool2 max pooling - - - None 8× 8× 128
Conv9 Convolutional 3× 3 - RELU True 8× 8× 256
Conv10 Convolutional 3× 3 - RELU True 8× 8× 256
Conv11 Convolutional 3× 3 - RELU True 8× 8× 256
pool3 max pooling - - - None 4× 4× 256
Flat 0 flatten - - - None 4096× 1
dense1 dense - - RELU None 32× 1
OutputF Dense - - sigmoid None 1

All the wasserstein and GAN constraint networks use the following for the Type 1 architectures :
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ID Layer Kernel Stride Activation Normalization Output

Input0 Input - - None None 1
dense1 dense - - RELU spectral for wass 64× 1
dense2 dense - - RELU spectral for wass 32× 1
OutputA Dense - - linear (signoid for GAN) spectral for wass 1

The constraint are always added on the output layer of the F network.

C.3 FAIR AUTO ENCODER

We present the architecture of the network T for the fair auto-encoder
ID Layer Kernel Stride Activation Normalization Output

Input0 Input - - None None 28× 28× 3
Conv0 Convolutional 3× 3 - RELU None 28× 28× 64
pool0 max pooling - - - None 14× 14× 32
Conv1 Convolutional 3× 3 - RELU None 14× 14× 128
Conv2 Convolutional 3× 3 - RELU None 14× 14× 256
pool2 max pooling - - - None 7× 7× 256
Conv3 Convolutional 3× 3 - RELU None 7× 7× 256
up0 upsampling - - - None 14× 14× 256
Conv4 Convolutional 3× 3 - RELU None 14× 14× 128
up0 upsampling - - - None 28× 28× 128
Conv5 Convolutional 3× 3 - RELU None 28× 28× 128
Conv6 Convolutional 3× 3 - RELU None 28× 28× 128
OutputT Convolutional 3× 3 - RELU None 28× 28× 3

We present the architecture of the network A for the fair auto-encoder
ID Layer Kernel Stride Activation Normalization Output

Input0 Input - - None None 28× 28× 3
Conv0 Convolutional 3× 3 - RELU spectral 28× 28× 32
pool0 max pooling - - - spectral 14× 14× 32
Conv1 Convolutional 3× 3 - RELU spectral 14× 14× 64
Conv2 Convolutional 3× 3 - RELU spectral 14× 14× 128
pool2 max pooling - - - spectral 7× 7× 128
Flat 0 flatten - - - spectral 6272
dense2 dense - - RELU spectral 32× 1
OutputA Dense - - linear spectral 1
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