Under review as a conference paper at ICLR 2020

REGIONAL BASED QUERY IN GRAPH ACTIVE LEARN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph convolution networks (GCN) have emerged as a leading method to classify
nodes and graphs. These GCN have been combined with active learning (AL)
methods, when a small chosen set of tagged examples can be used. Most AL-
GCN use the sample class uncertainty as selection criteria, and not the graph.
In contrast, representative sampling uses the graph, but not the prediction. We
propose to combine the two and query nodes based on the uncertainty of the graph
around them. We here propose two novel methods to select optimal nodes in AL-
GCN that explicitly use the graph information to query for optimal nodes. The
first method named regional uncertainty is an extension of the classical entropy
measure, but instead of sampling nodes with high entropy, we propose to sample
nodes surrounded by nodes of different classes, or nodes with high ambiguity.
The second method called Adaptive Page-Rank is an extension of the page-rank
algorithm, where nodes that have a low probability of being reached by random
walks from tagged nodes are selected. We show that the latter is optimal when
the fraction of tagged nodes is low, and when this fraction grows to one over the
average degree, the regional uncertainty performs better than all existing methods.
While we have tested these methods on graphs, such methods can be extended to
any classification problem, where a distance can be defined between the input
samples.

1 INTRODUCTION

Relational information is often presented as graphs or multi-graphs, where nodes represent entities
and edges represent relations between these entities. Such relations can be used to predict the class
of the nodes, using two main principles. The first and most used method is based on node class
homophily, where neighboring nodes belong to the same class with a high probability (Ji & Han,
2012; Berberidis & Giannakis), [2018; Zhu et al.| 2003afb; |Sindhwani et al., [2005; Belkin & Niyogi,
2004). This has been used in many propagation based algorithms where the class of a node is pre-
dicted using the class of neighboring nodes. The second approach presumes a correlation between
the topological attributes (e.g. degree, centrality, clustering coefficient...) of nodes and their class
(Shi & Malik, [2000; |Yang et al.l 2013} |Rosen & Louzoun, |2015; Naaman et al.| 2018 |Cannistraci
et al., |2013)). These two principles are combined in Graph Convolutional Networks (GCN). Such
networks received much interest over the last decade, and especially following the works of Kipf]
& Welling| (2016)), where they have produced higher accuracies than other label propagation meth-
ods. The main formalism proposed in such networks is the weighted combination of the input from
previous layers in neighboring nodes:

X1 = 0(A x Xy x Wy), (1)

with W being the weights of the k layer, X}, the input to this layer and A a matrix derived from
the adjacency matrix (e.g. A = D~/2[A 4 I|D~'/2 for undirected graphs). Xy, is usually external
information about the nodes. In the absence of such information, the identity matrix (Schlichtkrull
et al.,|2018)), topological features of nodes or the frequency of neighbors belonging to each class in
the training set (Benami et al., 2019) have been proposed.

In the absence of a predefined set of classified nodes, and when the nodes composing the training
set can be chosen, active learning can be used to query the class of nodes that would produce the
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highest precision (as defined through the prediction accuracy or any other measure on the entire
dataset) using the minimal number of classified samples. Many Active Learning (AL) methods
have been proposed (Lewis & Catlettl [1994; |Culotta & McCalluml, 20055 |Settles & Craven, [2008)).
The most frequently used approaches are uncertainty sampling and representative sampling (Settles,
2009).

Uncertainty sampling is a general framework for measuring informativeness (Lewis & Catlett,
1994), where a learner queries the instance whose class is the most uncertain/Culotta & McCallum
(2005)) employed a simple uncertainty-based strategy for sequence models called least confidence
(LO): ¢*C(z) = 1 — P(y*|z; ©). Here, y* is the most likely label. This approach queries the in-
stance for which the current model has the least confidence in its most probable label. Scheffer et al.
(2001)) proposed another uncertainty strategy, which queries the instance with the smallest margin
between the posteriors for its two most probable labels: ¢ (z) = P(yi|x; ) — P(yj|z; ©), where
y1 and y; are the first and second best labels, respectively. Another uncertainty-based measure of
informativeness is entropy (see |Shannon| (1948)). For a discrete random variable Y , the entropy
is givenby H(Y) = — > (P(y;)log(P(y;))). A different approach to uncertainty involves several
independent models and looks for disagreement among them (Seung et al.| |1992).

In representative sampling, one assumes that informative instances are “representative” of the un-
derlying distribution,and the query is based on the properties of the nodes in contrast with the
uncertainty sampling, where the predicted scores for each label are used and not the samples
themselves. Measures of the distribution include the Kullback-Leibler (KL) divergence similar-
ity (McCallum & Nigam) or clustering (Xu et al. [2007), where the goal is to obtain represent-
ative labeled data samples. |[Fujii et al,| (1998) considered a query strategy for nearest-neighbor
methods that selects queries that are (i) least similar to the labeled instances, and (ii) most sim-
ilar to the unlabeled instances. Nguyen & Smeulders| (2004) proposed a density-based approach
that first clusters instances and then avoids querying outliers by propagating label information to
instances in the same cluster. Settles and Craven (2008) suggested a general density-weighting tech-
nique combining both uncertainty and representative sampling. They query instances as follows:

1
argmaxy ¢4(X) X (ﬁ Sy sim(X, Xu))? where ¢ 4(X) represents the informativeness of x ac-

cording to some “base” query strategy A, and U are the unlabeled samples. The second term weights
the informativeness of x by its average similarity to all other instances in the input distribution (as
approximated by U), subject to a parameter [ that controls the relative importance of the dens-
ity term (Settles & Craven, 2008)). [Zhu et al.| (2009)) also proposed sampling by a combination of
uncertainty and density to solve the outliers problem emerging in some uncertainty techniques.

Another frequently used measure is the influence of the unlabeled samples on the model, using vary-
ing methods, such as length of gradients (Settles et al., 2008]), expected change or Fisher information
ratio (Cohn et al.| [1996). Finally, there are many hybrid methods which combine different criteria
(Settles & Craven, [2008)).

When applied to graphs, uncertainty methods were based on the properties of the classifier scores
and did not explicitly use the graph information to select nodes. However, since neighboring nodes
share classes more often than non-neighboring nodes, the graph itself can be used not only to predict
the class of nodes, but also to predict the diffusion of uncertainty. Similarly, representative sampling
takes advantage of the graph, but ignores the information on the nodes class. Assume, for example,
two nodes: 1) One node that is a distinct connectivity component, where the current classifier gives
the same score for both classes in a binary classification. Checking the class of such a node, would
probably not improve the accuracy of other nodes. 2) Similarly, a node with a predicted probability
of 99 % to the first class would also not be of interest, even if this node has a very high degree,
and checking its class would be of limited use, since we already know it with a high probability.
The interesting nodes to classify would be nodes that combine uncertainty and connection to many
other nodes. We here propose two methods to combine uncertainty with graph properties and show
that combining the graph within the AL leads to significantly higher accuracies than all current AL
methods on standard datasets.
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2 RELATED WORK

Graphs have been extensively used for machine learning, especially in the context of GCN (Kipf &
Welling| [2016}; |Schlichtkrull et al., [2018; Berg et al., 2017) and GNN (Grover & Leskovec, 2016}
Rosen & Louzoun,[2015). GCN were also used in combination with AL. However, as mentioned, in
most such models, the graph is only used for the ML part, while the AL is performed ignoring the
graph structure. Recently a few works have proposed to use the graphs themselves for AL. Three
main types methods have been proposed : modularity, centrality and label propagation:

In modularity approaches, nodes are divided into communities. [Macskassy| (2009) proposed to
reveal the most central node in each community and sample it. Then each community is divided
into sub-communities and the most central node in each sub-community is sampled and so on.
Mackassy further suggested a hybrid method combining communities, centrality, and uncertainty
with the Empirical Risk Minimization (ERM) framework. |Ping et al.|[(2017) proposed combining
communities structure to perform batch mode AL. They used communities to consider the overlap
in information content among the “best” instances.

Centrality based approaches focus on nodes which “central” using some method (e.g. of higher
degree). The assumption is that the central nodes will have a major impact on the unknown labels.
Macskassy| (2009) in the ERM algorithm, showed that betweenness centrality is a good measure
for centrality. |Cai et al.| (2017) proposed to calculate a node representativeness score based on
graph centrality. They tested several centrality measures: degree centrality, betweenness centrality,
harmonic centrality, closeness centrality, and page-rank centrality. They concluded that the Page-
Rank centrality is superior, and suggested using it when the prediction model is not informative
enough.

In label propagation approaches, the implicit assumption is of label smoothness over the graph or
over the projection of the graph into some manifold in R"V. Ming Ji proposed to select the samples
such that the total variance of the Gaussian field over unlabeled examples, as well as the expected
prediction error of the harmonic Gaussian field classifier, is minimized. An efficient computation
scheme was then proposed to solve the corresponding optimization problem with no additional para-
meter (Ji & Hanl [2012)/Ma et al.| (2013) extended sub-modularity guarantees from V-optimality to
Y -optimality using properties specific to Gaussian Markov Random Field (GRMF)s.

Finally, Dimitris Berberidis proposed to sample the nodes with the highest expected change of the
unknown labels. Thus, in contrast with the expected error reduction and entropy minimization ap-
proaches that actively sample with the goal of increasing the “confidence” on the model, Berberidis
et al. focus on maximally perturbing the model with each node sampled. The intuition behind this
approach is that by sampling nodes with the largest impact, one may take faster steps towards an
increasingly accurate model (Berberidis & Giannakis, |[2018)).

3  MAIN CONTRIBUTIONS OF THE CURRENT WORK

We here propose to combine uncertainty and representative sampling methods. Specifically, we
propose to sample within regions of uncertainty in the graph (in contrast with sampling uncertain
nodes). While the sampling of nodes with high uncertainty was proposed in a vast array of applic-
ations (Cai et al.| 2017} Zhou & Sun, [2014; Macskassyl 2009), sampling using regional uncertainty
(and in the cases of directed graphs, regional directed uncertainty, as will be further explained) has
never been successfully applied. Chen et al. recently proposed as one of their models, a regional
uncertainty algorithm, but obtained very low accuracies (Chen et al.,2019). Specifically, three novel
claims are proposed here:

* We propose that replacing the node entropy by the regional entropy leads to a higher accur-
acy in GCN based AL methods.

* We propose an extension of the PageRank algorithm to detect nodes with limited diffusion
of information from labeled nodes in directed graphs, and show that an AL method based
on this Adaptive PageRank (APR) outperforms other methods in some datasets.

* We hypothesize that information can be gained from the graph, only when the sampling
rate is low enough so that most unlabeled nodes have no labeled networks. At this stage,
we only exemplify this hypothesis, but do not bring a clear proof for it.
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4 MODEL AND DATA

4.1 DATA SETS

For our experiments, we used 6 real-world labeled networks including 4 citation network datasets:
Cora, CiteSeer, PubMed (Sen et al., 2008), and an extended version of Cora denoted as Subelj
Cora (kon, |2017), and 2 additional networks: Wikispeedia (West & Leskovec| 2012) and Email-Eu
(Leskovec et al., 2007). In Cora and CiteSeer, each node has a bag of words (BOW) which is used
as external features. Descriptions of all datasets, as well as statistics can be found in Appendix [A.]
and Table

4.2 MACHINE LEARNING

Three different algorithms were tested for the class prediction: A) Random Forest (Breiman, [2001):
100 estimators, and a balanced class weight. B) XGBoost (Chen & Guestrin, [2016): Dart boosters,
15% internal validation, a max depth of 7, A = 1.3n = 1.3,y = 3, a rate drop of 0.2, weighted
sampling, softprob objective function, and early stopping after 10 steps. C) FFN - feed forward
network, 2 hidden layers of sizes F' x 2 and F' x 1/2, where F is the input dimension, learning rate
0.01, ReL.U as activation function, drop out rate of 0.3, and /> penalty of 0.001, and 500 epochs with
early stopping on 15% validation.

4.3 DIRECTED GCN

Given a graph G = (V, E), with an adjacency matrix A € RY*¥ (binary or weighted), a diagonal
degree matrix D, a node feature matrix X, € RNXF (j.e., F-dimensional feature vectors for each
node), and a label vector Y, multi-layer GCN layers are defined as Eq. 1. The last layer is a soft-max
used to determine the probability of each label. We use an extension to this model by incorporation
of an asymmetric adjacency matrix (Benami et al.,[2019).

We incorporate the direction by separating the adjacency matrix (asymmetric in directed graph) into
its symmetric and anti-symmetric components and concatenate them — creating a 2n x n adjacency
matrix. The dimension of the output of each layeris: [(2N x N) X (N X i) X (in, X 05,)] = 2N X 0y,
which in turn is passed to the next layer following a rearrangement of the output by splitting and
concatenating it to change dimensions from - 2N X o, to N X 20,. A GCN model was run for 200
epochs with early stopping on 10% internal validation, with 1 hidden layer of size 16, learning rate
of 0.01, ReLU as non-linear activation function, drop out rate of 0.6, weight decay of 0.005. Those
hyper parameters are used for all data sets even though they were tuned to fit “Cora” data set. The
tuning was performed using a regular training/test division and not in an AL setting.

4.4 INPUT VALUES

Some datasets had external information that could be used as input for the dataset. Other lacked such
information. For datasets with no external information, topological input was used. Recent evid-
ence suggests that nodes with similar classifications tend to have similar connection patterns in the
network (Rosen & Louzoun, 2015;|Cannistraci et al.,[2013). Given a graph G = (V, F), nodes were
characterized by a large set of structural properties of local and global scale, composing a network
attributes vector for each node. This embedding represented as a continuous vector in R which
can be used as an input for any classical machine learning algorithms, to determine the classes of
the nodes. The following topological attributes were used for embedding: Attractor Basin (Muchnik
et al., [2007)), Average neighbor degree, Betweenness centrality (Brandes, 2008), BFS moments -
first and second moments of the distance distribution obtained by BFS (Yoo et al.,|2005), Closeness
centrality (Sabidussil, [1966), Eccentricity, Fiedler vector (Ghosh & Boyd, 2006), Flow (Rosen &
Louzoun, 2014), K-Core (Seidman, |1983)), Louvain - community of the node (Blondel et al.,|2008)),
Page Rank (Page et all [1999), Motifs - number of sub-graphs which the node participates in for
each type of 3,4 motifs (Kashani et al.,|2009). An alternative input was the number of first or second
neighbors belonging to each class (Benami et al., [2019)), as will be further discussed.
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4.5 EXISTING ACTIVE LEARNING METHODS FOR COMPARISON

We have compared the newly developed AL methods to state of the art AL methods. In all methods
tested, we use a greedy approach where the nodes with the highest score (of the appropriate method)
are selected. At each iteration, a batch of nodes is queried for their labels. Unless explicitly stated,
the batch size is 1. The following existing AL methods have been tested: A) Centrality implemented
using the Page Rank algorithm (Cai et al.l 2017). B) Entropy - Shannon entropy (Shannon, |1948).
C) Geo Dist - The shortest path length of all pairs of nodes with known and unknown classes is
computed. The score is the minimum distance from a certain node to all known nodes.If there
is no path connecting a node to any known node, a (high) score of 9 is given. D) Margin - the
absolute difference between the probabilities of the two most likely classes (Scheffer et al., [2001).
E) Rep Dist - Using the last layer output of the GCN model as a R® representation vector. Then
choosing nodes which are different from labeled nodes to get representative distribution. We checked
two distance definitions: MAH - Mahalanobis distance. LOF - Local Outlier Factor provided by
“sklearn” package (Breunig et al., [2000). F) Feature AB - Attractor Basin (Muchnik et al., 2007)
G) K Truss - Extension to k-core. T}, is the largest subgraph such that all edges belong to at least
K — 2 triangles. Node v; has a K-truss score k if it belongs to the & K-truss subgraph, but not to
any k + 1 K-truss subgraph. Nodes with high K-Truss are argued to have a high influence on other
nodes (Malliaros et al.,|2016). K) Random - choose a node at random (i.e. no AL).

5 REGIONAL AL MODELS

5.1 REGIONAL ACTIVE LEARNING

Often, class labels are related in neighboring nodes. Thus, the uncertainty of the entire region can
provide more information than the uncertainty of the node itself. Furthermore, observing the entire
region can avoid outliers queries (e.g. nodes disconnected from the network), which is one of the
main downsides of uncertainty sampling.

Specifically, we calculate for each node the expected probability of all classes using the current
classifier. Then, for each node ¢ the regional probability is the average of the probabilities over the
region

. 1
Plyi =) = 737 > Ply=c) )
' jen;
where N, is the region (currently defined as first neighbors of the node ¢ in the undirected graph
underlying the directed graph, but can be defined to be more distant or directed regions) and y; is
the label of node j. This regional probability can be used as input to any uncertainty measure.

An alternative approach is the computation of the uncertainty measure for each node separately.
In such a case, the regional uncertainty is calculated by averaging the score over the region (this
approach denoted as AE):

1

o(vi) = 7 D ¢'(v)) 3

INi| &

JEN;
where ¢’(v;) is a local uncertainty score of node j, and ¢(v;) is the regional uncertainty score of
node ¢. This regional measure would give a high uncertainty to nodes close to many uncertain nodes
(and not to nodes in heterogeneous regions), thus reducing uncertainty over wide areas speeding up
the active learning process (see schematic Fig|[I] for the difference). Both measures scale easily to

large graphs, since calculating each node’s region is required only once.

5.2 ADAPTIVE PAGERANK - APR

PageRank has been proposed as a measure of centrality to choose informative nodes to query. How-
ever, PageRank scores rely only on the graph structure ignoring the nodes labels. We here propose
an adaptive extension of page rank, which also considers which nodes are labeled. PageRank (Page
et al.|[1999) can be thought as a random walk process where each node receives an initial rank of 1,
and at each iteration passes most of its rank through its out edges evenly. The rest is passed evenly
to all nodes in the graph. The Adaptive Page Rank (APR) follows the same concept, but the initial
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Figure 1: Schematic figure: Binary classification task, when node can be either black or white.
The label of nodes 1,4,6,9 (surrounded by dotted gray line) is already known. For each unlabeled
node, the classifier prediction score is given by the gray scale between black and white. Local
uncertainty techniques would query node 21. However, knowing the label of this node would have a
minimal effect on other nodes. Regional uncertainty techniques would query the node with the most
uncertain region. In this case, those are nodes 5 and 14, since the first is surrounded by nodes with
high likelihood to both black and white (separates black and white), and the second is surrounded
by nodes with high uncertainty. Standard centrality measures would query node 10, which is more
central , ignoring the fact that this node is close to the two already known nodes (6,9), and thus
probably would not add much information. In contrast, the adaptive approach which seeks the ratio
between APR and PR would favor node 15, since it is far from the influence of nodes with known
labels, thus will append more new information, and still is very central.

rank of each node is 1 if the class label is known and 0 otherwise. Then, for each node, a random
node is chosen with a probability of 7, and one of the nodes’ neighbors is chosen with a probability
of 1 — ~, and the rank is passed to the chosen node. This process is repeated until convergence is
obtained. The Rank of nodes with known class is fixed to be 1 across all iterations.

The steady state of APR (the vector of APR values over all nodes) is obtained when:
APR = y(A} x APR) + (1 —7) 4)

where APR is a RN vector of scores, v € (0,1),and Ay = D~1A. Since the values of APR are
fixed for the labeled nodes, we can solve the equation above through:

APR(U) = yAn[U, L)T x APR(L)
+yAN[U, U x APR(U) 41—,

where U represents the indexes of the unknown nodes and L represents the labeled nodes, leading
to:

S

APR(U) = (I =vAN[UUI") H(vAN[U, LT x APR(L) +1—7) ©6)
The APR score can be described as the influence of the labeled nodes over the unknown nodes. One
can use this measure in an AL framework seeking the best ratio between APR and PR to choose

nodes, which on the one hand are not affected by the known nodes, and on the other hand would
affect the other nodes (See Fig|[T).

6 RESULTS

In order to test the effect of different AL schemes, we first tested the best machine learning frame-
work for the inference task in three of the datasets studied here (Table 3). We have tested four
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Table 1: Results (with BOW) - Average accuracy on unlabeled nodes for Cora and CiteSeer
networks, with bag of words as input. Those results obtained with 20 X number of classes labeled
nodes, when the initial state was 4 random nodes from each class (same as|Cai et al.|(2017))

* score is estimated from figure ** scores for smaller budget, since it was the
algorithm Cora CiteSeer
Random 0.803 0.697
Kipf (random) (Kipf & Welling, [2016) 0.801 0.679
Kipf (specific train) (Kipf & Welling} 2016)) 0.815 0.703
Chang const params (Cai et al., [2017) 0.823 0.707
Chang adaptive params (Cai et al., 2017) 0.825 0.721
HNE (Chen et al,[2019) 0.59* -
TV/MSD** (Berberidis & Giannakis, [2018)) 0.78* 0.7*
ClassSeek** (McDowelll | 2015]) 0.805* 0.695*
3-Opt** (Ma et al., [2013]) 0.73* 0.71*
ALFNET (Bilgic et al., 2010) 0.78* 0.7*
Geo Dist 0.806 0.680
Attractor Basin (Muchnik et al., [2007) 0.585 0.646
K Truss (Malliaros et al., [2016) 0.709 0.693
rep dist LOF 0.803 0.691
rep dist MAH 0.803 0.691
PR 0.802 0.691
APR 0.815 0.693
entropy 0.803 0.696
region entropy 0.814 0.691
region entropy AE 0.821 0.693
margin 0.800 0.700
region margin 0.827 0.705
region margin AE 0.818 0.675

algorithms: XGBoost, FFN, GCN and RF (see Model And Data). For each algorithm, we have
tested three types of inputs: A) Topological features - a set of node topological features, such as
their degree, the clustering coefficient, and the frequency of subgraphs frequencies, as proposed by
Benami et al.| (2019) (see Model And Data for the full features). B) Neighbors training set class label
sum. We summed for each node the number of neighbors belonging to each class in the training set.
The sum was represented as a vector of sums (e.g. if a node has 10 neighbors, only three of which
are in the training set, with two belonging to the first class, and one belonging to the third class,
the vector would be [2,0, 1, ..]). The sum was performed on first and second neighbors producing a
vector of twice the number of classes. C) A combination of the two as a concatenated version.

The precision was computed for different training set fractions in a passive set-up where the training
set is pre-defined. In the vast majority of datasets studied, a GCN with the number of neighbors in
the training set belonging to each class obtained the highest Micro and Macro F1 scores (Bold line
in Appendix Fig[2). We, thus, only used this set-up for all the AL schemes.

6.1 ACTIVE LEARNING RESULTS

We here propose that in graph based AL the combination of uncertainty and representation through
regional information leads to higher accuracies than each by itself. We first tested multiple existing
local AL approaches (see Model And Data). For each dataset studied, we computed the accuracy of
the model, as well as its loss and micro and macro F1 scores for the different AL approaches, as a
function of the number of nodes queried (Appendix Fig[3). We queried 1 node at a time, except for
the Pubmed and Subelj datasets, where we used a batch size of 5. In the Cora and CiteSeer datasets,
BOW information was also available. We thus tested in these two datasets either a neighbor class
based classification (i.e. classification using no external content, only the labels of the neighbors
around each node), or a BOW based classification. In the latter, we stopped after 200 classified
nodes.
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Table 2: Results - accuracy without content Average prediction results (accuracy) on all unlabeled
nodes, with neighbors labels features as input. The results reported for different fractions of labeled
nodes, when the initial state was 1 random nodes from each class

algorithm cora CiteSeer PubMed
5% 10% | 15% 5% 10% | 15% 3% 5% 10% | 15%
Random | 0.668 | 0.731 | 0.766 || 0.442 | 0.509 | 0.547 || 0.699 | 0.731 | 0.765 | 0.789
Geo Dist | 0.616 | 0.710 | 0.763 || 0.456 | 0.526 | 0.561 || 0.671 | 0.701 | 0.751 | 0.775
Rep Dist MAH | 0.566 | 0.642 | 0.690 | 0.319 | 0.345 | 0.358 || 0.683 | 0.716 | 0.745 | 0.783
Rep Dist LOF | 0.468 | 0.587 | 0.633 || 0.338 | 0.357 | 0.359 || 0.680 | 0.730 | 0.780 | 0.809
Entropy | 0.676 | 0.766 | 0.820 | 0.433 | 0.551 | 0.608 || 0.692 | 0.739 | 0.779 | 0.807
Margin | 0.256 | 0.269 | 0.391 || 0.300 | 0.371 | 0.428 | 0.482 | 0.512 | 0.467 | 0.479
PR | 0.676 | 0.726 | 0.768 || 0.451 | 0.525 | 0.553 || 0.687 | 0.722 | 0.760 | 0.781
Region Entropy | 0.676 | 0.767 | 0.825 || 0.454 | 0.554 | 0.616 || 0.704 | 0.745 | 0.789 | 0.826
Reg Entropy AE | 0.590 | 0.753 | 0.834 || 0.401 | 0.501 | 0.571 || 0.508 | 0.606 | 0.653 | 0.742
Region Margin | 0.668 | 0.749 | 0.806 || 0.458 | 0.518 | 0.551 || 0.678 | 0.739 | 0.771 | 0.824
Reg Margin AE | 0.626 | 0.775 | 0.827 || 0.439 | 0.516 | 0.583 || 0.658 | 0.730 | 0.772 | 0.790
APR | 0.700 | 0.753 | 0.784 || 0.465 | 0.564 | 0.607 || 0.728 | 0.733 | 0.771 | 0.781

algorithm Email-EU Wikispeedia SubeljCora

5% 10% | 15% 5% 10% | 15% 3% 5% 10% | 15%
Random | 0.427 | 0.484 | 0.470 || 0.500 | 0.501 | 0.496 || 0.678 | 0.710 | 0.749 | 0.772
Geo Dist | 0.389 | 0.504 | 0.586 || 0.494 | 0.526 | 0.532 || 0.502 | 0.549 | 0.635 | 0.694
Rep Dist MAH | 0.388 | 0.460 | 0.476 || 0.398 | 0.419 | 0.407 || 0.649 | 0.680 | 0.718 | 0.742
Rep Dist LOF | 0.338 | 0.349 | 0.360 || 0.407 | 0.437 | 0.401 || 0.637 | 0.683 | 0.720 | 0.753
Entropy | 0.418 | 0.493 | 0.525 || 0.485 | 0.540 | 0.538 || 0.671 | 0.716 | 0.767 | 0.799
Margin | 0.367 | 0.452 | 0.534 || 0.382 | 0.345 | 0.347 || 0.300 | 0.486 | 0.668 | 0.736
PR | 0.301 | 0.174 | 0.310 || 0.336 | 0.325 | 0.351 || 0.660 | 0.694 | 0.734 | 0.760
Region Entropy | 0.235 | 0.321 | 0.328 || 0.327 | 0.375 | 0.376 || 0.631 | 0.674 | 0.768 | 0.807
Reg Entropy AE | 0.451 | 0.523 | 0.570 || 0.533 | 0.558 | 0.566 | 0.536 | 0.628 | 0.754 | 0.806
Region Margin | 0.385 | 0.396 | 0.353 || 0.494 | 0.476 | 0.406 || 0.687 | 0.727 | 0.788 | 0.819
Reg Margin AE | 0.387 | 0.486 | 0.567 || 0.510 | 0.548 | 0.564 | 0.544 | 0.647 | 0.729 | 0.799
APR | 0.382 | 0.491 | 0.554 || 0.452 | 0.495 | 0.495 || 0.665 | 0.698 | 0.728 | 0.753

Many AL schemes actually perform worse than random (table 2] and Appendix Fig[3). In average
the entropy produce the best accuracy for different datasets for most sampling rates and for the last
time point. No major differences were detected between the micro and macro F1. We thus report
only accuracy results. The F1 score and accuracies were computed using the default setting of the
F1 score of Pedregosa et al.|(2011)). All simulations were repeated 20 times. We do not plot standard
errors to avoid cluttering the figures, but the average standard error was less than 0.015, and is thus
much smaller than the difference between typical methods.

In the regional AL schemes, The analysis was similar to the local AL schemes with the same number
of simulations and setup. In the Cora, CiteSeer and PubMEd datasets the APR gives the best results
for low sampling rates, and then the region entropy gives better results for higher sampling rates. In
the Email-EU and Wikispedia the AE region entropy is the best method for most sampling rates (in
the 15%, the Geo-dist outperforms them in Email-EU). In the SubjelCora, the Region Margin is the
best result.

We have also compared the performance of the different algorithms proposed here to existing per-
formances in the standard Cora and CiteSeer datasets (see Table |1] for the results obtained with
BOW). We outperform all existing methods in the Cora dataset, and get very similar results to the
best accuracy obtained by Chang et al methods, with much simpler algorithms in the CiteSeer data-
set.
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As mentioned in multiple datasets, the APR outperforms all other methods at low sampling fractions
(typically less than 5 %). However, it never outperforms the regional uncertainty methods at high
fractions (15 %). A putative explanation for that may be that at high sampling fraction, Almost
all nodes in the graph neighbor sampled nodes. In such cases, uncertainty may be more important
than the distance to sampled nodes. To check that we computed the distance of a typical node to
a randomly sampled node as a function of the sampling fraction. This distance drops to a plateau
around 5 % sampling (see Appendix Fig ) suggesting that beyond this fraction, sampling more
nodes does not provide a significant regional advantage. We suggest this conjecture as a general
method to estimate the sampling range where regional methods are advantageous and now plan to
study it in detail.

7 CONCLUSIONS

We have here shown that the accuracy of AL when uncertainty is computed regionally is much
higher than when either local uncertainty or representative nodes are used. Furthermore, sampling
depths can be divided into two main phases. In the most early phase, when the fraction of the tagged
nodes is very small (much smaller than one over the average degree), the best nodes to query are
nodes that can maximize the propagation of information into yet unstudied regions. As the graphs
are more densely sampled, a regional approach is optimal, where the best nodes to query are those in
regions of high uncertainty (e.g. the regional entropy approach proposed here). At such intermediate
tagged fractions, the main goal of querying the oracle is to find enough samples in the vicinity of
each node with high uncertainty. Beyond such a fraction, only the node itself is of importance, and
graph independent approaches can be used. There are many active learning approaches including:
uncertainty, representative, influence, error reduction. We have shown, as have others before (Settles
& Craven, 2008 [Zhu et al., 2009; [Macskassyl [2009; |Cai et al., [2017)) that single measure method
often do not produce a gain extending to high sampling fraction compared with random sampling.
Thus, hybrid techniques, combining several approaches, outperform using only one approach have
been proposed. We here proposed two novel measures, regional uncertainty and adaptive page
rank, which are themselves hybrid methods between uncertainty and representation. Those two
measures can be further combined with other existing active learning techniques to achieve even
better performance than random sampling. We have shown that these methods can be used with or
without external information on the nodes.

While we have studied here only graph based ML, the same approach can be used in any task where
a distance metric can be defined on the input samples. In such cases, the region of each node can be
defined using distances instead of edges.
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A APPENDIX

A.1 DATA SETS
A.1.1 CoRrA

The Cora dataset (McCallum et al., 2000) consists of 2,708 scientific machine learning publications
categorized into one of seven topics. The citation network consists of 5,429 edges. We consider
only papers which are cited by or cite other papers. Bag of words (BOW) is also available for each
node. We used it as in the original publication (Sen et al.,2008)).

A.1.2 CITESEER FOR DOCUMENT CLASSIFICATION

The CiteSeer data set (Giles et al., [1998) consists of 3,312 scientific publications classified into
six categories: Agents, Artificial Intelligence, Database, Human Computer Interaction, Machine
Learning and Information Retrieval. There are 4,732 edges describing citations in the data set.
Again, BOW is also available for each node, and is used as in the original publication (Sen et al.,
2008).

A.1.3 EMAIL-EU-CORE NETWORK

The Email-Eu-core network (Leskovec et al.l, 2007; Leskovec & Krevl, [2014; Yin et al., [2017) was
generated using email data from a large European research institution. There are 25,571 edges
(u,v) in the network representing at least one email from a person u to a person v. The emails
only represent communications between institution members core of 1,005 people. The dataset also
contains “ground-truth” community memberships of the nodes. Each individual belongs to exactly
one of 42 departments at the research institute. This network represents the “core” of the email-
EuAll network, which also contains edges between members of the institution and people outside of
the institution.

A.1.4 PUBMED DIABETES

The PubMed Diabetes dataset consists of 19,717 scientific publications from the PubMed database
pertaining to diabetes classified into one of three classes. The citation network consists of 44,338
edges. BOW is also available, and each publication in the dataset is described by a TF/IDF weighted
word vector from a dictionary which consists of 500 unique words (Sen et al., 2008).

A.1.5 SUBELJ CORA

Citation network of 23,166 scientific computer science publications classified into one of ten cat-
egories: Atrtificial Intelligence, Operating Systems, Data Structures Algorithms and Theory, Pro-
gramming, Networking, Encryption and Compression, Human Computer Interaction, Databases,
Hardware and Architecture, Information Retrieval. The citation network consists of 91,500 edges
indicating that the left node cited the right node (konl 2017).

A.1.6 WIKISPEEDIA NAVIGATION PATHS

This dataset is collected from the human-computation game Wikispeedia. In Wikispeedia, users are
asked to navigate from a given source to a given target article, by only clicking Wikipedia edges. A
condensed version of Wikipedia is used, with 4,604 articles, and 119,882 directed edges connecting
them.

Each article is classified by its subject into one of the following: History, People, Countries, Geo-
graphy, Business Studies, Science, Everyday Life, Design and Technology, Music, IT, Language
and Literature, Mathematics, Religion, Art, Citizenship (West & Leskovec,|2012; [West et al., | 2009).
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Table 3: Dataset statistics

Data Set Nodes | Edges | Classes
CORA 2,708 5,429 7
CITESEER 3,312 4,732 6
EMAIL-EU 1,005 | 25,571 42
PUBMED 19,717 | 44,338 3
SUBELJ CORA | 23,166 | 91,500 10
WIKISPEEDIA | 4,604 | 119,882 15
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Figure 2: Accuracy and Macro F1 as a function of training set fraction in 3 datasets for different
learning methods. We tested for three reported datasets multiple precision estimates as a function
of the training set fraction. We have tested four algorithms: GXBoost, FFN, GCN and RF. For
each algorithm, we tested three types of input, the neighbors class, topological features of the node
and the combination of the two. The precision was computed for different training set fractions in
a passive setup where the training set is pre-defined. One can clearly see that in all datasets and

using all measures, the GCN with the neighbors class as input produces the best accuracies (black
thick line).
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Figure 3: Accuracy as a function of sampling fraction for different datasets and different local AL
methods. Results lower than the random sampling line (Thick gray line) represent AL algorithms
that do not contribute to the accuracy. The two subplots surrounded by a box are the results with the
BOW. We have tested Micro and Macro F1 as well as the loss, with similar results (data not shown).
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Figure 4: Distance to randomly sampled nodes as a function of the fraction of sampled fraction.
Within a sampling fraction of 5 %, the average distance to a sampled node reaches a fixed distance.
The distance was computed, by setting a constant fraction (x axis) of random nodes to be marked,
and measuring the average distance of unmarked nodes to the closes marked node. (y axis). In
CiteSeer is the same but the distance is larger.
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