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ABSTRACT

The minimization of loss functions is the heart and soul of Machine Learning. In
this paper, we propose an off-the-shelf optimization approach that can seamlessly
minimize virtually any non-differentiable and non-decomposable loss function
(e.g. Miss-classification Rate, AUC, F1, Jaccard Index, Mathew Correlation Coef-
ficient, etc.). Our strategy learns smooth relaxation versions of the true losses by
approximating them through a surrogate neural network. The proposed loss net-
works are set-wise models which are invariant to the order of mini-batch instances.
Ultimately, the surrogate losses are learned jointly with the prediction model via
bilevel optimization. Empirical results on multiple datasets with diverse real-life
loss functions compared with state-of-the-art baselines demonstrate the efficiency
of learning surrogate losses.

1 INTRODUCTION

In reality, a large set of loss functions cannot be directly minimized by gradient-based methods
because they are either piece-wise continuous, non-differentiable, or non-decomposable Zhang et al.
(2018). For example, binary classification models are often evaluated using the miss-classification
rate (MCR), Area under the ROC curve (AUC), F1 measure (F1), Jaccard Similarity Index (JAC),
Average Precision (AP), Equal Error Rate (EER), or the Mathew Correlation Coefficient (MCC).
On the other hand, learning-to-rank models are measured through the Normalized Discounted
Cumulative Gain (NDCG), or the Mean Average Precision (MAP). To illustrate the point, Figure 1
shows the challenging surfaces of common binary classification losses. Unfortunately, there exists
no tractable omni-solver so far, i.e. no off-the-shelf optimization strategy to train prediction models
for the aforementioned category of loss functions. It is worth pointing out that non-gradient-based
approaches, such as evolutionary computing, are intractable from a runtime perspective.

While there exists a plethora of methods that tackle various aspects of particular losses, there is no
single gradient-based method that can optimize any loss in a seamless manner. Researchers have so far
focused on deriving smooth surrogate relaxations (approximations) to the true loss functions Berman
et al. (2018); Eban et al. (2017), in a way that first- and second-order optimization techniques can
benefit from the derivative of the surrogates with respect to the parameters of prediction models. For
instance, the widely-applied cross-entropy loss is a surrogate relaxation of the miss-classification rate.
However, these explicit relaxations are hand-crafted individually for each loss and do not generalize
to other losses.

In this paper, we present the first off-the-shelf optimizer for arbitrary loss functions. In contrast to
the related work, this work proposes a new perspective on minimizing loss functions, by defining
surrogate losses as meta-level neural networks that approximate the desired true non-differentiable
losses. Our method does not need the gradient information of the true loss with respect to the
parameters of the prediction model and treats the loss as a black-box function. In addition, we
introduce a set-based surrogate network that computes the loss over the training set, being invariant
to the order of instances, in order to accurately handle non-decomposable losses.

The surrogate learning problem is formalized as a bilevel programming task Colson et al. (2007);
Franceschi et al. (2018) that is trained through a concurrent optimization algorithm. This paper
shows that universal surrogates, which are trained without paying attention to a specific dataset,
are sub-optimal compared to surrogates learned in a per-dataset manner. Results on nine datasets
demonstrate that learning surrogates produces more accurate prediction models than state-of-the-art
baselines with regard to diverse loss functions.
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Ŷi

−1

0

1
AUC

−1 0 1

Ŷi
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Figure 1: The surfaces of five binary classification losses derived by perturbing the predictions Ŷi, Ŷj of two
instances inside a random mini-batch Ŷ ∈ R10, Y ∈ {0, 1}10, with true targets Yi = 0, Yj = 1. AUC, AP and
F1 are converted to losses via 1− x, while the positive class for MCR, EER and F1 is estimated as Ŷ ≥ 0.

2 RELATED WORK

Due to the non-differential and non-continuous nature of most real-life losses, early works deployed
the proxies of the miss-classification rate (e.g. cross-entropy) as universal proxy losses, despite their
sub-optimal performance Cortes & Mohri (2004). Subsequent approaches relied on designing smooth
relaxations of the losses. As an example, the pairwise ranking loss is a common surrogate of the AUC
measure Gao & Zhou (2015); Chen et al. (2009). On the other, hand, the F-measure is another typical
loss that cannot be optimized directly due to its non-decomposable nature over instances. The initial
papers tackling F1 focused instead on the empirical utility maximization paradigm Ye et al. (2012).
Later on, researchers addressed F1 by optimizing the hyper-parameters of standard binary classifiers,
either the cost-sensitive weights of the classification loss Puthiya Parambath et al. (2014), or the
threshold of the estimated target values Lipton et al. (2014); Koyejo et al. (2014). Nevertheless, the
non-decomposable trait of F1 remains unresolved Zhang et al. (2018) and recent works have explored
directions to improve hyper-parameter tuning with tighter bounds Bascol et al. (2019).

Instead of relying on explicit surrogates, another research direction handles non-convex losses
by means of the direct loss method Hazan et al. (2010), which minimizes a surrogate loss by
embedding the true loss as a correction term. This method was recently extended to optimize
neural networks Song et al. (2016). It assumes the loss can be decomposed into per-instance sub-
losses and the authors derived an explicit decomposition of the average precision Song et al. (2016).
Unfortunately, per-instance dis-aggregations are not trivially feasible in other cases (e.g. F1), making
the direct loss optimization technique an impractical off-the-shelf option.

Two more recent papers have offered relaxation surrogates for non-decomposable losses, concretely
the AUC and the Jaccard Index (known as Intersection over Union in the computer vision community).
The first method defines relaxation forms for the building blocks of a confusion matrix (e.g. true
positives, true negatives etc.) and combines the building block relaxations to create a final surrogate
for losses like the AUC Eban et al. (2017). However, this model does not handle cases where the loss
is not expressible into confusion matrix blocks, for instance the Jaccard index. On the other hand, the
second paper proposes the Lovasz soft-max as a smooth approximation to the Jaccard index Berman
et al. (2018), which is based on a generic decomposition of sub-modular (decomposable) losses for
sets Yu & Blaschko (2015).

Besides that, a stream of recent papers has focused on meta-learning for loss functions. The ”Learning
to Teach” paradigm Fan et al. (2018) proposes a meta-level teacher/controller that continuously
updates the loss function for a prediction model based on its progress. The work has been recently
extended to enable a gradient-based learning of the teacher/controller Wu et al. (2018). However, this
approach does not extend to non-decomposable loss functions which are defined over the full set of
instances. A parallel stream of research has elaborated the concept of ”Learning to Learn” Li & Malik
(2017), or ”Learning to Optimize” Chen et al. (2017), which proposes to directly learn the amount of
update values that are applied to the parameters of the prediction model. In the proposed framework
a controller uses per-parameter learning curves comprised of the loss values and derivatives of the
loss with respect to each parameters Chen et al. (2017). This method suffers from two drawbacks that
prohibit its direct applicability to arbitrary losses: i) for large prediction models it is computationally
infeasible to store the learning curve of every parameter, and ii) there is no gradient information for
non-differentiable losses. In contrast to the prior work, we propose the first off-the-shelf optimization
method that seamlessly minimizes any loss function. In Section 4.3 we empirically compare the
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proposed method against multiple state-of-the-art relaxations, with regards to minimizing popular
binary classification losses, such as AUC, F1, Jaccard Index and the miss-classification rate.

3 SURROGATE LEARNING

Data mini-batches (x, y) := {(x1, y1), . . . , (xN , yN )} ofN instances each, with features x ∈ RN×M
and ground-truth targets y ∈ YN , are drawn from a dataset D with a sampling distribution PD (x, y),
where typically P is the uniform distribution. The target domain can be binary y ∈ {0, 1}N , or
nominal among C categories y ∈ {1, . . . , C}N . Ultimately, the purpose of a prediction model is
to estimate a target variable ŷ(x;α) : RN×M → RN , where the prediction model has parameters α.
The estimations ŷ ∈ RN need to accurately match the given ground-truth target variable y ∈ YN
with regards to a desired loss function ` (y, ŷ) : RN × YN → R. Therefore, supervised learning
focuses on computing the optimal parameters α∗ that minimize the following objective.

α∗ = argmin
α

E(x,y)∼PD(x,y) ` (y, ŷ(x;α)) (1)

To minimize the aforementioned objective through first- or second-order optimization, it is necessary
to define the gradients ∂`

∂α . Unfortunately, in most real-world cases the loss represents step functions
that are only piece-wise continuous (MCR, F1, AUC, etc.). Therefore, the derivatives are either
zero, or undefined at the function steps, which prohibits a direct optimization of these losses. For
this reason, a smooth surrogate relaxations of the loss functions is used instead of the true loss.
Arguably the most popular surrogate is cross-entropy, which is a relaxation of the miss-classification
rate. Yet, such non-parametric relaxation functions are not trivially derivable when the loss is non-
decomposable into per-instance components (e.g. F1, AUC), because such losses are defined as
performance measures over an entire set of instances.

Instead of deriving one explicit hand-crafted function ˆ̀ for the surrogate of every loss function
`, we propose a method that parameterizes and learns the surrogate for any demanded loss func-
tion through an off-the-shelve procedure. Neural networks are a good choice for parametrizing
the surrogate loss ˆ̀ given their universal approximation capability Hornik (1991). However, the
surrogate loss network must be a permutation-invariant set model, whose output must remain fixed
given different orders of instances within a dataset mini-batch, i.e. ˆ̀(y1, . . . , yN , ŷ1, . . . , ŷN ) =
ˆ̀
(
yπ(1), . . . , yπ(N), ŷπ(1), . . . , ŷπ(N)

)
for any index permutation π. Our method uses the Kol-

mogorovArnold representation theorem Tikhomirov (1991) and defines the surrogate loss of Equa-
tion 2 as a composition function h of per-instance functions g. This type of aggregation was recently
applied to learning neural networks over sets of instances Zaheer et al. (2017).

ˆ̀(y, ŷ) = h

(
1

N

N∑
i=1

g (yi, ŷi)

)
(2)

where g : R2 → RQ, and h : RQ → R are deep forward neural networks. The first function g extracts
Q latent error components for the predictions on each instance (e.g. latent representations of false
positive, false negative, etc.), while the aggregation produces set-wise performance indicators (e.g.
potentially latent representation of the count of true positives, false positives, error rate, etc.). The
function h creates nonlinear combinations of set-wise performance indicators to produce complex
latent error metrics such as precision, recall, F1, etc. It has been proven that with sufficient capacities
for g and h, any permutation-invariant set function (hence any loss) can be approximated this
way Zaheer et al. (2017). The remaining sections of this paper detail a novel method for optimizing
surrogate losses.

3.1 UNIVERSAL SURROGATES

The first intuition is to learn the weights β of surrogate network (a.k.a. the functions g and h) in a
universal manner by solving the objective of Equation 3. In other words, we can attempt to make any
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Figure 2: A single-parameter prediction model ŷ(x, α) = αx − 1 classifies a single-feature binary dataset
(leftmost plot), i.e. α ∈ R, x ∈ RN×1, where initially α = 0.3. In the three rightmost plots, the x-axis shows
the variation in true (cyan) and surrogate (magenta) losses for the whole space of α. The plots indicate that
Equation 5 forces the surrogate to approximate the true loss at the regions around the current α (dashed vertical
line), while the parameter α is updated towards the minimum of the surrogate by Equation 4.

surrogate loss ˆ̀behave as any true loss ` over the space of all possible batches of randomly-drawn true
y and estimated ŷ targets. Focusing on binary classification losses, we sample the ground truth from
a Bernoulli distribution, and respective estimated targets from a Gaussian distribution. Furthermore,
the meta-loss L : R × R → R measures the distance between the true and surrogate losses and is
practically implemented as an L1 norm.

βUniversal = argmin
β

E y∼B(p)N×1, ŷ∼N (µ,σ2)N×1
L
(
` (y, ŷ) , ˆ̀(y, ŷ ; β)

)
(3)

The challenge of learning a universal surrogate is in ensuring that the sampling hyper-parameters
(p, µ, σ) would lead to drawing (y, ŷ) that match the specific target distribution of a concrete dataset.
Therefore, we empirically found out that it is sub-optimal to universally relax the whole space of
the true loss. Instead, as future sections will detail, it is more efficient to design a relaxation in a
dataset-specific manner, which smoothens only the specific regions of the true loss which belong to
the respective dataset-specific distributions of true and estimated target batches.

3.2 SURROGATE LEARNING AS BILEVEL PROGRAMMING

A different approach from the universal surrogate is to associate a surrogate loss to each dataset. In
that manner, the surrogate creates a smooth relaxation only around the dataset-relevant regions of the
target (y, ŷ(x;α)) space. We propose to jointly optimize the prediction model parameters (α) and the
surrogate loss parameters (β) through the following optimization:

α∗ = argmin
α

E(x,y)∼PD(x,y)
ˆ̀(y, ŷ (x ; α) ; β) (4)

β∗ = argmin
β

E(x,y)∼PD(x,y) L
(
` (y, ŷ (x;α)) , ˆ̀(y, ŷ (x;α) ; β)

)
(5)

The rationale is that Equation 4 optimizes the prediction model in order to minimize the surrogate
loss. However, the surrogate loss should approximate the true loss, which is ensured by Equation 5.

However, the interdependence can be addressed by treating both objectives of Equations 4 and 5
as a concurrent relationship, in a way that we can optimize them jointly and simultaneously. This
dual objective is an instance of a bilevel programming problem Colson et al. (2007); Franceschi et al.
(2018). Algorithm 1 sketches the minimization procedure of the proposed surrogate learning. In
an alternating fashion, the surrogate minimization is carried out for Kα steps (lines 4 − 7), while
the surrogate loss is updated for Kβ steps (lines 9 − 12). To illustrate the mechanism, Figure 2
provides a minimalistic example of optimizing jointly the bilevel programming objectives for training
a single-parameter model on a single-feature binary dataset. The plots show the effect of minimizing
the surrogate (magenta), as the parameter α is updated towards the minimum of the surrogate. At
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the same time, we observe that the surrogate is updated to match the true miss-classification-rate
loss (cyan) at the current parameter value. The model converges close to the optimal true loss after
applying the steps of Algorithm 1.

Algorithm 1: Surrogate Learning
Input : Dataset D, Loss `, Training epochs T , Update steps Kα,Kβ , Learning rates ηα, ηβ .

1 Initialize α, β
2 for 1, . . . , T do
3 α(0) ← α
4 for k = 1, . . . ,Kα do
5 Sample batch (x, y) ∼ PD (x, y)

6 α(k) ← α(k−1) − ηα(k−1)∇α ˆ̀
(
y, ŷ

(
x ; α(k−1)) ; β)

7 end
8 α← α(Kα), β(0) ← β
9 for k = 1, . . . ,Kβ do

10 Sample batch (x, y) ∼ PD (x, y)

11 β(k) ← β(k−1) − ηβ(k−1)∇βL
(
` (y, ŷ (x;α)) , ˆ̀

(
y, ŷ (x;α) ; β(k−1)))

12 end
13 β ← β(Kβ)

14 end
Return : Prediction model ŷ (x; α)

3.3 NOTE ON CONVERGENCE

The optimization of Equations 4-5 can be rewritten as a standard bilevel programming in Equation 6:

min
α∈A

ˆ̀(α, β∗ (α)), β∗ (α) = argmin
β(α)

L (α, β (α)) (6)

Consequently, it is possible to analyze the convergence following existing proofs for bilevel program-
ming Revalski & Zhivkov (1993); Franceschi et al. (2018). Given the equivalence of our task and
bilevel programming, the convergence of Algorithm 1 is stated in Theorem 1.

Theorem 1 (Convergence) Considering the following assumptions Revalski & Zhivkov (1993);
Franceschi et al. (2018):

(a) The parameter space α ∈ A is a compact subset and ˆ̀(α, β (α)) is jointly continuous,
while the mapping (α, β (α)) � L (α, β (α)) is also jointly continuous;

(b) argminβ(α) L (α, β (α)) is a singleton for every α ∈ A, and
β∗ (α) = argminβ(α) L (α, β (α)) is bounded as α varies in A;

(c) L (α, β) is Liptschitz continuous and β(Kβ) (α)→ β∗ (α) uniformly for all α as Kβ →∞.

Then for Kβ →∞ the following holds Franceschi et al. (2018):

(a) infα ˆ̀(α, β(Kβ) (α))→ infα ˆ̀(α, β∗ (α));

(b) argminα
ˆ̀(α, β(Kβ) (α))→ argminα

ˆ̀(α, β∗ (α)) in a notion of set convergence.

Proof: Detailed in the related work Franceschi et al. (2018).
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4 EXPERIMENTS

4.1 PROTOCOL

The experiments are focused on a collection of publicly-available binary classification datasets,
whose statistics are presented in Table 1. We split the data randomly into 80% training and 20%
testing instances. The prediction model ŷ has an architecture of [100, 30, 10, 1] neurons with Leaky-
ReLU activation, where batch normalization was applied at each layer. In addition, after each batch
normalization we added a drop-out regularization layer with the drop rate set to 0.2. The surrogate
network component g has [30, 30] neurons, while h has [10, 10, 1] neurons. We employed the Adam
optimizer for training the network, with initial learning rates being ηα = ηβ = 10−5.

Table 1: Dataset Statistics.

Dataset Classes Train Test Features Pos. Frac.

A9A 2 39073 9769 123 0.2379
CC-Fraud 2 227845 56962 29 0.0015
Cod-RNA 2 390852 97713 8 0.3346
CoverType 2 464809 116203 54 0.4867

IJCNN 2 125344 31337 22 0.0954
Porto-Seguro 2 476169 119043 57 0.0368

Santander 2 160000 40000 200 0.1004
Skin 2 196045 49012 3 0.7919
Susy 2 4000000 1000000 18 0.4577

Furthermore, to improve the convergence stability we clipped the gradients by a norm of 10−5,
which is necessary due to the steep curvature of the surrogate losses ˆ̀, caused by approximating the
step-wise true loss surfaces `. Data batches were drawn in a stratified random fashion (50% positive
and 50% negative) with a mini-batch size N = 100. The update steps were chosen as Kα = 3
and Kβ = 10 and Algorithm 1 was run for 300000 iterations. We conducted experiments with
7 binary classification measures, namely AUC, Equal Error Rate (EER), Average Precision (AP),
Miss-classification rate (MCR), F1, Mathew Correlation Coefficient (MCC), Jaccard Coefficient
(JAC). All the measures are converted to a loss by a 1− x conversion, except for EER and MCR. For
the losses that demand converting the predictions ŷ into binary values (e.g. MCR, F1, MCC), we
used a thresholding ŷ ≥ γ, where γ was optimized for each dataset and loss through cross-validation.

4.2 ABLATION OF SURROGATE MODELS

This section addresses whether the surrogate should be trained in a universal manner (Section 3.1),
or whether they should be optimized on a per-dataset basis following the bilevel programming of
Section 3.2. For this reason, we designed three different modalities for surrogate learning:

• Universal Surrogate (SL-U): Learn the surrogate ˆ̀using Equation 3 with hyperparameters
p = 0.5 (due to stratified sampling), µ = 0, σ = 1, and then train only the prediction model
f by minimizing ˆ̀ through Equation 4.

• Learned from Scratch (SL-S): Initialize the surrogate network ˆ̀from scratch (randomly),
then optimize both Equations 4-5 using Algorithm 1.

• Refined Surrogate (SL-R): Initialize the surrogate with the universal solution of Equation 3,
and then refine the surrogate by optimizing both Equations 4-5 using Algorithm 1.

Table 2 shows the results of the ablation study with the 3 variations of surrogate learning on 7 losses
and 9 datasets. We notice that the universal surrogates (SL-U) are overall sub-optimal with respect
to the ones trained in a per-dataset manner (SL-R, SL-S), except for the AUC loss. In addition, the
results indicate that there is not a major difference in terms of accuracy between SL-R and SL-U. The
refined surrogate improves the convergence of the optimization procedure, as Figure 3 shows.
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Table 2: Comparing universal surrogates (SL-U) against dataset-specific surrogates (SL-S and SL-R), which are
either initialized randomly (SL-S) or with the universal surrogate (SL-R). The lowest loss values are highlighted.

Dataset Model Loss Measures

AUC EER AP MCR F1 MCC JAC

A9A
SL-U 0.0968 0.1897 0.2629 0.2165 0.4557 0.2164 0.1819
SL-R 0.0983 0.1807 0.2584 0.1502 0.3134 0.2085 0.1512
SL-S 0.0969 0.1782 0.2585 0.1508 0.3115 0.2069 0.1529

CC-Fraud
SL-U 0.0245 0.1512 0.2530 0.0093 0.7774 0.3975 0.0099
SL-R 0.0284 0.0914 0.1650 0.0088 0.7693 0.3293 0.0088
SL-S 0.0209 0.0814 0.1902 0.0088 0.9970 0.3293 0.0089

Cod-RNA
SL-U 0.0107 0.0513 0.0293 0.0510 0.1430 0.0514 0.1272
SL-R 0.0110 0.0422 0.0273 0.0430 0.0632 0.0476 0.0426
SL-S 0.0101 0.0428 0.0275 0.0418 0.0619 0.0474 0.0422

Covtype
SL-U 0.1450 0.3019 0.1730 0.3466 0.2699 0.2349 0.2886
SL-R 0.1463 0.2220 0.1663 0.2198 0.2102 0.2165 0.2192
SL-S 0.1468 0.2233 0.1635 0.2207 0.2109 0.2203 0.2219

IJCNN
SL-U 0.0048 0.0378 0.0537 0.1045 0.5486 0.1923 0.0609
SL-R 0.0030 0.0268 0.0224 0.0161 0.0806 0.0422 0.0152
SL-S 0.0028 0.0260 0.0219 0.0153 0.0777 0.0427 0.0161

Porto-Seguro
SL-U 0.3745 0.4348 0.9376 0.0461 0.8990 0.4901 0.0459
SL-R 0.3737 0.4110 0.9361 0.0449 0.8867 0.4606 0.0448
SL-S 0.3744 0.4127 0.9367 0.0446 0.8939 0.4614 0.0446

Santander
SL-U 0.1453 0.2349 0.5027 0.1082 0.5800 0.3012 0.0951
SL-R 0.1465 0.2300 0.4996 0.0864 0.5166 0.2863 0.0863
SL-S 0.1470 0.2314 0.4945 0.0871 0.5083 0.2857 0.0861

Skin
SL-U 0.0001 0.0648 0.0001 0.0075 0.0036 0.0836 0.0889
SL-R 0.0006 0.0044 0.0003 0.0073 0.0085 0.0031 0.0115
SL-S 0.0009 0.0143 0.0001 0.0047 0.0017 0.0035 0.0031

Susy
SL-U 0.1316 0.2269 0.1312 0.4596 0.2507 0.2133 0.2461
SL-R 0.1334 0.2156 0.1288 0.2046 0.2289 0.2050 0.2031
SL-S 0.1324 0.2140 0.1291 0.2043 0.2294 0.2062 0.2050

Ranks
SL-U 1.78 2.89 2.67 2.78 2.67 2.89 2.78
SL-R 2.22 1.67 1.67 1.78 1.78 1.44 1.56
SL-S 1.89 1.44 1.67 1.22 1.67 1.67 1.67
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Figure 3: Illustrating the convergence for different loss functions using the IJCNN dataset, using two types of
surrogates, SL-S: randomly from scratch, SL-R: refined from the universal surrogate. ˆ̀and L represent the
surrogate optimization performance on the training set, while `Test the true loss on the tesing set.
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4.3 COMPARISON WITH THE STATE-OF-THE-ART

In order to demonstrate the usefulness of learning surrogates, we will compare our method against
the state-of-the art baselines of four popular loss functions: MCR, AUC, F1 and JAC. Concretely,
cross-entropy is the relaxation of MCR, while Pairwise Ranking Gao & Zhou (2015); Chen et al.
(2009) and Global Objective Eban et al. (2017) are the relaxations of AUC. Furthermore, the Lovasz
Soft-Max is the relaxation of JAC Berman et al. (2018); Yu & Blaschko (2015), and the cost-sensitive
reduction Puthiya Parambath et al. (2014) serves as the surrogate of F1. All the aforementioned
baselines, except the cost-sensitive reduction, have no further hyper-parameters and were implemented
based on the authors’ codes. For a ceteris paribus comparison, we used the same capacity prediction
model for the baselines, the same batch size, i.e. the same protocol as in Section 4.1. The hyper-
parameter of the cost-sensitive reduction, namely the positive weight coefficient was tuned among
{0.3, 0.9, 2.7, 8.1, 24.3, 72.9} on a separate validation set. To ensure that the baselines converged,
we trained them for 1M iterations with a learning rate of 10−4. Table 3 presents the results over the
9 datasets, where the refined surrogate learning SL-R is compared to the 5 state-of-the-art relaxation
methods for 4 losses. The evidence suggests that surrogate learning yields more accurate prediction
models than the state-of-the-art.

Table 3: Surrogate learning SL-R vs state-of-the-art, MCR: CE (Cross-Entropy); AUC: PR (Pairwise Rank-
ing Gao & Zhou (2015); Chen et al. (2009)), GO (Global Objectives Eban et al. (2017)); JAC: LO (Lo-
vasz Soft-Max for Jaccard Berman et al. (2018); Yu & Blaschko (2015)); F1: CS (Cost-sensitive F1 reduc-
tion Puthiya Parambath et al. (2014)). Lowest values in bold.

Data MCR AUC JAC F1

CE SL-R PR GO SL-R LO SL-R CS SL-R

A9A 0.1520 0.1502 0.1019 0.1028 0.0983 0.1539 0.1512 0.3177 0.3134
CCF 0.0088 0.0088 0.0437 0.0369 0.0284 0.0088 0.0088 0.7652 0.7693
COD 0.0462 0.0430 0.0122 0.0129 0.0110 0.0438 0.0426 0.0652 0.0632
COV 0.2149 0.2198 0.1786 0.1504 0.1463 0.2594 0.2192 0.2305 0.2102
IJC 0.0364 0.0161 0.0168 0.0258 0.0030 0.0322 0.0152 0.1959 0.0806

POR 0.0446 0.0449 0.3814 0.3815 0.3737 0.0445 0.0448 0.8851 0.8867
SAN 0.0842 0.0864 0.1406 0.1427 0.1465 0.0850 0.0863 0.4990 0.5166
SKI 0.0482 0.0073 0.0364 0.0473 0.0006 0.0432 0.0115 0.0278 0.0085
SUS 0.2146 0.2046 0.1524 0.1508 0.1334 0.2022 0.2031 0.2420 0.2289

Wins 3.5 5.5 1.0 0.0 8.0 3.5 5.5 3.0 6.0

4.4 RUNTIME COMPLEXITY

Denoting the capacities as α ∈ RQα , β ∈ RQβ , the runtime complexity of Algorithm 1 is
O (T × (Kα × (Qα +Qβ) +Kβ ×Qβ)), while that of gradient descent for minimizing the cross-

entropy (CE) is O (T ×Kα ×Qα). The additive complexity comes from ∂ ˆ̀

∂ŷ
∂ŷ
∂α where O

(
∂ ˆ̀

∂ŷ

)
is

O (Qβ) in the case of surrogate learning. For the dataset Susy it took SL circa 1 day and 4 hours of
training time on a single Nvidia 1080 Ti GPU. The baselines were trained on CPU, therefore the
run-times are not directly comparable (e.g. CE took 2 days and 21 hours for Susy using 20 CPUs).

5 CONCLUSION

The optimization of losses is a major challenge for the machine learning community. Unfortu-
nately, most classification loss functions are only piece-wise continuous, non-differentiable and
non-decomposable. So far, researchers have addressed this bottleneck by designing (hand-crafting)
smooth approximative surrogate functions to those losses. In contrast to the existing work, we
propose a new paradigm to optimizing loss functions, by defining the loss itself as a parametric
model that is jointly optimized with a prediction model, in a way that the smooth surrogate loss
matches the non-differentiable true loss. The task is formalized as a bilevel programming objective
and an alternating optimization algorithm is applied to learn the surrogates. The empirical results on
multiple real-life datasets indicate that learning surrogates is more accurate than hand-crafted explicit
relaxations in diverse popular loss functions, such as AUC, F1, or Jaccard Index.
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