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COLLABORATIVE INTER-AGENT KNOWLEDGE DISTIL-
LATION FOR REINFORCEMENT LEARNING

ABSTRACT

Reinforcement Learning (RL) has demonstrated promising results across several
sequential decision-making tasks. However, reinforcement learning struggles
to learn efficiently, thus limiting its pervasive application to several challenging
problems. A typical RL agent learns solely from its own trial-and-error experiences,
requiring many experiences to learn a successful policy. To alleviate this problem,
we propose collaborative inter-agent knowledge distillation (CIKD). CIKD is a
learning framework that uses an ensemble of RL agents to execute different policies
in the environment while sharing knowledge amongst agents in the ensemble. Our
experiments demonstrate that CIKD improves upon state-of-the-art RL methods
in sample efficiency and performance on several challenging MuJoCo benchmark
tasks. Additionally, we present an in-depth investigation on how CIKD leads to
performance improvements.

1 INTRODUCTION

Reinforcement learning (RL) [47] has demonstrated impressive performance on solving sequen-
tial decision-making tasks in interactive environments (e.g., video game-playing [32] or robotic
control [18]). In these tasks, the RL agent’s goal is to find the optimal policy, which maximizes
the expected return in the task. The agent learns this optimal policy through many trial-and-error
interactions with the environment. Through these trial-and-error interactions, the agent explores the
consequences of different decisions, in the form of a reward or punishment. Unfortunately, millions
of interactions are required even to solve simple tasks. Such amounts of interaction are infeasible to
acquire in real, physical tasks, as is the case for robots.

In order to learn the optimal policy, the agent performs policy improvement, which refers to the
process of refining the agent’s policy towards performing high-rewarding actions. Beginning with a
random initial policy, an RL agent incrementally refines its policy through its experiences. However,
the performance of the acquired policy is sensitive to the bias of initial policy [22]. This bias may
trap the agent at a sub-optimal policy. Typically, when learning to improve a policy, an RL agent
performs actions that are similar to its current estimate of the best policy. In such cases where the
agent is trapped at a sub-optimal policy, it may require a large number of interactions before the agent
acquires the experiences necessary for escaping its suboptimal policy. While the self-experience-
based incremental learning like RL gives little hope to overcome this problem, collaboration amongst
a number of agents with different behavioral characteristics can possibly alleviate this problem.

For inspiration, we turn to the study of collective animal behavior [46]. Rather than exclusively learn
from trial-and-error alone, the optimal behaviors for several tasks (e.g., flocking and foraging) can
emerge through collaboration amongst animals. For example, consider ants foraging in a colony [8].
The ants search divergent paths, resulting in extensive exploration as a group, across a wide range of
food-gathering policies. Furthermore, the ants that find food share their path with their companions
via pheromones. This information-sharing amongst colony members offers each ant beneficial
guidance toward food, so that individual ants need not exhaustively search several paths in order to
find food. To make an analogy to the RL setting, the ants’ foraging process can be viewed as an
effective way of policy improvement. Motivated by these insights from collective animal behavior, we
incorporate the notion of collective knowledge sharing into the RL setting in an attempt to accelerate
and guide the search for the optimal policy.

Our method emulates the collaborative behaviors of ants via an ensemble of RL agents: a group
of agents collectively search for the optimal policy in the same task, while periodically sharing
knowledge. Each RL agent resembles an individual in the ant colony. To elicit diverse experiences
amongst members of the ensemble, each RL is randomly initialized with different neural network
parameters. Random initialization results in adequate behavioral diversity [22, 34] needed for
collective exploration. As these agents are diverse in nature, at any given time during the course of
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training, one agent naturally has a policy superior to its peers. This agent can guide its peers towards
higher-performing policies, just as ants share superior paths through pheromones. In order to guide
the other agents, our method employs a knowledge distillation framework [24] which is effective at
transferring knowledge between neural networks, without assuming identical model architectures.
Knowledge distillation encourages other agents to act in a manner similar to the leading agent,
allowing agents to escape underperforming policies. Moreover, knowledge distillation empowers all
agents to continue searching for the optimal policy from better starting points, accelerating knowledge
accumulation in the entire ensemble. However, despite the distillation, the agents’ knowledge is still
preserved, retaining diversity amongst the ensemble.

This paper’s primary contribution is collaborative inter-agent knowledge distillation (CIKD), a
simple yet effective framework for RL that jointly trains an ensemble of RL agents while periodically
performing knowledge sharing. We demonstrate empirically that our method can improve the state-of-
the-art soft-actor critic (SAC) [20] on a suite of challenging MuJoCo tasks, exhibiting superior sample
efficiency and performance. We further validate the effectiveness of distillation for knowledge sharing
by comparing against other methods of sharing knowledge. In addition, we present an in-depth
investigation to explain the underlying causes of CIKD’s performance improvement. Finally, our
ablation studies show that a small ensemble is sufficient for improving performance.

The remainder of this paper is organized as follows. Section 2 discusses the related work. Section 3
introduces the reinforcement learning formulation. Section 4 describes our method. Section 5 presents
our experimental findings. Section 6 summarizes our contributions and outlines potential avenues for
future work.

2 RELATED WORK

The idea of jointly training multiple policies through RL has emerged in prior works. The most
relevant works [37, 38] train multiple policies for the same task through RL, as our method does.
Osband et al. [37, 38] train several agents in an ensemble while storing these agents’ experiences
in a shared buffer. Thus, agents share knowledge by sharing experiences amongst members of the
ensemble, which are then used for RL updates. Our method is complementary to Osband et al.
[37, 38]’s, in that we can also use a shared buffer of experiences, but we additionally periodically
performing knowledge distillation between members of the ensemble, in particular from the best
agent to other agents. In our experiments we present supporting evidence to justify the importance
of knowledge sharing. Other related methods aggregate multiple policies to select actions [2, 6, 10,
17, 31, 40, 41, 45, 50, 54]. Abel et al. [1], Tosatto et al. [52], Wang & Jin [53] sequentially train a
series of policies, boosting the learning performance by using the errors of a prior policy. However,
rather than perform decision aggregation or sequentially-boosted training, we focus on improving
the performance of each individual agent via knowledge sharing amongst jointly trained agents.
Again, our method can be considered to be a complementary approach to decision aggregation and
sequentially boosted training methods.

We can view the sharing of knowledge from the best policy as exploiting successful behavior
patterns. This general notion has been explored in several areas of RL. Rusu et al. [42] and Parisotto
et al. [39] can train a single network to perform multiple tasks by transferring multiple pre-trained
RL agents’ policies to a single network. Hester et al. [23], Nair et al. [35] accelerate the RL
agents’ training progress via human experts’ guidance. Instead of using experts’ policies, Levine &
Koltun [30], Nagabandi et al. [33] and Zhang et al. [55] leverage model-based controllers’ behaviors
(e.g. model predictive controllers [15] or linear-quadratic regulators Dorato et al. [7]), facilitating
training for RL agents. Additionally, Hong et al. [25] and Oh et al. [36] train agents to imitate the
past successful self-experiences or policies. Orthogonal to the aforementioned works, our method
periodically exploits the current best policy amongst the ensemble, and shares it with the ensemble,
enabling a collaborative search for the optimal policy.

Collaborative learning approaches have emerged in other areas of machine learning research. In
computer vision, Zhang et al. [56] present deep mutual learning, which trains multiple models that
mutually imitate each other’s outputs on classification tasks. Our distillation is not mutual, and
flows in a single direction, from a superior teacher agent to other student agents in the ensemble. In
subsequent work by Lan et al. [29], they train an ensemble of models to imitate a stronger teacher
model. Simultaneously, this teacher model learns to aggregate all of the ensemble models’ predictions.
They demonstrate that imitating a superior teacher leads to better performance than deep mutual
learning, which performs mutual imitation amongst members. Our method contrasts from the above
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methods by periodically electing the teacher for distillation. Since our distillation occurs periodically,
we can collect performance statistics for each agent between periods, which can be used to elect the
teacher in the distillation phase. In contrast to the distillation of an aggregate policy, as Lan et al. [29]
do, our method ensures that the teacher indeed possesses a superior policy.

Collaborative learning has also been explored in RL as well. Teh et al. [49] and Ghosh et al. [16]
jointly learn independent policies for multiple tasks or contexts and then distill these policies to
a central multi-task policy. Galashov et al. [12] learn a task-specific policy while bounding the
divergence between this task-specific policy and some generic policy that can perform basic task-
agnostic behaviors. Czarnecki et al. [5] gradually transfer the knowledge of a simple policy to a
complex policy during the course of joint training. While our method also collaboratively trains
policies, we differ from the aforementioned works in several aspects. First, our method periodically
elects a leading agent for sharing knowledge rather than either constraining the mutual policy
divergence [14, 16, 49, 56] or imitating aggregated models [29]. The second difference is that
our method does not rely on training heterogeneous policies (e.g. a simple policy and a complex
policy [5]), which makes our method more generally applicable. Finally, as opposed to Teh et al. [49]
and Ghosh et al. [16], we consider single-task setting rather than multi-tasking.

Evolutionary algorithms (EA) [13, 21, 26, 43] similarly employ multiple policies to find the optimal
policy. EA repeatedly performs mutation, selection, and reproduction on a maintained population.
Mutation randomly perturbs the parameters of policies in the population; selection eliminates the
underperforming policies by testing the policies’ performance in the environment; reproduction
produces the next generation of policies from the remaining policies. Unlike EA, our method does
not rely on mutation and reproduction on a population of policies. While EA and our method are
similar in an abstract sense, in that they both share knowledge amongst agents, they are quite different
in practice. EA often eliminates members from its population and performs destructive changes to
members of the population. Our method focuses on continuously improving the existing agents, and
does not perform destructive changes to its population. In fact, our method can be incorporated into
EA, serving as a more effective way to optimize each individual policy within the same generation.

3 BACKGROUND

In this section we describe the general framework of RL. RL formalizes a sequential decision-making
task as a Markov decision process (MDP) [47]. An MDP consists of a state space S , a set of actions
A, a (potentially stochastic) transition function T : S ×A → S , a reward functionR : S ×A → R,
and a discount factor γ ∈ [0, 1]. An RL agent performs episodes of a task where an agent starts
in a random initial state s0, sampled from the initial state distribution ρs0 , and performs actions,
experiencing new states and rewards. More generally, at timestep t, an agent performs an action at
in state st, receives a reward rt+1, and transitions to a new state st+1, according to the transition
function T . The discount factor γ is used to indicate the agent’s preference for short-term rewards
over long-term rewards.

An RL agent performs actions according to its policy, a conditional probability distribution πφ :
S ×A 7→ [0, 1], where φ denotes the parameters of the policy, which may be the parameters of a neu-
ral network. RL methods iteratively update φ via rollouts of experience τ = {(st, at, rt, st+1)}Tt=0,
seeking within the parameter space Φ for the optimal φ∗ that maximizes the expected return
Es∼ρs0

[∑T
t=0 γ

trt|s0 = s
]

for each t within an episode.

4 METHOD

In this section, we formally present the technical details of our method, Collaborative Inter-agent
Knowledge Distillation (CIKD). We start by providing an overview of CIKD and then its components
in detail.

4.1 OVERVIEW

Emulating collaborative foraging behaviors of ants, CIKD employs an ensemble of RL agents
to perform a wide range of policies on the same task and periodically share knowledge amongst
agents. CIKD can be divided into three stages: ensemble initialization, joint training, and inter-agent
knowledge distillation. First, in the ensemble initialization stage, we randomly initialize an ensemble
of RL agents to achieve behavioral diversity. In the joint training stage, each agent acts in the
environment, adding its experiences to a shared buffer, and these shared experiences are used to
update the parameters of the agent. Intermittently, we perform inter-agent knowledge distillation,
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Figure 1: An overview of collaborative inter-agent knowledge distillation.

where we elect a leading agent to guide the other agents towards superior policies. To this end, we
distill [24] the best-performing agent’s policy to the others. Algorithm 1 and Figure. 1 summarizes
our method.

Algorithm 1 Collaborative Inter-agent Knowledge Distillation for Reinforcement Learning

1: Input: an environment E , an ensemble size K, a parameter space Φ, a set of parameterized
policies {πφk

}Kk=0, recent episodic performance statistics {Rk}Kk=0, an episode length T , a joint
training length E, a distillation interval I , an experience buffer D

2: Output: the optimal policy π∗
3:
4: i. Ensemble initialization
5: Randomly initialize policy parameters: φk ∼ Uniform(Φ),∀k ∈ [0,K)
6: Initialize the experience buffer: D ← ∅
7: Initialize each recent episodic performance statistic Rk,∀k ∈ [0,K)
8: Initialize timestep counter: tacc ← 0
9: while not converged do

10: ii. Joint training
11: for episode ∈ [0, E) do
12: Policy selection: ke ∼ Uniform([0,K))
13: Perform a rollout in the environment: τ ← ROLLOUT(E , πφke

)

14: Update all policies πφk
,∀k ∈ [0,K) using τ (note: τ = {(st, at, rt, st+1)}Tt=0)

15: Update the selected recent-performance statistics: UPDATESTAT(Rke , τ)
16: Store the experience: D ← D ∪ τ
17: Accumulate timestep counter: tacc ← tacc + T
18: end for
19: iii. Inter-agent Knowledge Distillation
20: if tacc mod I = 0 then
21: Elect the teacher agent: kt = argmaxk Rk
22: Minimize L(φk, φkt),∀k ∈ [0,K) \ kt using D (Equation. 1)
23: end if
24: end while

4.2 ENSEMBLE INITIALIZATION

We randomly initialize K RL agents in the ensemble. Each RL agent’s policy is instantiated with a
model parameterized by φk, where k stands for the agent’s index in the ensemble. φk is initialized by
sampling from the uniform distribution over parameter space Φ which contains all possible values of
φk: φk ∼ Uniform(Φ). Despite the simplicity of uniform distributions, Osband et al. [37] show that
uniformly random initialization can provide adequate behavioral diversity. In this paper, we represent
each φk,∀k ∈ [0,K) as a neural network (NN) due to the impressive performance of NNs in recent
RL research [20, 32], though other parametric models (e.g. linear models) can be used.

CIKD can be easily applied to off-policy actor-critic methods, which learn both a policy and a critic
function that values states or state-action pairs. Off-policy actor-critic methods store a replay buffer
of past experiences that are used for training. In this paper, we use soft actor-critic (SAC) [20], an
off-policy actor-critic method that demonstrated state-of-the-art results on challenging tasks [19]. To
apply CIKD to SAC we create a shared replay buffer for all agents and randomly initialize a critic
function for each policy πφk

.
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4.3 JOINT TRAINING

Each joint training phase consists of E episodes. For each episode, we select an agent in the ensemble
to act in the environment (hereinafter, we refer this process as ”policy selection”) and then update all
agents’ policies using the experiences from that episode. Below, we describe the policy selection and
policy update procedures.

The policy selection strategy is a way to select one policy πφke
from the ensemble, to perform one

episode τ in the environment. This episode τ is then stored in a shared experience buffer D, and the
agent’s recent episodic performance statistic Rke is updated according to the return achieved in τ ,
where Rke stores the average episodic return in the most recent M episodes. {Rk}Kk=0 and D will
later be used in inter-agent distillation (Section 4.4). There are two purposes of policy selection. The
first purpose is to collect diverse experiences from different policies. In this paper, we adopt a simple
uniform policy selection strategy, whereby at the beginning of each episode we select a policy from
the ensemble at random to act in the episode.

After selecting a policy πφke
which performs an episode τ , we can then update all agents’ policies

using the new episode τ . Any arbitrary RL policy update method, either on-policy [44] or off-
policy [20], can be used here. On-policy methods to update the policy may require importance
sampling to handle the off-policy episode τ generated by another agent. Using off-policy methods,
all the policies in the ensemble can easily be updated, since off-policy update methods can perform
updates from any τ .

4.4 INTER-AGENT KNOWLEDGE DISTILLATION

The inter-agent knowledge distillation phase consists of two stages: teacher election and knowledge
distillation. The purpose of teacher election is to determine which agent in the ensemble has the
best-performing policy, which can then serve as a teacher to the other ensemble members. In our
experiments, teacher election is determined from each agent’s recent episodic performance statistics
recorded in the joint training stage. Thus, the selected teacher agent is the agent with the highest recent
performance, namely kt = arg maxk Rk, where kt is the index of the teacher. Rather than use the
agent’s most recent episodic performance, we use its average return over its previous M episodes, to
minimize the noise in our estimate of the agent’s performance. We additionally considered performing
offline evaluations, but this requires additional environmental interactions.

Next, the teacher serves as a guide that leads the other agents towards higher-performing policies.
This is done through knowledge distillation [24], which has been shown to be effective at guiding
the neural network to behave similarly to another neural network. To distill from the teacher to the
students (i.e., the other ensemble members), the teacher samples experiences from the buffer D and
instructs each student to match its outputs on these samples. The intuition is that after distillation, the
students acquire the teacher’s knowledge, enabling them to correct their sub-optimal behaviors and
reinforce their correct behaviors. Specifically, the distillation process can be formalized as minimizing
the following loss function:

L(φk, φkt) = Es∼D
[
D(πφkt

(.|s), πφk
(.|s))

]
, (1)

where D can be any distance metric between two functions. In this paper, D is taken as Kullback-
Leibler divergence (DKL) to measure the similarity of policies. We use s to denote historical states
sampled from the experience buffer D. DKL is a principled way to measure the similarity between
two probability distributions (i.e., policies). As DKL is an asymmetric metric, we clarify the settings
below. πφkt

and πφk
are taken as the ideal distribution and approximated distribution, respectively

(i.e., P and Q in the standard notation of KullbackLeibler divergence [28]). Note that inter-agent
distillation is also compatible with actor-critic methods. For actor-critic methods, we additionally
distill the critic function from the teacher to the students. In this paper, our distance metric for the
critics is the l2-loss function. In practice, the distance metric between critics can be any other metric
for regression (i.e., critic training can be viewed as a regression problem).

5 EXPERIMENTS

The experiments are designed to answer the following questions: (1) Can CIKD improve upon the
data efficiency of state-of-the-art RL? (2) Is knowledge distillation effective at sharing knowledge? (3)
Is is it necessary to choose the best-performing agent to be the teacher? (4) Why does CIKD improve
the performance of RL methods? (5) What is the impact of the ensemble size? Next, we show our
experimental findings for each of the aforementioned questions, and discuss their implications.
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5.1 EXPERIMENTAL SETUP

Implementation. Our goal is to demonstrate how to CIKD improves the sample efficiency of an RL
algorithm. Since soft actor-critic (SAC) [20] exhibits state-of-the-art sample efficiency across several
simulated benchmarks [51] and even in real robots [18, 19], we build on top of SAC. We directly
use the hyperparameters for SAC from the original paper [20] in all of our experiments. Unless
stated otherwise, the hyperparameters used in our proposed method (Algorithm 1) are I = 5000,
M = 5, and K = 3 for all experiments. The value of I and M are tuned via grid search over
[1000, 2000, · · · , 10000], and [1, 2, · · · , 10] respectively. We experiment with K ∈ {2, 3, 5} in
Section 5.6. For the remainder of our experiments, we term CIKD applied to SAC as SAC-CIKD.

Benchmarks. We use OpenAI gym [3]’s MuJoCo [51] benchmark tasks, as used in the original
SAC [20] paper. We choose all tasks selected in the original paper [20] and two additional tasks to
evaluate the performance of our method. The description for each task can be found in the source
code for OpenAI gym1.

Evaluation. We adapt the evaluation approach from the original SAC paper [20]. We train each
agent for 1 million timesteps, and run 20 evaluation episodes after every 10000 timesteps (i.e., number
of interactions with the environment), where the performance is the mean of these 20 evaluation
episodes. We repeat this entire process across 5 different runs, each with different random seeds. We
plot the mean value and confidence interval of mean episodic return at each stage of training. The
mean value and confidence interval are depicted by the solid line and shaded area, respectively. The
confidence interval is estimated by the bootstrapped method [9]. At each evaluation point, we report
the highest mean episodic return amongst the agents in the ensemble. In some curves, we additionally
report the lowest mean episodic return amongst the agents in the ensemble.

5.2 EFFECTIVENESS OF INTER-AGENT KNOWLEDGE DISTILLATION

In order to evaluate the effectiveness of inter-agent knowledge distillation, we compare our method,
SAC-CIKD, with two baselines: Vanilla-SAC and Ensemble-SAC. Vanilla-SAC stands for the original
SAC; Ensemble-SAC resembles the implementation of Osband et al. [37]’s method on SAC (effectively
equivalent to CIKD-RL without inter-agent knowledge distillation). Ensemble sizes (K) for Ensemble-
SAC and our method are set to 3. Our results are shown in Figure 2. Note that we also plot the
worst evaluation in our ensemble at each evaluation phase to provide some insight into the general
performance of the ensemble. In all tasks, we outperform all baselines, including Vanilla-SAC and
Ensemble-SAC. Moreover, SAC-CIKD has far better sample efficiency, usually reaching the best
baseline’s convergent performance in half of the environment interactions. We even find that in the
majority of tasks, our worst evaluation in the ensemble outperforms the baseline methods. This
demonstrates that all members of the ensemble are significantly improving, and our method’s superior
performance is not simply a consequence of selecting the best agent in the ensemble. Notice that
Ensemble-SAC does not significantly improve the performance of Vanilla-SAC. Ensemble-SAC only
outperforms Vanilla-SAC in 4 out of 7 tasks and suggests that the diversity of the ensemble is alone
insufficient for achieving large performance gains over Vanilla-SAC. In particular, SAC-CIKD’s
superiority over Ensemble-SAC highlights the effectiveness of supplementing shared experiences
(Ensemble-SAC) with knowledge distillation. In summary, Figure 2 demonstrates the effectiveness of
inter-agent knowledge distillation on enhancing the performance and data efficiency of state-of-the-art
RL algorithms.

5.3 EFFECTIVENESS OF KNOWLEDGE DISTILLATION FOR KNOWLEDGE SHARING

In this section, we investigate the advantage of using knowledge distillation for knowledge sharing.
Beyond using knowledge distillation [24], we consider other approaches that may successfully share
knowledge amongst agents. First, we consider sharing knowledge by simply providing agents with
additional policy updates using the shared experiences. We also consider directly copying the neural
network. Below, we separately compare these two approaches with knowledge distillation.

Though Section 5.2 has shown that Ensemble-SAC which updates all agents’ policies through shared
experiences fails to perform as well as SAC-CIKD, SAC-CIKD uses additional gradient updates during
the inter-agent knowledge distillation phase, whereas Ensemble-SAC only performs joint training.
It is unclear whether extra policy updates in lieu of knowledge distillation can achieve the same
effects as knowledge distillation. To investigate this, we compare our method with Vanilla-SAC

1https://github.com/openai/gym
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Figure 2: Performance evaluation of inter-agent knowledge distillation. SAC-CIKD represents the imple-
mentation of our method upon SAC; Vanilla-SAC stands for the original SAC; Ensemble-SAC represents the
implementation of Osband et al. [37]’s method on vanilla-SAC (effectively equivalent to SAC-CIKD without
inter-agent knowledge distillation). See Section 5.2 for details. Notice that in most domains, SAC-CIKD is able
to reach the convergent performance of the baselines in less than half the training time.

(extra) and Ensemble-SAC (extra), which respectively correspond to Vanilla-SAC and Ensemble-SAC
(see Section 5.2) agents that are trained with extra policy update steps. Specifically, instead of the
knowledge distillation phase, we provide these baseline agents with the same number of policy
updates and minibatch sizes as we give the SAC-CIKD agent for knowledge distillation. A policy
update here refers to as a training step for updating the policy [44, 48] and a value function [20, 27],
if required, by RL algorithms. Figure (3a) shows the performance of the above comparison baselines
and SAC-CIKD. It can be seen that SAC-CIKD outperforms all the baselines. This observation shows
that knowledge distillation is more effective than policy updates for knowledge sharing. The poorer
performance of using extra policy update can be explained by a recent work [11] which suggests
that typical off-policy actor-critic methods (e.g. SAC) cannot fully utilize the other agents’ or past
experience.

We additionally study whether the naive method of directly copying parameters from the best-
performing agent can also be an effective way to share knowledge between neural networks. We
compare a variant of our method, which we denote as SAC-CIKD (hardcopy), against SAC-CIKD. In
SAC-CIKD (hardcopy), rather than perform inter-agent knowledge distillation, we simply copy the
parameters of the teacher policy and critic into the student policies and critics. Figure (3b) depicts
the performance of this variant, the baselines, and SAC-CIKD. We can see that despite the fact that
SAC-CIKD (hardcopy) can surpass Vanilla-SAC, SAC-CIKD (hardcopy) loses to SAC-CIKD in all
tasks. Thus, knowledge distillation is superior to naively copying the best agent’s parameters. While
sharing can be beneficial, being too biased towards the teacher can be counterproductive. Identical
behaviors may limit the scope of exploration on policies, undermining their quality.

5.4 EFFECTIVENESS OF SELECTING THE BEST-PERFORMING AGENT AS THE TEACHER

In the inter-agent knowledge distillation stage, we elect the best-performing agent to be the teacher,
and distill this teacher’s knowledge to the students (see Section 4.4).

However, the importance of choosing the best-performing agent remains unclear. Perhaps simply
sharing knowledge amongst members is sufficient for good performance, and strictly distilling from
a high-performing teacher may be unneeded. To investigate the importance of selecting the best-
performing agent to be the teacher, we experiment with selecting a random teacher. We denote this
variant as SAC-CIKD (random teacher). Figure 4 plots the performance of our method, the baselines,
and this variant. It can be seen that SAC-CIKD (random teacher) performs on-par with Ensemble-SAC
3 out of 4 tasks, and better on a single task. SAC-CIKD (random teacher) performs worse than
SAC-CIKD on 3 tasks, and on-par on a single task. This suggests that simply sharing knowledge
amongst agents can slightly improve performance, it is preferable to select the best-performing agent
when sharing knowledge through distillation.

5.5 CAUSES FOR THE PERFORMANCE IMPROVEMENT

In this section, we investigate how inter-agent knowledge distillation improves the performance
of each agent in the ensemble. Below, we verify each of our hypotheses in the HalfCheetah-v2
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(a)

(b)

Figure 3: (a) Comparison between knowledge distillation and extra policy updates. Vanilla-SAC (extra)
and Ensemble-SAC (extra) stand for Vanilla-SAC and Ensemble-SAC variants that use extra policy updates,
respectively (see Section 5.3 and Section 3 for details). (b) Comparison between knowledge distillation and
copying parameters. SAC-CIKD (hardcopy) stands for the variant of our method which directly copy the neural
networks parameters of the best agent to the others. (a)(b) Both figures show that knowledge distillation is more
effective.

Figure 4: Comparison between the selecting the best-performing teacher vs. a random teacher. SAC-CIKD
(random teacher) refers to the variant of our SAC-CIKD where a randomly chosen teacher is used for knowledge
distillation. This figure demonstrates that it can be more effective to select the best-performing agent as the
teacher.

environment. One hypothesis is that knowledge distillation transfers the behaviors of a dominant
agent to weaker agents. Such a skilled agent may emerge simply from the diversity stemming from
random initialization. To investigate this hypothesis, we plot the selected teacher index (i.e. kt) over
the entire training process in Figure 5a. We find that the selected teacher is roughly evenly distributed
across all agents. These proportions are presented in Figure. 5b. It can be observed that there is no
strictly dominant agent within the ensemble. Both figures suggest that there is no single dominant
agent passing its knowledge to inferior agents. Since we find that there is no single dominant agent.
Another hypothesis is that knowledge is accumulated throughout members of the ensemble, with
agents surpassing their teachers to then become the next teacher, passing on its knowledge in the next
period. As such, we are interested in knowing how often agents surpass their teachers immediately
subsequent to distillation. To measure this, we evaluate (see Section 5.1 for detail) each agent
immediately before and after the inter-agent knowledge distillation phase. Figure 5c depicts the
percentage of agents that obtain superior performance to their teachers during different stages of
training. We see that throughout the whole training process, in at 23% of post-distillation evaluations,
the student agent surpasses its teacher. Furthermore, in the later stages of training, 33% of distillations
result in the student agents outperforming their teachers. From these observations, we conclude that
stronger agents likely emerge through continual knowledge distillation.

Since knowledge distillation [24] theoretically aims to match the performance between the students
and teachers, a performance increase in the students is counter-intuitive. One possible explanation
is that the combination of students’ inherent skills and teachers’ knowledge results in performance
improvement. To test this, we randomly reset the parameters of each student agent prior to distillation,
so as to observe the influence of the students’ inherent knowledge. Figure 5d plots the performance
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of this variant and our method. The variant with parameter reset is denoted as SAC-CIKD (reset).
It can be observed that SAC-CIKD (reset) is much worse than both SAC-CIKD and Ensemble-SAC.
This demonstrates the importance of performing knowledge distillation on an agent that has already
learned.

(a) (b) (c)

(d)

Figure 5: (a) The distribution of selected teacher agent indices. This figure shows that each agent has a chance
to become the teacher. (b) The proportion of time that each agent is selected to be the teacher over the
entire training process. This figure shows that there is no strictly dominant agent within the ensemble. (c) The
proportion of time that the students surpass the teachers after knowledge distillation. This figure shows
that as more experience is collected, inter-agent knowledge distillation enables students to become better than
their teachers (see Section 4.4 for the detail of inter-knowledge distillation). (d) The importance of students’
inherent knowledge. SAC-CIKD (reset) denotes the variant of our method where we randomly re-initialize
students’ parameters before knowledge distillation. This figure shows that students’ inherent knowledge is
crucial for the performance of our method.

5.6 ABLATION STUDY ON ENSEMBLE SIZE

In this section, we study the influence of the ensemble size K as the ensemble size affects the
scalability. We test our method with three ensemble sizes K = 2, K = 3, and K = 5. Figure 6
shows the performance of these configurations. We find that SAC-CIKD performs approximately the
same across all three ensemble sizes. Even with an ensemble size of 2, we see better performance
than Ensemble-SAC (as K = 2 is on-par with K = 3, which outperforms Ensemble-SAC, as shown
before). Thus, our method can reap benefits even from small ensembles, and is not extremely sensitive
to the ensemble size. However, investigating CIKD on a large scale ensemble is not the primary focus
of this paper, and we leave its investigation for future work.

Figure 6: Performance comparison under different ensemble sizes. Three different ensemble configurations
with 2, 3, and 5 agents lead to similar performance. This result shows that CIKD does not require a large
ensemble size.

6 CONCLUSION
In this paper, we introduce collaborative inter-agent knowledge distillation (CIKD), a method that
jointly trains an ensemble of RL agents while continually sharing information via knowledge distilla-
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tion. Our experimental results demonstrate that CIKD improves the performance and data efficiency
of a state-of-the-art RL method on several challenging MuJoCo tasks. Also, we show that knowledge
distillation is more effective than the other approaches for knowledge sharing. We found that electing
the best-performing agent to serve as the teacher plays a significant role in improving performance.
Our investigation further showed that the combination of students’ and teachers’ knowledge is crucial
for the performance. Finally, our ablation study showed that a large ensemble is not needed for
improving performance.

CIKD open several avenues for future work. First encouraging diversity within the ensemble may lead
to more efficient exploration [4, 25]. Additionally, while we used a simple uniform policy selection
strategy, a more efficient policy selection strategy may further accelerate learning. Lastly, while
our ensemble members used identical architectures, CIKD may benefit from using heterogeneous
ensembles. For example, different networks may have different architectures that are conducive to
learning different skills, which can then be distilled within the ensemble.
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A DIFFERENT DISTILLATION SCHEMES FOR ACTOR-CRITIC METHODS

As actor-critic methods like SAC [19] train a critic in addition to the policy, three straightforward
knowledge distillation schemes can be used: distilling both the policy and the critic, distilling the
policy only, and distilling the critic only. In this section, we compare the both schemes to justify
our choice of distilling both the policy and the critic. We plot the performance of both schemes in
Figure 7, where SAC-CIKD (policy only) and SAC-CIKD (critic) stand for the variant of SAC-CIKD
that distill the policy only and distill the critic only, respectively. We see that both SAC-CIKD
(policy) and SAC-CIKD (critic) sufficiently improve the performance against the vanilla SAC while
SAC-CIKD achieves the best performance. This result shows that distilling the critic and the policy
simultaneously achieves superior performance.

Figure 7: Comparison of different distillation schemes. SAC-CIKD (policy only) and SAC-CIKD (critic)
denote the variants of SAC-CIKD that distill the policy only and distill the critic only, respectively. This figure
shows that distilling the critic and the policy simultaneously is more effective.
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