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ABSTRACT

Attention mechanisms have been boosting the performance of deep learning mod-
els on a wide range of applications, ranging from speech understanding to program
induction. However, despite experiments from psychology which suggest that at-
tention plays an essential role in visual reasoning, the full potential of attention
mechanisms has so far not been explored to solve abstract cognitive tasks on image
data. In this work, we propose a hybrid network architecture, grounded on self-
attention and relational reasoning. We call this new model Attention Relation Net-
work (ARNe). ARNe combines features from the recently introduced Transformer
and the Wild Relation Network (WReN). We test ARNe on the Procedurally Gen-
erated Matrices (PGMs) datasets for abstract visual reasoning. ARNe excels the
WReN model on this task by 11.28 ppt. Relational concepts between objects are
efficiently learned demanding only 35% of the training samples to surpass re-
ported accuracy of the base line model. Our proposed hybrid model, represents
an alternative on learning abstract relations using self-attention and demonstrates
that the Transformer network is also well suited for abstract visual reasoning.

1 INTRODUCTION

Psychological models of human intelligence identify different manifestations of intellect. FLUID
INTELLIGENCE describes the ability to adapt to new problems and situations without relating to
previous learning outcomes (Hagemann et al., 2016). This ability is considered as one of the most
important aspects for learning and is essential for solving higher cognitive tasks (Jaeggi et al., 2008).
In order to excel in this type of intelligence, cognitive capabilies such as figural relations, memory
span and inductive thinking are decisive. Fluid intelligence also paves the ground for ABSTRACT
REASONING, the ability to use symbols instead of concrete objects. Furthermore, empirical data
show that attention and fluid intelligence are strongly interlinked (Stankov, 1983; Schweizer, 2010;
Ren et al., 2013). Subjects that perform bad on attention tasks are also more likely to show deficits
in abstract reasoning and fluid intelligence (Ren et al., 2012; 2013).

RAVEN’S PROGRESSIVE MATRICES (RPM) is an established test method for intelligence, espe-
cially fluid intelligence and abstract reasoning (Bilker et al., 2012). It is a set of non-verbal tests
showing several geometric objects arranged to a certain implicit rule (Figure 1a shows an example).
The test subject has to complete the 3× 3 matrix by picking an object that matches the implicit rule.
The PROCEDURALLY GENERATED MATRICES (PGMs) (Santoro et al., 2018) dataset is motivated
by RPMs and synthetically generated for training neural networks. Its core feature comprises sev-
eral relations between objects and one of their attributes, e.g. the number of an object of a certain
type in each matrix panel. A single matrix can contain up to four such relations simultaneously.
A PGM’s context and possible answers are shown in Figures 1a and 1b, respectively. Importantly,
the PGM matrices are presented to a neural network as images such that the task requires a certain
level of understanding of geometrical relations. The Wild Relation Network (WReN) uses different
combinations of matrix elements as a mechanism for relational reasoning and is currently among
the best performing solutions for the PGM dataset. However, despite the close relationship between
attention and reasoning, the WReN is lacking a mechanism for attention.

Apart from the visual domain, it was recently shown that attention is also essential for another cogni-
tive task that fundamentally relies on abstract reasoning: language understanding. The Transformer,
an attention-based neural network, was introduced to improve machine translation and transduction
(Vaswani et al., 2017). The Transformer embodies a self-attention mechanism to relate parts of
its input with each other for writing output. Since this form of attention and abstract reasoning is

1



Under review as a conference paper at ICLR 2020

PGM contexts PGM choicesb ca RPM

5

1 2 3 4

6 7 8 ?
Figure 1: Datasets for visual reasoning. a: Sample from the RPM dataset (Bilker et al., 2012).
Context: blue, choices: red. Correct choice: 1. Implicit rule: Subtraction along rows and columns.
b, c: Sample from the PGM dataset (Santoro et al., 2018), contexts (b) and corresponding choices
(c). The ? in (b) should be replaced by a correct choice from (c). Correct choice: The hexagon in
the last tile. Implicit rule: progression of shape types (number of edges) in each column. Colors
added to enhance visualization.

vital for fluid intelligence we hypothesize that a Transformer augmented with relational reasoning
capabilities can perform well on the PGM task.

Another special trait of human intelligence is the ability to infer rules with little supervision. Often,
only few samples suffice for people to grasp the idea of tasks such as visual reasoning. In contrast
to that, current deep network architectures are trained on huge quantities of data, e.g. the PGM
dataset contains more than 1.2 million labelled samples. To see if self-attention also enhances this
capability of deep networks we investigate the sample efficacy by training our proposed model only
on a fraction of the total available data samples.

Our contribution to the field of machine learning is three-fold:

• We introduce the Attention Relation Network (ARNe) that combines features from the
WReN and the Transformer network and can be directly trained on visual reasoning tasks.

• We evaluate ARNe on the PGM task and show that it significantly outperforms the current
state-of-the art (Steenbrugge et al., 2018) by 11.28 ppt.

• We demonstrate that ARNe is very sample-efficient and achieves its peak performance with
only 35% of the full PGM dataset.

This paper is organized as follows. In Section 2 we discuss related approaches and training datasets.
In Section 3 we introduce the ARNe architecture and in Section 4 we show our simulation results.
We conclude in Section 5.

2 RELATED WORK

Language Modelling Language modelling, i.e. predicting the likelihood of future words given
a set of contextual words, is a core task in natural language processing (NLP). While neural ap-
proaches to language modelling have some tradition (Bengio et al., 2003), the success of the
word2vec (Mikolov et al., 2013) has revived and boosted the interest in neural networks for this
task. While word2vec defines fixed vectors for words, recently, several approaches were proposed
that condition word representations on their context (Howard & Ruder, 2018; Devlin et al., 2018;
Peters et al., 2018). In particular attention-based models have emerged as the standard tool for lan-
guage modelling as well as several downstream tasks, such as question answering (Rajpurkar et al.,
2016) and translation (Vaswani et al., 2017). Starting with the seminal Transformer (Vaswani et al.,
2017), follow-up models were successively improved (Devlin et al., 2018) and trained on larger text
datasets achieving remarkable success across various NLP tasks (Radford et al., 2019). Besides the
work in language modelling, in concurrent work, Transformer-based models have been employed
for visual question answering (Li et al., 2019). In this work we take inspiration from the model
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Figure 2: Overview of the ARNe network for abstract visual reasoning.

design of the attention Transformer. However, instead of applying it in a language modelling task,
we use it for abstract reasoning.

Abstract Reasoning Recently, there has been growing interest in abstract reasoning indicated by
the introduction of datasets operating on textual data, e.g. babl (Weston et al., 2015), as well as on
visual data, involving CLEVR (Johnson et al., 2017), FigureQA (Kahou et al., 2017) and NLVR
(Suhr et al., 2017).

While classic recurrent neural networks have often been used for these tasks, it has been found that
novel architectures such as attention and memory are better suited to address abstract reasoning.
Attention mechanisms are a method to simplify complex information by attending to different lo-
cations of the given data. This is an advantageous procedure to let a neural network determine a
specific reasoning operation on these selected locations. Memory is needed to preserve informa-
tion in tasks where multiple consecutive reasoning operations are required. In LSTM (Hochreiter &
Schmidhuber, 1997) for example, the hidden state is protected by gates from being overwritten by
new input. Models incorporating attention and memory involve the Neural Turing Machine (Graves
et al., 2014) which evolved into the Differentiable Neural Computer (Graves et al., 2016). Dynamic
Memory Networks (Xiong et al., 2016) address both, visual and textual question answering. The re-
cently introduced Memory, Attention and Composition (MAC) Network Hudson & Manning (2018)
achieved excellent scores in the CLEVR benchmark by using multiple explicit reasoning steps.

Our work differs by measuring fluid intelligence by understanding visual patterns rather than solving
referential expressions (to which part of an image belongs a certain word) which is required in
CLEVR, FigureQA, NLVR and many visual question answering tasks. The former task is considered
in (Santoro et al., 2018) and (Steenbrugge et al., 2018) with which we compare our proposed method.

3 ATTENTION RELATION NETWORK (ARNE)

In this section we describe the Attention Relation Network (ARNe), which combines techniques
from language modelling to abstract reasoning. It takes eight contextual panels and eight choice
panels from the PGM, of which one fits to abstract relational rule implicitly determined by the
context panels. The model output are logits of a corresponding fitness probability for each choice
panel and logits for corresponding probabilities of the rules embedded in a PGM. The model is
illustrated in Figure 2.
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Table 1: Modules and their corresponding parameters of ARNe.

Module Parameters
Panel Encoder

CNN { 2D-Convolution }
x4

3× 3× 32, padding = 1, stride = 2
Batchnorm
ReLU

Linear layer Embedding H·W
256 · 32 + 9× 512

Transformer

t Transformer encoder x6 see Table 5
g

{
linear layer

}
x4

each 512× 512
ReLU

f
{ (Dropout) }

x3
p = 0.5 (only for second layer)

linear layer 512× 256, 256× 256 and 256× 13
ReLU

First, representations for context panels, denoted by xi, and representations for choice panels, de-
noted by ck, are generated using a shared Convolutional Neural Network (CNN). xi denotes the
i-th context panel feature, ck denotes the k-th choice panel feature. This network has the same hy-
perparameters as the CNN in the Wild Relation Network (WReN). A one-hot positional encoding
indicating one out of nine possible positions within the panel grid is concatenated to each extracted
panel feature and the resulting vector is projected to obtain a final representation for each panel (see
panel encoder and concatenation blocks in Figure 2).

Sequences χk of lengthN are composed of the context and choice panel representations. Optionally,
a learnable deliminiter d which has the same number of dimensions as the panel representations can
be included between contexts and choice. Thus, sequences of N = 9 or N = 10 elements are
obtained:

χk = (x1,x2, . . . ,x8,d, ck) . (1)

We generate a sequence χk for all eight choices. A multi-step attention network inspired by the
encoder of the Transformer model t (Vaswani et al., 2017), processes this sequence using the self-
attention mechanism for abstract reasoning. All activations are accumulated before the network’s
output is generated by the MLP f .

ok = f

(
N∑
i=1

g (t (χk))i

)
, (2)

where g denotes the output of the 4-layer MLP (see f and g decoder blocks in Figure 2). The vector
p̂ ∈ R8 denotes the logits of the corresponding probability distribution over the choices and the
matrix Â ∈ R8×12 indicates the logits of the corresponding presence probabilities of rules imposed
by the panels where âk ∈ R12 is defined as a transposed row vector of this matrix. The construction
of these meta-targets is explained subsequently.

The network returns a matrix o ∈ R8×13, which contains both, logits for the prediction of a choice
panel and logits for the prediction of underlying patterns across the PGMp̂1 âT1

...
...

p̂8 âT8

 =

o1

...
o8

 . (3)

Meta-targets In the PGM dataset, the layout and appearance of the nine panels follow an implicit
rules. Each rule is represented by a triplet containing an object type, object attribute and relation
type. An example rule could be (shape, size, progression) to describe a pattern of triangles with
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Table 2: PGM accuracy by previous methods and our model (ARNe). Accuracy of WReN as re-
ported in (Santoro et al., 2017) and our implementation. MAC model included for comparison.

Model Accuracy [%]
MAC (our implementation) 12.6
VAE-WReN (Steenbrugge et al., 2018) β = 4 64.2
WReN (Santoro et al., 2017) β = 10 76.9
WReN (our implementation) β = 10 79.0
ARNe (our implementation) β = 10 88.2

increasing size. Up to four different relational rules (i.e. four triplets) may occur simultaneously in a
single PGM. Meta-targets are created by aggregating all binary encoded rules with an OR operation
resulting in a 12 dimensional meta-target vector.

In order to identify correct panels, a successful model should be able to infer the underlying con-
struction principle reliably. To enhance rule prediction in the model, we incorporate the auxiliary
information encoded in the meta-targets in the loss function. Since each choice panel results in a
prediction âk of a meta-target, the predictions need to be aggregated by a sum over choice panels,
implying an OR relation between the elements (Santoro et al., 2018).

Loss The loss L is defined by a weighted combination of finding the right choice p and detection
of the correct logical pattern a (Santoro et al., 2018):

L = CE(p, p̂) + β · BCE(a,
8∑
k=1

âk) ,

with CE and BCE being cross entropy and binary cross entropy. The parameter β controls the
influence of the meta-targets, i.e. for β = 0 the meta-targets are ignored. By enforcing correctness
of the meta-targets we enable richer gradients that identify better parameters.

Implementation The learning is carried out using an adam Kingma & Ba (2014) optimizer with
a batch size of 64 and an initial learning rate of 0.5 · 10−4 using a learning rate scheduler with
exponential decay. We apply early stopping (Goodfellow et al., 2016) with a patience of three
epochs. Parameters of the individual components of our method are presented Table 1. For further
details we refer to the appendix or the implementation of our approach which is available here:
http://hidden for blind review. Will be disclosed upon acceptance

4 EXPERIMENTS

We evaluate ARNe on the PGM dataset (DeepMind, 2017). Each PGM input sample consists of
160 × 160 pixel images. In total, there are 16 panels in every sample, eight of which define the
context and the remaining eight define possible choices (see Figure 1). Similar to RPMs, a correct
panel has to be chosen that matches the implicit relational rules encoded in the context panels. PGM
includes meta-targets in the form of 12-bit feature vectors that denote relation, object and attribute
types. The rules that underlie each sample are composed of 1 to 4 relational rules, chosen from
the set (Progression, AND, OR, XOR, Consistent Union). Figure 1b,c shows an example of the
Progression rule.

We trained ARNe on the 1.2 × 106 training samples from the PGM dataset where early stopping
terminated training after 45 epochs. After training, ARNe detected answer panels with an accuracy
of 88.18% and auxiliary data with 98.72%. F1-score reached 0.9801. For comparison, we included
in Table 2 results for WReN (Santoro et al., 2017) and VAE-WReN (Hudson & Manning, 2018)
as baseline. These models were significantly outperformed by ARNe. It is noteworthy that our re-
implementation of WReN also outperformed (Santoro et al., 2017) by 2.1 ppt despite careful code
validation (see Table 2 and Appendix B).

In addition, we included a comparison with the Attention and Composition (MAC) Network (Hud-
son & Manning, 2018). To the best of our knowledge this is the first time MAC is tested on the
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Table 3: Meta-target prediction performance.

Meta-target Accuracy [%] Precision [%] Recall [%] F1-Score [%]
Progression 96.53 94.07 90.52 92.26

AND 97.76 96.92 94.01 95.44
OR 98.15 98.53 93.99 96.21

XOR 97.59 99.07 91.23 94.99
Consistent Union 96.87 97.63 91.79 94.62

Shape 99.82 99.91 99.81 99.86
Line 99.98 99.98 99.98 99.98

Size 99.93 99.89 99.77 99.83
Type 99.95 99.91 99.98 99.94

Position 99.98 99.91 99.99 99.95
Number 99.97 99.92 99.84 99.88

Color 98.13 99.01 96.80 97.89

PGM dataset. To our surprise MAC did not perform significantly above chance level on this task.
We also tested a version of MAC that uses a WReN at the input stage, similar to ARNe. We call this
augmented variant WReN-MAC. Our first results with this model suggest that also WReN-MAC
does not reach the performance of ARNe. We ran tests on a reduced PGM dataset that used only
20% of the full training set. WReN-MAC achieved 46.9% test accuracy, about 10% below that of
ARNe on the same dataset size (see Figure 3). We are running simulations with WReN-MAC on the
full dataset but by the time of the submission of this paper these experiments were not concluded.
Additional details on the implementation of WReN-MAC are provided in Appendinx D.

To gain additional insights into the learning behavior of ARNe we clustered the test dataset by the
number of relational dependencies. ARNe showed good performance on all types, performing best
on samples with four (accuracy: 90.54%) and worst for samples with three (accuracy: 82.74%)
relational rules. Next, we evaluated the ability of ARNe to predict the meta-targets. Table 3 shows
individual performances for each of the 12 meta-targets. ARNe achieved high accuracy in all cate-
gories. Detection rates revealed an unconditional accuracy rate of above 90% consistently across all
meta-target types.
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Figure 3: Sample efficiency: Test accuracy (a) and loss (b) after training on different numbers
of samples (percent of original dataset size). Our implementation of WReN was used here (see
Appendix B).

4.1 SAMPLE EFFICIENCY

In order to evaluate the sample efficiency of ARNe, we trained the model subsequently with growing
fractions of the training dataset. The validation and test sets were kept unchanged during the entire
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Figure 4: Sum of selected activations of the last layer of the panel encoder CNN, that encoded
predominantly for shapes (maps 14, 24, 26, 29, 31) and for lines (maps 1, 2, 3, 4, 8, 12). Matrices
show complete sets of context panels and the correct choice panel highlighted in red.

experiment. Prior to splitting of the training set, the dataset was shuffled and the random seed
was kept fixed throughout all experiments. The results are presented in Figure 3. ARNe achieved
higher test accuracy across all dataset ratios ≥20%. Using a split size of 35%, the accuracy reads
87.64%, already close to the value when trained on the full training set and 8.65 ppt better than the
WReN model at 100% of the training dataset. The progression of the loss shows a similar behavior
(Figure 3b).

4.2 SELF-ATTENTION FOR VISUAL REASONING

In order to gain insights into how the self-attention mechanism of ARNe works internally we visu-
alize the activations of the panel encoder for different encodings of the meta-targets in Figure 4. It is
important to note that these features captures all relevant information for reasoning about relational
rules between objects. Therefore, recognizing objects of specific types is an important sub-task for
deciding which objects are relevant for a particular relational rule. Figure 4 shows two examples for
the object type meta-targets shape and line. For each object type, output channels of the panel en-
coder CNN were selected that strongly responded. The eight choices and the corresponding correct
context panel in the bottom right, are shown.

We found that, after training, many panel encoder CNN output channels significantly encoded acti-
vation maps for a single meta-target type. The activations in Figure 4 most saliently select regions
within the input panels that are part of line or shapes objects.

4.3 ABLATION

We experimented with various configurations of ARNe. This involves dropout to reduce over-fitting,
a different learning rate, the inclusion of the delimiter token when assembling sequences and the
weighting of meta-targets β. Table 4 depicts the results of the subsequent and more detailed ablation
studies of ARNe. Further values are as listed in the Appendix A. For small dataset dropout gives
a substantial performance boost, while this is not the case when the full dataset is used. This is
likely due to the additional samples preventing the network from over-fitting. Similarly, the addition
of a deliminiter tends to improve performance for small datasets, thus it might act as a regularizer.
Furthermore, we find that the method is robust to a changed initial learning rate.

An intriguing insight is that ARNe does not converge when no meta-targets are provided (β =
0). This indicates the relevance of the auxiliary signals which connect the panel choice with the
underlying implicit relational rules during training (at test no meta-targets were presented). Beyond
the findings of Table 4, we investigated improvements of components of WReN as well as the
addition of FiLM Perez et al. (2018) layers but did not notice a performance improvement. However,
by reducing the input image size from 160 × 160 to 80 × 80 pixels, accuracy decreased by about
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Table 4: Comparison of different model configurations. The highlighted lines refer to the best
performing model of the given dataset ratio. Values in the training, validation and test columns
characterize the model’s accuracy. (lr = learning rate).

Dropout [%] lr×10−4 Delimiter β Ratio [%] Train [%] Val. [%] Test [%]
10 0.5 7 10 35 81.83 78.67 78.32
10 0.5 X 10 35 82.21 79.39 78.69
17 0.5 7 10 35 93.74 85.10 84.35
17 0.5 X 10 35 93.83 87.65 87.64
10 0.5 7 0 100 12.50 12.65 12.55
17 0.5 7 10 100 86.27 87.72 87.11
10 1 7 10 100 88.86 88.66 87.95
17 0.5 X 10 100 88.23 88.42 88.04
10 0.5 7 10 100 89.06 88.77 88.18

15 ppt. This suggests that relevant small structures exist and are used by the model to solve the
PGM.

5 CONCLUSION

In this work we introduced ARNe, a new deep learning model that combines features from the
Wild Relation Network (WReN) and the Transformer network to discover patterns in progressive
matrix panels using aspects of fluid intelligence. More precisely, ARNe builds upon the WReN
and extends it with the attention mechanism of the Transformer, which originates from language
modelling, making it to our knowledge the first deep learning approach that uses self-attention for
abstract reasoning. The learning is driven by an auxiliary loss that gives hints about the under-
lying patterns of the progressive matrix panels. In an extensive experimental comparison we find
that ARNe outperforms state-of-the-art abstract reasoning methods on the PGM dataset by a large
margin. Moreover, the analysis shows that our model is substantially more sample-efficient than
competing approaches.

Our experiments also including the first application of MAC to the PGM dataset. But the MAC did
not seem to be well suited for this task, and also showed significantly worse performance compared
to baseline, when it was augmented with a WReN-based panel encoder. Additional experiments are
needed to gain a deeper understanding on why MAC appears to fail here. First insights into the inner
workings of ARNe are given in Figure 4. We show that the panel encoder CNN generates meaningful
features that aid the learning goal. This suggests that the WReN and Transformer network parts of
ARNe learn to efficiently cooperate for abstract reasoning.

Altogether, these results suggests that the self-attention mechanism can be helpful in domains be-
yond text processing. Future work involves modifying our method such that it can be used on visual
reasoning datasets which require a different structure, e.g. VisualQA datasets which involve parsing
an explicit question.
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Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of prerequisite toy
tasks. arXiv preprint arXiv:1502.05698, 2015.

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic memory networks for visual and
textual question answering. In International conference on machine learning, pp. 2397–2406,
2016.

10



Under review as a conference paper at ICLR 2020

APPENDIX

A DETAILS TO ARNE IMPLEMENTATION

The model was trained using a learning rate of 0.5 · 10−4. A heuristic learning rate scheduler was
employed which is based on the official MAC implementation (Drew A. Hudson, 2018). It triggers
below a loss of 0.6 and utilizes a decay parameter of 0.75. Early stopping (Goodfellow et al.,
2016) was used which stopped training after three subsequent epochs of no improvements of the
model’s validation loss. For optimization, Adam (Kingma & Ba, 2014) was used. Parameters of
ARNe’s Transformer encoder are listed in Table 5. We used our own PyTorch implementation of the
Transformer since at the beginning of this project the reference implementation1 was not available.

Table 5: Model parameters of the Transformer encoder used in the conducted experiments.

Dropout Layer pdrop [%]

dropattention 10
dropposition 10

Parameter value

dmodel 512
dk 64
dq 64
dv 64
h 10
Nlayers 6
dhidden 2056

Linear Layer value

linearv [dmodel, h · dv]
lineark [dmodel, h · dk]
linearq [dmodel, h · dq]
fc [h · dk, dmodel]

Convolutional Layers [dinput, doutput, kernel, stride, padding]

FCposition [dmodel, dhidden, 1, 1, 0]
ReLU
[dhidden, dmodel, 1, 1, 0]

B DETAILS TO WREN IMPLEMENTATION

The WReN model was re-implemented in PyTorch as described in (Santoro et al., 2018) and tested
on the neutral PGM dataset (DeepMind, 2017). The model was trained with β = 10 only. A
deviating batch size of 64 instead of 32 was used. This yields accuracy rates of 78.49%, 80.02% and
79.00% for training, validation and testing respectively. This implies an improvement of 2.82 ppt
for validation and 2.1 ppt for testing compared to the WReN baseline model (Santoro et al., 2018).
Figure 5 displays the progression of accuracy and loss during training, validation and testing.

C DETAILS TO MAC IMPLEMENTATION

The MAC network was implemented as reported in (Hudson & Manning, 2018) using PyTorch. The
implementation was verified on the CLEVR dataset. Loss and accuracies of our implementation

1https://github.com/pytorch/pytorch/releases/tag/v1.2.0
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Figure 5: Accuracy and Loss of the self implemented WReN (Santoro et al., 2018) model for β = 10
on the neural PGM dataset. The development of both metrics include the progression of the panel
choices, additional auxiliary data which describes the setup of the PG-Matrices. In addition, the
loss shows the overall sum.

of MAC on the CLEVER dataset can be seen in Figure 6. Best value for validation regarding the
accuracy is 97.83%. The training, validation demanded a computation effort of about half a week
on a GeForce GTX TITAN X graphics card.

D DETAILS TO WREN-MAC IMPLEMENTATION

The WReN-MAC model uses the same encoding mechanism as the WReN baseline model and
includes 12 MAC-cells. In order to interface a MAC-cell, additional convolutional layers were
appended to the adapted WReN convolutional network. The model is analogously sequentially
aligned like WReN or WReN-Transformer whereas during each pass one knowledge base which
encodes one distinct choice panel is used. The question vector ~q is computed in analogy to WReN
where gθ and the subsequently applied sums were used. The computation of the model’s loss also
respected auxiliary structure set data of the corresponding PGMs.

We were not able to train WReN-MAC successfully on the PGM dataset. Early stopping finished
learning after 33 epochs. The final accuracies and losses are 49.26% and 3.04, 46.97% and 3.20,
46.89% and 3.23 for training, validation and testing respectively. Both accuracy and loss showed
marginal improvements throughout all epochs. Due the recurrent nature of MAC-cells, we used gra-
dient clipping (Goodfellow et al., 2016). The learning rate scheduler was set but didn’t diminished
the the learning rate which was initially set to 1 · 10−4. Additional hyperparameter tuning did not
show significant performance increase.
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Figure 6: Learning curves during training and validation of our implementation of MAC on the
CLEVR dataset. Accuracy: Final learning rate values after 25 epochs are 97.83% and 99.11%
for the validation and training set respectively. Loss: Calculated losses of the implemented neural
network with respect to epochs. Final loss values after 25 epochs are 92.30 · 10−3 and 22.90 · 10−3

for the validation and training set respectively.
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Figure 7: WReN-MAC model. First, eight sequences of embeddings and gθ activations are gener-
ated analogously to WReN. To interface a MAC-cell properly, the knowledge base is required. A
knowledge base is generated by the WReN CNN plus additional layers to match MAC’s required
dimensions. Every sequence passes 12 recurrent MAC-cells and the output unit sequentially. The
computation of scores equals the method incorporated in the WReN model.
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