
Under review as a conference paper at ICLR 2020

Generalization Puzzles in Deep Networks

Anonymous authors
Paper under double-blind review

Abstract

In the last few years, deep learning has been tremendously successful in many
applications. However, our theoretical understanding of deep learning, and
thus the ability of providing principled improvements, seems to lag behind.
A theoretical puzzle concerns the ability of deep networks to predict well
despite their intriguing apparent lack of generalization: their classification
accuracy on the training set is not a proxy for their performance on a test
set. How is it possible that training performance is independent of testing
performance? Do indeed deep networks require a drastically new theory of
generalization? Or are there measurements based on the training data that
are predictive of the network performance on future data? Here we show
that when performance is measured appropriately, the training performance
is in fact predictive of expected performance, consistently with classical
machine learning theory

1 Introduction

Is it possible to decide the prediction performance of a deep network from its performance
in training – as it is typically the case for shallower classifiers such as kernel machines and
linear classifiers? Is there any relationship between training and test performances? Figure
1a shows that when the network has more parameters than the size of the training set –
which is the standard regime for deep nets – the training classification error can be zero and
is very different from the testing error. This intriguing lack of generalization was recently
highlighted by the surprising and influential observation Zhang et al. (2016) that the same
network that predicts well on normally labeled data (CIFAR10), can fit randomly labeled
images with zero classification error in training while its test classification error is of course
at chance level, see Figure 1b. The riddle of large capacity and good expected performance
led to many papers, with a variety of claims ranging from “This situation poses a conceptual
challenge to statistical learning theory as traditional measures of model complexity struggle
to explain the generalization ability of large artificial neural networks...” Zhang et al. (2016),
to various hypotheses about the role of flat minima Keskar et al. (2016); Dinh et al. (2017);
Chaudhari et al. (2016), about SGD Chaudhari & Soatto (2017); Zhang et al. (2017) and to
a number of other explanations (e.g. Belkin et al. (2018); Martin & Mahoney (2019)) for
such unusual properties of deep networks.
We start by defining some key concepts. We call “loss” the measure of performance of the
network f on a training set S = x1, y1, · · · , xN , yN . The most common loss optimized during
training for binary classification is the logistic loss L(f) = 1

N

∑N
n=1 ln(1 + e−ynf(xn)). We

call classification “error” 1
N

∑N
n=1 H(−yn(f(xn)), where y is binary and H is the Heaviside

function with H(−yf(x)) = 1 if −yf > 0 which correspond to wrong classification. There is
a close relation between the logistic loss and the classification error: the logistic loss is an
upper bound for the classification error. Minimizing the logistic loss implies minimizing the
classification error.
The criticism in papers such as Zhang et al. (2016) refers to the classification error. However,
training minimizes the logistic loss. As a first step it seems therefore natural to look at
whether logistic loss in training is a proxy for the logistic loss at testing. The second step
follows from the following observation. The logistic loss can always be made arbitrarily small
for separable data (when f(xn)yn > 0,∀n) by scaling up the value of f and in fact it can be

1

Under review as a conference paper at ICLR 2020

(a)

(b)

#Params

#Params

Figure 1: (a) Generalization error (yellow, the difference between training and test classifi-
cation accuracy) in CIFAR10 and (b) generalization error in CIFAR10 with random labels.
The DNN, trained by minimizing the cross-entropy loss, is a 5-layer convolutional network
(i.e., no pooling) with 16 channels per hidden layer. The activation are ReLUs. The resulting
architecture has approximately 10000 parameters. SGD was used with batch size = 100 for
70 epochs for each point. Neither data augmentation nor regularization is performed. The
generalization error in classification seems to converge to zero for increasing size of the
training set. In these plots we use up to all the training examples available for CIFAR-10
(50K).

shown that the norm of f grows monotonically with time during gradient descent. Notice
that multiplying f by any positive number does not affect its sign and thus does not change
its behavior at classification. The second step is then to consider the logistic loss of the
normalized network f̃ with f = ρf̃ , with ρ = ρ1, ·, ρK where ρi is the Frobenius norm of the
weight matrix of layer i. Later we will explain the precise motivation for these choices.
Now we show that by measuring the performance of a trained network on the training set in
terms of the quantities described above, classical generalization holds: the performance of
the network on the training set becomes a good qualitative proxy for the expected future
performance of the network. The precise procedure involves normalizing the output of the

2

Under review as a conference paper at ICLR 2020

trained network by dividing it by a single number – the product of the Frobenius norms of
the weight matrices at each layer – and then measuring the cross-entropy loss.
Figure 2a) shows the cross entropy test loss plotted versus the training loss for networks with
the same architecture trained with different initializations (this is a way to get networks with
different test performance). There is no clear relation between training and test cross-entropy
loss in the same way that there is not between classification error in training and testing.
Normalizing each network separately yields Figure 2b): now the test loss is tightly predicted
by the training loss. We emphasize that normalization does not change the classification
performance of the networks. In fact, since (binary) classification depends only on the sign of
f(x), it is not changed by normalization to any ball. The figure suggests that the empirical
cross-entropy loss of f̃ on the training set predicts rather well how networks will perform on
a test set. Impressively, the same normalization process correctly predicts the test loss when
the training is on randomly labeled data. This apparent lack of predictivity of the training
performance on randomly labeled data was at the core of Zhang et al. criticism of machine
learning theory (Zhang et al. (2016)). Figure 2 shows that it is in fact possible to gauge just
from the training performance that the network trained on randomly labeled examples will
have chance performance on a test set even if its classification error in training is always
zero. As shown in Figure 2 the data point corresponding to the randomly trained network
still satisfies approximately the same linear relationship, as explained by the classical theory.

2 Interpretation in terms of classical learning theory

We define a deep network with K layers with the usual elementwise scalar activation functions
σ(z) : R → R as the set of functions f(W1, · · · ,WK ;x) = σ(WKσ(WK−1 · · ·σ(W1x))),
where the input is x ∈ Rd, the weights are given by the matrices Wk, one per layer, with
matching dimensions. We use the symbol W as a shorthand for the set of Wk matrices
k = 1, · · · ,K. For simplicity we consider here the case of binary classification in which f
takes scalar values, implying that the last layer matrix WK is WK ∈ R1,Kl and the labels are
yn ∈ {−1, 1}. There are no biases apart form the input layer where the bias is instantiated
by one of the input dimensions being a constant. The activation function in this paper is
the ReLU activation. We denote the network as f = f(W1, · · · ,WK ;x) where x is the input
and the weight matrices Wk are the parameters. We call f̃ the network with normalized
weights matrices, that is f̃ = f(W̃1, · · · , W̃K ;x).
Consider different asymptotic minima of the empirical loss obtained with the same network
architecture on the same training set by minimization of the cross-entropy loss with different
initial conditions (see Appendix). We obtain different test losses, depending on initial
conditions. The question is whether their test performance can be predicted from empirical
properties measured only on the training set.
CIFAR10, MNIST and CIFAR100 used in our experiments are multiclass problems. In this
theory section we discuss for simplicity the simpler case of binary classification. Exactly
the same steps in the theoretical arguments below apply to the cross-entropy loss (because
Equations 7,8 apply, see Appendix).
Consider the structure of the loss for a deep network. The “positive homogeneity” property
of ReLU networks (see Poggio et al. (2018)) implies the following property:

f(W1, · · · ,WK ;x) = ρ1 · · · ρK f̃(x) (1)

where WK = ρkW̃K and ||W̃K || = 1.
This property is valid for layer-wise normalization under any norm. We emphasize again that
f(W1, · · · ,WK ;x) and f̃(x) := f(W̃1, · · · , W̃K ;x) have the same classification performance
on any data set. Furthermore, during gradient descent on separable data – most data sets
are separable by overparametrized deep networks – it can be shown (see Poggio et al. (2018))
that the ρ factors continue to increase with time towards infinity, driving an exponential
type loss to zero without affecting the classification performance, which only depends on the
sign of ynf(xn)∀n. As we discussed earlier, it seems that different networks corresponding

3

Under review as a conference paper at ICLR 2020

(a) (b)

(c) (d)

Figure 2: The plot in a) shows testing vs training cross-entropy loss for networks trained
on the same data sets but with different initializations. The graph in b) shows the testing
vs training loss for the same networks, normalized by dividing each weight by the Frobenius
norm of its layer. Notice that all points have zero classification error at training. The red
point in b) refers to a network trained on the same CIFAR-10 data set but with randomized
labels. It shows zero classification error at training and test error at chance level. The black
line is a square-loss regression of slope 1 with positive intercept. The blue line is the diagonal
at which training and test loss are equal. The networks are 3-layer convolutional networks.
The plots in c) and d) show similar experiments for ResNet-56, demonstrating that our
observations hold for state-of-the-art networks (testing errors ranging from 7% to 9%; on
this 10-classes classification chance performance is 90% error). We again emphasize that the
performance in classification of normalized and unnormalized networks is exactly the same.
The normalization in the case of ResNet was performed by using the norm of the output
of each network on one example from CIFAR-10 (randomly chosen), because we found it
computationally difficult because of skip connections to directly evaluate the effective norm of
the residual layers. Further details of this experiment are in the Appendix.

to different empirical minimizers1 could be evaluated in terms of their normalized form f̃(x).
The intuition is similar to the linear case in which the classifier wTx depends on the unit
vector w̃ = w

|w| while |w| diverges to infinity Soudry et al. (2017); Poggio et al. (2018).

To assess f̃(x) we compute its logistic loss (which is the special case of cross-entropy in the
binary case)

L̂(f̃) = 1
N

N∑
n=1

ln(1 + e−ynf̃(xn)). (2)

1In general an overparametrized network may have a large number of global minima, see for
instance Poggio & Liao (2017).

4

Under review as a conference paper at ICLR 2020

Of course for separable data (ynf(xn) > 0,∀n) the loss of f̃ is larger than the loss of f since
the negative exponent is smaller. Figure 8 uses L2 for layer-wise normalization.
We are now ready to explain the results of Figure 2 in terms of classical machine learning
theory. A typical generalization bound that holds with probability at least (1− δ), ∀f ∈ F
has the form Bousquet et al. (2003):

|L(f)− L̂(f)| ≤ c1RN (F) + c2

√
ln(1

δ)
2N (3)

where L(f) = E[`(f(x), y)] is the expected loss, RN (F) is the empirical Rademacher average
of the class of functions F measuring its complexity; c1, c2 are constants that reflect the
Lipschitz constant of the loss function and the architecture of the network.
We use the bound in Equation 8 and the key observation that the Rademacher complexity
satisfies the property,

RN (F) = ρ1 · · · ρKRN (F̃). (4)
Here, ρ1 · · · ρK is the product of the norm of the weights of a given fixed network.
Then, the bound on the cross-entropy loss for the unnormalized network gives

L(f) ≤
K∏
k=1

ρkRN (F̃) + c2

√
ln(1

δ)
2N , (5)

since L̂(f) ≈ 0. Considering the corresponding bound for the cross-entropy loss of the
normalized network gives

L(f̃) ≤ L̂(f̃) + RN (F̃) + c2

√
ln(1

δ)
2N . (6)

In our experiments we find that RN (F̃) is small for the value of N of our datasets and
∏K
k ρk

is large. Equation 5 implies then that the unnormalized test loss will be quite different from
zero and thus different from the unnormalized train loss. On the other hand, in Equation
6 the terms RN (F̃) + c2

√
ln(1

δ)
2N are small, implying that the normalized test loss is very

close to the normalized train loss. Thus Equation 6 shows that L(f̃) is bounded by L̂(f̃),
predicting a bound in terms of a linear relationship with slope one and a small offset between
L(f̃) and L̂(f̃). The prediction is verified experimentally (see Figure 2). Notice that both
homogeneity of the ReLU network and separability, that is very small cross-entropy loss,
are key assumptions in our argument. The first applies to networks with a linear or ReLU
activation but not to networks with other activation functions. The second is usually satisfied
by overparametrized networks. Thus Equation 5 shows that the training cross-entropy loss is
a very good proxy of the cross-entropy loss at testing, implying generalization for a relatively
small number of examples N (in the Supp. Mat. we discuss the behavior with N increasing).

3 Minimization of the cross-entropy loss implies minimization
of the classification error

Gradient descent techniques, such as stochastic gradient descent (SGD), are used to minimize
the cross-entropy loss in deep networks. This is a typical approach in machine learning:
minimize a convex surrogate of the 0− 1 loss function used for binary classification. The
logistic loss is an upper bound to the binary classification error: thus minimization of the
loss implies minimization of the error, yielding a monotonic relation between the logistic
loss and the classification error (see Supp. Mat.). Thus L̂(f) is a much better bound on the
value of the classification error than L̂(f̃). The right-hand side of Figure 9 shows the test

5

Under review as a conference paper at ICLR 2020

#Training data

Figure 3: Classification error in CIFAR-10 as a function of number of parameters for fixed
training set. The DNN is the same as in Figure 1. The classification error at test does not
increase here when increasing the number of parameters beyond the size of the training set .

classification error R(f) as a function of the product of the layerwise norms of the network.
Notice that on this 10-classes classification problem chance performance is 90% error. Its
monotonic behavior, consistent with previous reports Neyshabur et al. (2017); Liang et al.
(2017), follows from Equation 5 and the fact that R(f) is upper-bounded by the expected
cross-entropy loss L(f).

The linear behavior of a bound on the expected loss as a function of the empirical loss L(f̃) is
thus expected and it is a consequence of previous results Neyshabur et al. (2017); Liang et al.
(2017); Bartlett et al. (2017); Neyshabur et al. (2017) and of the upper bounds Equations 8
and 6. Lower bounds, however, are not available. As a consequence, the theory does not
guarantee that among two (normalized) networks, the one with lower cross-entropy loss in
training will always have a lower classification error at test. This difficulty is not specific to
deep networks. It is common to approaches using a surrogate loss function. The empirical
evidence however supports the claim that there is a roughly monotonic relationship between
training (and testing) loss of the normalized network and its expected classification error:
Figure 9 shows an approximately monotonic relation between normalized test cross-entropy
loss and test classification error.

4 Discussion

The linear relationship we found means that the generalization error of Equation 8 is small
once the complexity of the space of deep networks is “dialed-down” by normalization. It
also means that, as expected from the theory, the generalization gap decreases to zero
for increasing size of the training set (see Figure 1). Thus there is indeed generalization -
defined as training loss converging to test loss for increasing number of training examples
- in deep neural networks, when appropriately measured. The title in Zhang et al. (2016)
“Understanding deep learning requires rethinking generalization” seems to suggest that deep
networks are so “magical” to be beyond the reach of existing machine learning theory.
This paper shows that this is not the case. On the other hand, generalization for the
classification error and for the unnormalized cross-entropy is attained for much larger N (in
our experiments, e.g. Figure 1, N must be significantly larger than the number of parameters).
This makes sense, because the classification error by overparametrized networks in training
can almost always be zero and because the complexity associated with the unnormalized

6

Under review as a conference paper at ICLR 2020

(a)

(b)

(c)

Figure 4: a) Test loss for the normalized networks vs the product of the unnormalized
Frobenius norms of the layers, b) test classification error as a function of the normalized test
loss and c) test classification error vs the product of the unnormalized Frobenius norms of
the layers. The network architecture is the same as in the top of Figure 2.

network is much larger than in the normalized case (see Equations 5 and 6). In summary,
consistently with classical learning theory, the cross-entropy loss at training predicts well
the cross-entropy loss at test. For the normalized case this happens in our data sets for a
relatively “small” number N of training examples as shown by the linear relationship of
Figure 2.

7

Under review as a conference paper at ICLR 2020

Plenty of puzzles for a theory of Deep Networks remain, however. One of the main present
challenges for the theory is to explain why test classification performance is quantitatively
as good as it is. A separate, more fundamental question is why overparametrization does
not destroy generalization performance (see Figure 9). The results of this paper strongly
suggested that the complexity of the normalized network is controlled by the optimization
process. In fact a satisfactory theory of the precise underlying mechanism has now been
proposed. Du et al. (2018); Banburski et al. (2019).
As expected, the linear relationship we found holds in a robust way for networks with different
architectures, different data sets and different initializations.
Our observations, which are mostly relevant for theory, yield a recommendation for practi-
tioners: it is better to monitor during training the empirical “normalized” cross-entropy loss
instead of the unnormalized cross-entropy loss actually minimized. The former matters in
terms of stopping time and predicts test performance in terms of cross-entropy and ranking
of classification error. More significantly for the theory of Deep Learning, this paper confirms
that classical machine learning theory can describe how training performance is a proxy for
testing performance of deep networks.

References
M. Anthony and P. Bartlett. Neural Network Learning - Theoretical Foundations. Cambridge

University Press, 2002.

Andrzej Banburski, Qianli Liao, Brando Miranda, Lorenzo Rosasco, Bob Liang, Jack Hidary, and
Tomaso Poggio. Theory III: Dynamics and Generalization in Deep Networks. arXiv e-prints, art.
arXiv:1903.04991, Mar 2019.

P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machine and other
patern classifiers. In ation performance of support vector machine B. Scholkopf, C. Burges and
other patern classifiers (eds.), Advances in Kernel Methods–Support Vector Learning. MIT press,
1998.

P. Bartlett, D. J. Foster, and M. Telgarsky. Spectrally-normalized margin bounds for neural networks.
ArXiv e-prints, June 2017.

Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, classification, and risk
bounds. Technical report, 2003.

Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for
neural networks. CoRR, abs/1706.08498, 2017. URL http://arxiv.org/abs/1706.08498.

M. Belkin, S. Ma, and S. Mandal. To understand deep learning we need to understand kernel
learning. ArXiv e-prints, Feb 2018.

O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical learning theory. pp. 169–207,
2003.

Pratik Chaudhari and Stefano Soatto. Stochastic gradient descent performs variational inference,
converges to limit cycles for deep networks. CoRR, abs/1710.11029, 2017. URL http://arxiv.
org/abs/1710.11029.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian
Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-SGD: Biasing Gradient
Descent Into Wide Valleys. arXiv:1611.01838 [cs], November 2016. URL http://arxiv.org/
abs/1611.01838. arXiv: 1611.01838.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. CoRR, abs/1703.04933, 2017. URL http://arxiv.org/abs/1703.04933.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homoge-
neous models: Layers are automatically balanced. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Process-
ing Systems 31, pp. 384–395. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7321-algorithmic-regularization-in-learning-deep-homogeneous-models-layers-are-automatically-balanced.
pdf.

8

http://arxiv.org/abs/1706.08498
http://arxiv.org/abs/1710.11029
http://arxiv.org/abs/1710.11029
http://arxiv.org/abs/1611.01838
http://arxiv.org/abs/1611.01838
http://arxiv.org/abs/1703.04933
http://papers.nips.cc/paper/7321-algorithmic-regularization-in-learning-deep-homogeneous-models-layers-are-automatically-balanced.pdf
http://papers.nips.cc/paper/7321-algorithmic-regularization-in-learning-deep-homogeneous-models-layers-are-automatically-balanced.pdf
http://papers.nips.cc/paper/7321-algorithmic-regularization-in-learning-deep-homogeneous-models-layers-are-automatically-balanced.pdf

Under review as a conference paper at ICLR 2020

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. arXiv e-prints, art. arXiv:1512.03385, Dec 2015.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.
arXiv:1609.04836 [cs, math], September 2016. URL http://arxiv.org/abs/1609.04836. arXiv:
1609.04836.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, geometry,
and complexity of neural networks. CoRR, abs/1711.01530, 2017. URL http://arxiv.org/abs/
1711.01530.

Charles H. Martin and Michael W. Mahoney. Traditional and heavy-tailed self regularization in
neural network models. CoRR, abs/1901.08276, 2019. URL http://arxiv.org/abs/1901.08276.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Exploring
generalization in deep learning. arXiv:1706.08947, 2017.

T. Poggio and Q. Liao. Theory II: Landscape of the empirical risk in deep learning. arXiv:1703.09833,
CBMM Memo No. 066, 2017.

T. Poggio, Q. Liao, B. Miranda, L. Rosasco, X. Boix, J. Hidary, and H. Mhaskar. Theory of deep
learning III: explaining the non-overfitting puzzle. arXiv:1703.09833, CBMM Memo No. 073,
2017.

T. Poggio, Q. Liao, B. Miranda, A. Banburski, X. Boix, and J. Hidary. Theory IIIb: Generalization
in deep networks. arXiv:1703.09833, CBMM Memo No. 090, 2018.

D. Soudry, E. Hoffer, and N. Srebro. The Implicit Bias of Gradient Descent on Separable Data.
ArXiv e-prints, October 2017.

C. Zhang, Q. Liao, A. Rakhlin, K. Sridharan, B. Miranda, N.Golowich, and T. Poggio. Theory of
deep learning IIb: Optimization properties of SGD. CBMM Memo 072, 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. CoRR, abs/1611.03530, 2016. URL http:
//arxiv.org/abs/1611.03530.

Acknowledgments

We thank Chiyuan Zhang, Misha Belkin, Xavier Boisch, Amnon Sashua and especially Sasha
Rakhlin for illuminating discussions. Yuan Yao showed us the ψ transform for the logistic loss
and pointed out a mistake in our interpretation. This material is based upon work supported by
the Center for Minds, Brains and Machines (CBMM), funded by NSF STC award CCF-1231216,
and part by C-BRIC, one of six centers in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA. This research was also sponsored by grants from the National
Science Foundation (NSF-0640097, NSF-0827427), and AFSOR-THRL (FA8650-05-C-7262).

9

http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1711.01530
http://arxiv.org/abs/1711.01530
http://arxiv.org/abs/1901.08276
http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1611.03530

Under review as a conference paper at ICLR 2020

A Multi-class classification extension

While the theoretical explanation in the main text applies to the case of binary classification, the
extension to multi-class case follows straightforwardly.

Recall some definitions for neural networks with multiple outputs. Let C be the number of classes
– the neural network is then a vector f(W ;x) ∈ RC . The component fj(W ;x) denotes the j-th
output. The dataset is again composed of examples xn ∈ Rd and labels are now yn ∈ [C]. Note
that nothing here changes in regards to homogeneity, and we again can define a normalized network

f(W1, · · · ,WK ;x) = ρ1 · · · ρK f̃(x) (7)

The main theoretical arguments depend on the generalization bounds of the form

|L(f)− L̂(f)| ≤ c1RN (F) + c2

√
ln(1

δ
)

2N . (8)

As the right hand side depends on the neural networks, which do not change in any substantial way,
all that remains is understanding the multi-class loss.

To transform the outputs of the network into probabilities, the Softmax function is used

pi = e−fi(W ;x)∑C

j=1 e
−fj(W ;x)

. (9)

The cross-entropy loss is then defined simply as

L̂(f) = −
N∑
n=1

log

(
e−fyn (W ;x)∑C

j=1 e
−fj(W ;x)

)
. (10)

It’s very easy to see that this reduces to the logistic loss in the binary case.

Classification now depends only on the margin ηn = fyn(W ;x)−maxj 6=yn{fj(W ;x)} – if ηn > 0
then the example is correctly classified. This means that, again, classification only cares about the
sign of the margin and not the normalization of the neural network.

One final property of note is that for separable data, the loss monotonically decreases with increasing
ρ. To see this, let us write αnj = fyn(W ;x)− fj(W ;x), which is a positive quantity in the separable
case. Additionally define gn = − log

(∑
j 6=yn

e−αnj
)

= − log
(∑

j 6=yn
e−ρα̃nj

)
, which is clearly a

monotonic function of ρ if all αnj > 0. We can now rewrite the Cross-entropy loss as

L̂(f) =
N∑
n=1

log(1 + e−gn), (11)

which implies that we can drive the loss to 0 by increasing ρ→∞.

B Details of Figure 2 in the main text

Top The top left graph shows testing vs training cross-entropy loss for networks trained on the
same data sets but with different initializations. The top right graph shows the testing vs training
loss for the same networks, normalized by dividing each weight by the Frobenius norm of its layer.
Notice that all points have zero classification error at training. The red point on the top right
refers to a network trained on the same CIFAR data set but with randomized labels. It shows zero
classification error at training and test error at chance level. The top line is a square-loss regression
of slope 1 with positive intercept. The bottom line is the diagonal at which training and test loss
are equal. The networks are 3-layer networks; the first layer is convolutional, 64 filters of size 5x5,
stride 2, padding 2, no bias, ReLU activation; the second layer is also convolutional, 64 filters of
size 5x5, stride 2, padding 2, no bias, ReLU activation; the third layer is fully connected, input size
64*8*8, output size 10, no bias, softmax activation. The training is on the CIFAR-10 dataset with
50k training examples, 10k testing examples. The network used for the point in red was trained
similarly except the testing set and training set labels were randomized.

No data augmentation was performed, but data were normalized to mean (0.4914, 0.4822, 0.4465)
and standard deviation (0.2023, 0.1994, 0.2010). Trained for 200 epochs with decreasing learning
rate (0.01, 0.01, 0.001, 0.0001) until training error reached 0 percent. The weights were initialized

10

Under review as a conference paper at ICLR 2020

(a) (b)

(c) (d)

Figure 2 in the main text

from a normal distribution with mean 0 and standard deviation in [0.0001, 0.0002, 0.0003, 0.0004,
0.0005, 0.0006, 0.0007, 0.0008, 0.0009, 0.001, 0.0016, 0.0032, 0.0064, 0.0128, 0.0256, 0.0512, 0.06,
0.07, 0.08, 0.09, 0.1, 0.1024, 0.11, 0.12, 0.14]. For the red point (trained on random labels), the
weights were initialized from a normal distribution with mean 0 and standard deviation 0.1.

Bottom The bottom graphs show similar experiments for ResNet-56 with 56 layers, demonstrating
that our observations hold for state-of-the-art networks (testing errors ranging from 7% to 9%; on
this 10-classes classification problem chance performance is 90% error). We again emphasize that
the performance in classification of normalized and unnormalized networks is exactly the same. The
normalization in the case of ResNet was performed by using the norm of the output of each network
on one example from CIFAR-10, because we found it computationally difficult to directly evaluate
the effective norm of the residual layers.

The networks were trained for 200 epochs with learning rate = 0.01 for the first 100 epochs and
learning rate = 0.001 for the second 100 epochs. SGD was used with batch size of 128 and shuffled
training data with random crop and horizontal flip data augmentation.

C Selecting minimizers with same training performance but
different test performance

First we start with a common observation: even when two networks have the same architecture, same
optimization meta parameters and same training loss, they usually have different test performances
(i.e. error and loss), because the stochastic nature of the minimization process leads to convergence
to different minima among the many existing in the loss landscape Poggio & Liao (2017); Poggio
et al. (2017; 2018).

With standard settings the differences are usually small (though significant, as shown later). We use
therefore two approaches to magnify the effect:

• Initialize networks with different levels of “random pretraining”: the network is pretrained
for a specified number of epochs on “corrupted” training data — the labels of a portion of
the examples are swapped with each other in a random fashion.

11

Under review as a conference paper at ICLR 2020

• Initialize the weights of the networks with different standard deviations of a diagonal
Gaussian distribution. As it turns out, different standard deviations yield different test
performance.

Similar techniques have been used previously Neyshabur et al. (2017); Liang et al. (2017). We show
the results of “random pretraining” with networks on CIFAR-10 (Figure 5) and CIFAR-100 (Figure
7) and initialization with different standard deviations on CIFAR-10 (Figure 6) and CIFAR-100
(Figure 8).

0 0.2 0.4 0.6 0.8 1

Pretraining Corrupted Percentage

0

0.5

1

1.5

2

2.5

3

3.5

L
o

s
s
 o

n
 C

IF
A

R
-1

0

Train

Test

0 0.2 0.4 0.6 0.8 1

Pretraining Corrupted Percentage

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
rr

o
r

o
n

 C
IF

A
R

-1
0

Train

Test

Figure 5: Random Pretraining vs Generalization Performance on CIFAR-10: a 5-layer
ConvNet (described in section L.2) is pretrained on training data with partially “corrupted”
labels for 30 epochs. It is then trained on normal data for 80 epochs. Among the network
snapshots saved from all the epochs we pick a network that is closest to an arbitrarily (but
low enough) chosen reference training loss (0.006 here). The number on the x axis indicates
the percentage of labels that are swapped randomly. Loss is cross-entropy loss; error is
classification error. As pretraining data gets increasingly “corrupted”, the generalization
performance of the resultant model becomes increasingly worse, even though they have similar
training losses and the same zero classification error in training. Batch normalization (BN)
is used. After training, the means and standard deviations of BN are “absorbed” into the
network’s weights and biases. No data augmentation is performed.

12

Under review as a conference paper at ICLR 2020

0 0.05 0.1 0.15 0.2

Standard Deviation in Weight Initialization

0

0.5

1

1.5

2

2.5

L
o

s
s
 o

n
 C

IF
A

R
-1

0

Train

Test

0 0.05 0.1 0.15 0.2

Standard Deviation in Weight Initialization

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
rr

o
r

o
n

 C
IF

A
R

-1
0

Train

Test

Figure 6: Standard Deviation in weight initialization vs generalization performance on
CIFAR-10: the network is initialized with weights of different standard deviations. The other
settings are the same as in Figure 5. As the norm of the initial weights becomes larger, the
generalization performance of the resulting model is worse, even though all models have the
same classification error in training.

13

Under review as a conference paper at ICLR 2020

0 0.2 0.4 0.6 0.8 1

Pretraining Corrupted Percentage

0

1

2

3

4

5

6

L
o
s
s
 o

n
 C

IF
A

R
-1

0
0

Train

Test

0 0.2 0.4 0.6 0.8 1

Pretraining Corrupted Percentage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

o
r

o
n
 C

IF
A

R
-1

0
0

Train

Test

Figure 7: Same as Figure 5, but on CIFAR-100.

0 0.05 0.1 0.15 0.2

Standard Deviation in Weight Initialization

0

1

2

3

4

5

6

L
o
s
s
 o

n
 C

IF
A

R
-1

0

Train

Test

0 0.05 0.1 0.15 0.2

Standard Deviation in Weight Initialization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

o
r

o
n
 C

IF
A

R
-1

0

Train

Test

Figure 8: Same as Figure 6, but on CIFAR-100.

14

Under review as a conference paper at ICLR 2020

D Linear relations between training and test loss of
normalized networks

Our observations are that the linear relationship between train loss and test loss for normalized
networks hold in a robust way under several conditions:

• Independence from Initialization: The linear relationship is independent of whether the
initialization is via pretraining on randomly labeled natural images or whether it is via
larger initialization, as shown by Figures 11 and 12.

• Independence from Network Architecture: The linear relationship of the test loss and
train loss does not depend on the network architectures we tried. Figure 10, shows the
linear relationship for a 3 layer network without batch normalization while Figures 11, 12
show the linear relationship for a 5 layer network with batch normalization on CIFAR10.
Additional evidence can be found in Figures 9. Figures in the main text show the same
linear relationship for ResNet architectures.

• Independence from Data Set: Figures 10, 11, 12, 9 show the linear relationship on CIFAR10
while Figures 17 and 18 show the linear relationship on CIFAR100.

• Norm independence: Figures 9 show that the choice of Lp norm used for normalization
does not matter – as expected, see main text. The constants underlying the equivalence of
different norms depend on the dimensionality of the vector spaces.

15

Under review as a conference paper at ICLR 2020

Figure 9: Test loss/error vs training loss with all networks normalized layerwise by the L1
norm (divided by 100 to avoid numerical issues because the L1 norms are here very large).
The model was a 3 layer neural network described in section L.1.1 and was trained with
50K examples on CIFAR10. The networks were normalized after training each up to epoch
300 and thus different points on the plot correspond to different training losses. Figure 10
shows that the normalized network does not depend on the value of the training loss before
normalization. The slope and intercept of the line of best fit are 0.8358 and 0.3783 respectively.
The ordinary and adjusted R2 values are both 0.9998 while the root mean square (RMSE)
was 5.6567× 10−5. The numbers in the figure indicate the amount of corruption of random
labels used during the pretraining.

• Normalization is independent of training loss: Figure 10 shows that networks with different
cross-entropy training losses (which are sufficiently small to guarantee zero classification
error), once normalized, show the same linear relationship between train loss and test loss.

16

Under review as a conference paper at ICLR 2020

E Higher Capacity leads to higher Test Error

One way to formalize the upper bound on classification error by the logistic loss is to consider the
excess classification risk R(f) − R∗, where R(f) is the classification error associated with f and
R∗ is the Bayes error Bartlett et al. (2003). Let us call as before L(f) the expected cross-entropy
loss and L∗ the optimal expected cross entropy loss. Then the following bound holds for binary
classification in terms of the so-called ψ-transform of the logistic loss `:

R(f)−R∗ ≤ ψ−1(L(f)− L∗) (12)

where the ψ function for the logistic is similar to the ψ for the exponential loss which is ψ(x) =
1−
√

1− x2. The key point here is that ψ−1 is monotonic: minimizing the logistic or cross-entropy
loss implies minimizing the classification error.

Our arguments imply that among two unnormalized minimizers of the exponential loss that achieve
the same given small empirical loss L̂ = ε, the minimizer with higher product of the norms ρ1, · · · , ρK
has the higher capacity and thus the highest expected loss L. Experiments support this claim, see
Figure 13. Notice the linear relationship of test loss with increasing capacity on the top right panels
of Figure 11, 12, 17, 18.

17

Under review as a conference paper at ICLR 2020

Figure 10: Left: test loss vs training loss with all networks normalized layerwise by the
Frobenius norm. Right: test loss vs training loss with all unnormalized networks. The model
was a 3 layer neural network described in section L.1.1 and was trained with 50K examples
on CIFAR10. In this experiments the networks converged (and had zero train error) but not
to the same loss. All networks were trained for 300 epochs. The losses range approximately
from 1.5× 10−4 to 2.5× 10−3. The numbers in the figure indicate the amount of corruption
of random labels used during pretraining. The slope and intercept of the line of best fit are
0.836 and 0.377 respectively. The ordinary and adjusted R2 values are both 0.9998 while the
root mean square (RMSE) is 4.7651× 10−5.

18

Under review as a conference paper at ICLR 2020

5 5.2 5.4 5.6 5.8 6 6.2
Train Loss (Unormalized Net) 10 -3

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Te
st

 L
os

s
(U

no
rm

al
iz

ed
 N

et
)

0 0.01
0.1

0.2

0.4

0.6 0.8

1

2.2992 2.2994 2.2996 2.2998 2.3 2.3002 2.3004 2.3006 2.3008 2.301
Train Loss (Normalized Net)

2.2998

2.3

2.3002

2.3004

2.3006

2.3008

2.301

2.3012

2.3014

Te
st

 L
os

s
(N

or
m

al
iz

ed
 N

et
)

0
0.01

0.1

0.2

0.4
0.6

0.8

1

Figure 11: (Part 1) Random pretraining experiment with batch normalization on CIFAR-
10 using a 5 layer neural network as described in section L.2. The red numbers in the
figures indicate the percentages of “corrupted labels” used in pretraining. The green stars
in the figures indicate the precise locations of the points. Top: Training and test losses
of unnormalized networks: there is no apparent relationship. Bottom: under layerwise
normalization of the weights (using the Frobenius norm), there is a surprisingly good linear
relationship between training and testing losses, implying tight generalization. See next page
for the product of L2 norms and classification errors.

19

Under review as a conference paper at ICLR 2020

4000 5000 6000 7000 8000 9000 10000 11000
Product of L2 Norms of Weights from All Layers (Unormalized Net)

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Te
st

 L
os

s
(U

no
rm

al
iz

ed
 N

et
)

00.01
0.1

0.2

0.4

0.6 0.8

1

2.2992 2.2994 2.2996 2.2998 2.3 2.3002 2.3004 2.3006 2.3008 2.301
Train Loss (Normalized Net)

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

Te
st

 E
rr

or
 (U

nc
ha

ng
ed

 b
y

N
or

m
al

iz
at

io
n)

0
0.01

0.1

0.2

0.4

0.6
0.81

Figure 11: (Part 2) Top the product of L2 norms from all layers of the network. We observe
a positive correlation between the norm of the weights and the testing loss. Bottom: under
layerwise normalization of the weights (using the Frobenius norm), the classification error
does not change.

20

Under review as a conference paper at ICLR 2020

0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075
Train Loss (Unormalized Net)

1

2

3

4

5

6

7

8

Te
st

 L
os

s
(U

no
rm

al
iz

ed
 N

et
)

RL

0.0010.01
0.05
0.1

0.150.2

2.297 2.298 2.299 2.3 2.301 2.302 2.303
Train Loss (Normalized Net)

2.298

2.2985

2.299

2.2995

2.3

2.3005

2.301

2.3015

2.302

2.3025

2.303

Te
st

 L
os

s
(N

or
m

al
iz

ed
 N

et
)

RL

0.001
0.01

0.05

0.1

0.15
0.2

Figure 12: (Part 1) Same as Figure 11 but using different standard deviations for initialization
of the weights instead of “random pretraining”. The red numbers in the figures indicate the
standard deviations used in initializing weights. The “RL” point (initialized with standard
deviation 0.05) refers to training and testing on completely random labels.

21

Under review as a conference paper at ICLR 2020

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Product of L2 Norms of Weights from All Layers (Unormalized Net)

1

2

3

4

5

6

7

8

Te
st

 L
os

s
(U

no
rm

al
iz

ed
 N

et
)

RL

0.0010.01
0.05

0.1
0.15 0.2

2.297 2.298 2.299 2.3 2.301 2.302 2.303
Train Loss (Normalized Net)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 E
rr

or
 (U

nc
ha

ng
ed

 b
y

N
or

m
al

iz
at

io
n)

RL

0.0010.01
0.05

0.1
0.15 0.2

Figure 12: (Part 2) Same as Figure 11 but using different standard deviations for initialization
of the weights instead of “random pretraining”. The red numbers in the figures indicate the
standard deviations used in initializing weights. The “RL” point (initialized with standard
deviation 0.05) refers to training and testing on completely random labels.

Figure 13 shows that when the capacity of a network (as measured by the product norm of the
layers) increases, so does the test error.

22

Under review as a conference paper at ICLR 2020

0 0.5 1 1.5 2 2.5 3
product norm: ||w k||...||w1|| 104

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

ge
ne

ra
liz

at
io

n
er

ro
r/t

es
t e

rro
r

product norm ||wk||...||w1|| vs generalization error

Figure 13: Plot of test error vs the product of the Frobenius norms of the layers ‖W‖product =∏L
l=1 ‖Wl‖. The model was a 3 layer neural network described in section L.1.1 and trained

with 50K examples on CIFAR10. The models were obtained by pretraining on random labels
and then fine tuning on natural labels. SGD without batch normalization was run on all
networks in this plot until each reached approximately 0.0044 ± 0.0001 cross-entropy loss
on the training data. Similar results can be found in Neyshabur et al. (2017); Liang et al.
(2017) .

23

Under review as a conference paper at ICLR 2020

2.284 2.286 2.288 2.29 2.292 2.294 2.296 2.298 2.3 2.302

Train Loss (Network Normalized)

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

T
es

t E
rr

or
 (

N
et

w
or

k
N

or
m

al
iz

ed
)

0

0

00
0

0

0

0.0001
0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.01

0.01
0.01

0.01

0.01
0.01

0.01
0.01

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.20.2

0.2

0.2
0.2

0.2

0.2
0.2

0.5

0.5

0.50.50.5
0.50.5

0.5

0.750.75
0.75
0.75

0.75

0.75
0.75

Figure 14: Test classification error vs training cross-entropy loss with all networks normalized
layerwise. The model was a 3 layer neural network and was trained with 50K examples on
CIFAR10. The empirical dependence of classification error on normalized cross-entropy loss
shown here is different from the predicted Bartlett et al. (2003) upper bound provided by ψ−1

(pers. comm. Y. Yao).

F Results on MNIST

This section shows figures replicating the main results on the MNIST data set. Figures 15 and 16
show that the linear relationship holds after normalization on the MNIST data set. Figure 16 shows
the linear relationship holds after adding the point trained only on random labels.

24

Under review as a conference paper at ICLR 2020

Figure 15: The figure shows the cross-entropy loss on the test set vs the training loss for
networks normalized layerwise in terms of the Frobenius norm. The model was a 3 layer
neural network described in section L.1.2 and was trained with 50K examples on MNIST.
All networks were trained for 800 epochs. In this experiment the networks converged (and
had zero train error) but not to the same loss. The slope and intercept of the line of best fit
are 1.0075 and −0.0174 respectively. The ordinary and adjusted R2 values are both 1.0000
while the root mean square (RMSE) was 9.1093× 10−4. The makers indicate the size of the
standard deviation of the normal used for initialization.

25

Under review as a conference paper at ICLR 2020

Figure 16: The figure shows the cross-entropy loss on the test set vs the training loss for
networks normalized layerwise in terms of the Frobenius norm. The model was a 3 layer
neural network described in section L.1.1 and was trained with 50K examples on CIFAR10.
All networks were trained for 800 epochs. In this experiment the networks converged (and
had zero train error) but not to the same loss. The slope and intercept of the line of best fit
are 1.0083 and −0.0191 respectively. The ordinary and adjusted R2 values are both 1.0000
while the root mean square (RMSE) was 9.1093× 10−5. The points labeled 1 were trained on
random labels; the training loss was estimated on the same randomly labeled data set. The
points marked with values less than 1 were only trained on natural labels and those makers
indicate the size of the standard deviation of the normal used for initialization.

26

Under review as a conference paper at ICLR 2020

G Results on CIFAR-100

This section is about replicating the main results on CIFAR-100. Figure 7 shows how different test
performance can be obtained with pretraining on random labels while Figure 8 shows that different
increasing initializations are also effective.

Figures 17 and 18 show that the linear relationship holds after normalization, regardless of whether
the training was done with pretraining on random labels or with large initialization.

0.0675 0.068 0.0685 0.069 0.0695 0.07 0.0705 0.071 0.0715 0.072
Train Loss (Unormalized Net)

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Te
st

 L
os

s
(U

no
rm

al
iz

ed
 N

et
)

0 0.01

0.1

0.2

0.4

0.6

0.8

1

4.6045 4.60455 4.6046 4.60465 4.6047 4.60475 4.6048
Train Loss (Normalized Net)

4.6047

4.60475

4.6048

4.60485

4.6049

4.60495

Te
st

 L
os

s
(N

or
m

al
iz

ed
 N

et
)

0
0.01

0.1

0.2

0.4

0.6
0.8

1

Figure 17: (Part 1) Same as Figure 11 but on CIFAR-100.

27

Under review as a conference paper at ICLR 2020

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2
Product of L2 Norms of Weights from All Layers (Unormalized Net) 10 4

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Te
st

 L
os

s
(U

no
rm

al
iz

ed
 N

et
)

00.01

0.1

0.2

0.4

0.6

0.8

1

4.6045 4.60455 4.6046 4.60465 4.6047 4.60475 4.6048
Train Loss (Normalized Net)

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

Te
st

 E
rr

or
 (U

nc
ha

ng
ed

 b
y

N
or

m
al

iz
at

io
n)

0

0.01

0.1

0.2

0.4

0.6

0.8

1

Figure 17: (Part 2) Same as Figure 11 but on CIFAR-100

28

Under review as a conference paper at ICLR 2020

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
Train Loss (Unormalized Net)

2

4

6

8

10

12

14

16

Te
st

 L
os

s
(U

no
rm

al
iz

ed
 N

et
)

RL

0.0010.010.05
0.1

0.15
0.2

4.6043 4.6044 4.6045 4.6046 4.6047 4.6048 4.6049 4.605 4.6051 4.6052
Train Loss (Normalized Net)

4.6045

4.6046

4.6047

4.6048

4.6049

4.605

4.6051

4.6052

Te
st

 L
os

s
(N

or
m

al
iz

ed
 N

et
)

RL

0.001
0.01

0.05

0.1

0.15
0.2

Figure 18: (Part 1) Same as Figure 12 but on CIFAR-100.

29

Under review as a conference paper at ICLR 2020

1 2 3 4 5 6 7 8
Product of L2 Norms of Weights from All Layers (Unormalized Net) 10 4

2

4

6

8

10

12

14

16

Te
st

Lo
ss

(U
no

rm
al

iz
ed

N
et

)

RL

0.0010.010.05
0.1

0.15
0.2

4.6043 4.6044 4.6045 4.6046 4.6047 4.6048 4.6049 4.605 4.6051 4.6052
Train Loss (Normalized Net)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Te
st

 E
rr

or
 (U

nc
ha

ng
ed

 b
y

N
or

m
al

iz
at

io
n)

RL

0.0010.01

0.05
0.1

0.15
0.2

Figure 18: (Part 2) Same as Figure 12 but on CIFAR-100.

H Results with ResNet architectures

This section is about replicating the main results with ResNets (see main text figures). To avoid
using the product of layerwise norms – whose form is not obvious for ResNets – we normalized the
different architectures using their output on the same single image, exploting the fact that all the
networks only differ in their initialization (for this reason we did not plot the RL point because this
shortcut to normalization does not apply in the case of a different training set with random labels).

I Generalization with N →∞

While in this article we use the term generalization when the offset in the difference between training
and test losses is small, the technical definition of “generalization” just requires that the offset
decreases with increasing N . This means that for all f ∈ F, limN→∞ |L(f̃)− L̂(f̃)| → 0, since in
general we expect the Rademacher complexity to decrease as N increases. As Figure 19 shows,
|L(f̃)− L̂(f̃)| does in fact decrease with increasing N (notice that L(f̃) ≈ L̂(f̃) around N = 50000
for normalization to the unit L2 ball of our network). These arguments do not depend on the specific
form of the Rademacher complexity. For deep networks several measures of complexity have been

30

Under review as a conference paper at ICLR 2020

proposed – mostly involving products of layer-wise normsAnthony & Bartlett (2002); Neyshabur
et al. (2017); Bartlett et al. (2017); Liang et al. (2017).

10 2 10 3 10 4 10 5

Number of Training Examples

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Lo
ss

 o
n

C
IF

A
R

-1
0

(U
no

rm
al

iz
ed

 N
et

w
or

k)

Model #Params

Training Loss
Test Loss

10 2 10 3 10 4 10 5

Number of Training Examples

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Lo
ss

 o
n

C
IF

A
R

-1
0

(N
or

m
al

iz
ed

 N
et

w
or

k)

Model #Params

y = -0.0041929*x + 0.020893 (log scale)

Test-Training Loss Difference
Linear Fit of Last 7 Points

10 2 10 3 10 4 10 5

Number of Training Examples

2.27

2.275

2.28

2.285

2.29

2.295

2.3

Lo
ss

 o
n

C
IF

A
R

-1
0

(N
or

m
al

iz
ed

 N
et

w
or

k)

Model #Params

Training Loss
Test Loss

Figure 19: (Part 1) Top: Unnormalized cross-entropy loss in CIFAR10 for normally labeled
data. Middle: Cross-entropy loss for the normalized network for normally labeled data.
Bottom: Generalization cross-entropy loss (difference between training and testing loss)
for the normalized network for normally as a function of the number of data N . The
generalization loss converges to zero as a function of N but very slowly.

31

Under review as a conference paper at ICLR 2020

Model #params: 9370

10 2 10 3 10 4 10 5

Number of Training Examples

0

1

2

3

4

5

6

7

8

9

10

Lo
ss

 o
n

C
IF

A
R

-1
0

(U
no

rm
al

iz
ed

 N
et

w
or

k)

10 2 10 3 10 4 10 5

Number of Training Examples

0

0.005

0.01

0.015

0.02

0.025

0.03

Lo
ss

 o
n

C
IF

A
R

-1
0

(N
or

m
al

iz
ed

 N
et

w
or

k)

Model #Params

y = -0.0018709*x + 0.011976 (log scale)

Test-Training Loss Difference
Linear Fit of Last 7 Points

Model #Params

Training Loss
Test Loss

10 2 10 3 10 4 10 5

Number of Training Examples

2.275

2.28

2.285

2.29

2.295

2.3

2.305

Lo
ss

 o
n

C
IF

A
R

-1
0

(N
or

m
al

iz
ed

 N
et

w
or

k)

Model #Params

Training Loss
Test Loss

Figure 19: (Part 2) Top: Unnormalized cross-entropy loss in CIFAR10 for randomly labeled
data. Middle: Cross-entropy loss for the normalized network for randomly labeled data.
Bottom: Generalization cross-entropy loss (difference between training and testing loss) for
the normalized network for randomly labeled data as a function of the number of data N .
The generalization loss converges to zero as a function of N but very slowly.

32

Under review as a conference paper at ICLR 2020

J Margin bounds

A typical margin bound for classification Bartlett & Shawe-Taylor (1998) is

|Lbinary(f)− Lsurr(f)| ≤ b1
RN (F)
η

+ b2

√
ln(1

δ
)

2N (13)

where η is the margin, Lbinary(f) is the expected classification error, Lsurr(f) is the empirical loss
of a surrogate loss such as the logistic or the exponential. For a point x, the margin is η ∼ yρf̃(x).
Since RN (F) ∼ ρ, the margin bound says that the classification error is bounded by 1

η
that is by the

value of f̃ on the “support vectors” – that is on the xi, yi s.t arg minn ynf̃(xn).

We have looked at data showing the test classification error versus the inverse of the margin. The
data are consistent with the margin bound in the sense that the error increases with the inverse of
the margin and can be bounded by a straight line with appropriate slope and intercept. Since the
bound does not directly provide slope and intercept, the data do not represent a very convincing
evidence.

K Numerical values of normalized loss

Why are all the cross-entropy loss values close to chance (e.g. ln 10 ≈ 2.3 for a 10 class data set) in
the plots for convnets – bit not for ResNets – showing the linear relationship? This is because most of
the (correct) outputs of the normalized neural networks are close to zero as shown by Figure 20. We
would expect the norm of the network to be appromimately bounded by |f̃(W̃ ;x)| / |W̃ ||x| = |x|; the
data x is usually pre-processed to have mean 0 and a standard deviation of 1. In fact, for the MNIST
experiments, the average value f(x) of the most likely class according to the normalized neural
network is 0.026683 with a standard deviation 0.007144. This means that significant differences,
directly reflecting the predicted class of each point, are between 0.019539 and 0.033827. This in turn
implies that the exponentials in the cross-entropy loss are all very close to 1. Before normalization
(which of course does not affect the classification performance), the average value f(x) of the most
likely class was 60.564373 with standard deviation 16.214078.

33

Under review as a conference paper at ICLR 2020

histogram of f(x) for normalized net on train data MNIST

0 0.01 0.02 0.03 0.04 0.05 0.06
f(x) value

0

200

400

600

800

1000

1200

1400

1600

1800

co
un

ts
/fr

eq
ue

nc
y

Figure 20: Histogram of the values of f̃(x) for the most likely class of the layerwise normalized
neural network over the 50K images of the MNIST training set. The average value f̃(x) of
the most likely class according to the normalized neural network is 0.026683 with standard
deviation 0.007144.

L Deep Neural Network Architecture

L.1 Three layer network

L.1.1 Network with 24 filters

The model is a 3-layer convolutional ReLU network with the first two layers containing 24 filters of
size 5 by 5; the final layer is fully connected; only the first layer has biases. There is no pooling.

The network is overparametrized: it has 154, 464 parameters (compared to 50, 000 training examples).

L.1.2 Network with 34 filters

The model is the same 3-layer convolutional ReLU network as in section L.1.1 except it had 34
units.

The network was still overparametrized: it has 165, 784 parameters (compared to 50, 000 training
examples).

L.2 Five layer network

The model is a 5-layer convolutional ReLU network with (with no pooling). It has in the five layers
32, 64, 64, 128 filters of size 3 by 3; the final layer is fully connected; batch-normalization is used
during training.

The network is overparametrized with about 188, 810 parameters (compared to 50, 000 training
examples).

34

Under review as a conference paper at ICLR 2020

L.3 ResNet

The model for the experiments with ResNets was the 56-layer ResNet as detailed in He et al. (2015).

35

Under review as a conference paper at ICLR 2020

References
M. Anthony and P. Bartlett. Neural Network Learning - Theoretical Foundations. Cambridge

University Press, 2002.

Andrzej Banburski, Qianli Liao, Brando Miranda, Lorenzo Rosasco, Bob Liang, Jack Hidary, and
Tomaso Poggio. Theory III: Dynamics and Generalization in Deep Networks. arXiv e-prints, art.
arXiv:1903.04991, Mar 2019.

P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machine and other
patern classifiers. In ation performance of support vector machine B. Scholkopf, C. Burges and
other patern classifiers (eds.), Advances in Kernel Methods–Support Vector Learning. MIT press,
1998.

P. Bartlett, D. J. Foster, and M. Telgarsky. Spectrally-normalized margin bounds for neural networks.
ArXiv e-prints, June 2017.

Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, classification, and risk
bounds. Technical report, 2003.

Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for
neural networks. CoRR, abs/1706.08498, 2017. URL http://arxiv.org/abs/1706.08498.

M. Belkin, S. Ma, and S. Mandal. To understand deep learning we need to understand kernel
learning. ArXiv e-prints, Feb 2018.

O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical learning theory. pp. 169–207,
2003.

Pratik Chaudhari and Stefano Soatto. Stochastic gradient descent performs variational inference,
converges to limit cycles for deep networks. CoRR, abs/1710.11029, 2017. URL http://arxiv.
org/abs/1710.11029.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian
Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-SGD: Biasing Gradient
Descent Into Wide Valleys. arXiv:1611.01838 [cs], November 2016. URL http://arxiv.org/
abs/1611.01838. arXiv: 1611.01838.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. CoRR, abs/1703.04933, 2017. URL http://arxiv.org/abs/1703.04933.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homoge-
neous models: Layers are automatically balanced. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Process-
ing Systems 31, pp. 384–395. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7321-algorithmic-regularization-in-learning-deep-homogeneous-models-layers-are-automatically-balanced.
pdf.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. arXiv e-prints, art. arXiv:1512.03385, Dec 2015.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.
arXiv:1609.04836 [cs, math], September 2016. URL http://arxiv.org/abs/1609.04836. arXiv:
1609.04836.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, geometry,
and complexity of neural networks. CoRR, abs/1711.01530, 2017. URL http://arxiv.org/abs/
1711.01530.

Charles H. Martin and Michael W. Mahoney. Traditional and heavy-tailed self regularization in
neural network models. CoRR, abs/1901.08276, 2019. URL http://arxiv.org/abs/1901.08276.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Exploring
generalization in deep learning. arXiv:1706.08947, 2017.

T. Poggio and Q. Liao. Theory II: Landscape of the empirical risk in deep learning. arXiv:1703.09833,
CBMM Memo No. 066, 2017.

36

http://arxiv.org/abs/1706.08498
http://arxiv.org/abs/1710.11029
http://arxiv.org/abs/1710.11029
http://arxiv.org/abs/1611.01838
http://arxiv.org/abs/1611.01838
http://arxiv.org/abs/1703.04933
http://papers.nips.cc/paper/7321-algorithmic-regularization-in-learning-deep-homogeneous-models-layers-are-automatically-balanced.pdf
http://papers.nips.cc/paper/7321-algorithmic-regularization-in-learning-deep-homogeneous-models-layers-are-automatically-balanced.pdf
http://papers.nips.cc/paper/7321-algorithmic-regularization-in-learning-deep-homogeneous-models-layers-are-automatically-balanced.pdf
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1711.01530
http://arxiv.org/abs/1711.01530
http://arxiv.org/abs/1901.08276

Under review as a conference paper at ICLR 2020

T. Poggio, Q. Liao, B. Miranda, L. Rosasco, X. Boix, J. Hidary, and H. Mhaskar. Theory of deep
learning III: explaining the non-overfitting puzzle. arXiv:1703.09833, CBMM Memo No. 073,
2017.

T. Poggio, Q. Liao, B. Miranda, A. Banburski, X. Boix, and J. Hidary. Theory IIIb: Generalization
in deep networks. arXiv:1703.09833, CBMM Memo No. 090, 2018.

D. Soudry, E. Hoffer, and N. Srebro. The Implicit Bias of Gradient Descent on Separable Data.
ArXiv e-prints, October 2017.

C. Zhang, Q. Liao, A. Rakhlin, K. Sridharan, B. Miranda, N.Golowich, and T. Poggio. Theory of
deep learning IIb: Optimization properties of SGD. CBMM Memo 072, 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. CoRR, abs/1611.03530, 2016. URL http:
//arxiv.org/abs/1611.03530.

37

http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1611.03530

	Introduction
	 Interpretation in terms of classical learning theory
	 Minimization of the cross-entropy loss implies minimization of the classification error
	 Discussion
	Appendix Multi-class classification extension
	Appendix Details of Figure 2 in the main text
	Appendix Selecting minimizers with same training performance but different test performance
	Appendix Linear relations between training and test loss of normalized networks
	Appendix Higher Capacity leads to higher Test Error
	Appendix Results on MNIST
	Appendix Results on CIFAR-100
	Appendix Results with ResNet architectures
	Appendix Generalization with N
	Appendix Margin bounds
	Appendix Numerical values of normalized loss
	Appendix Deep Neural Network Architecture
	 Three layer network
	Network with 24 filters
	Network with 34 filters

	 Five layer network
	ResNet

