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ABSTRACT

We address the challenging problem of deep representation learning–the efficient
adaption of a pre-trained deep network to different tasks. Specifically, we pro-
pose to explore gradient-based features. These features are gradients of the model
parameters with respect to a task-specific loss given an input sample. Our key
innovation is the design of a linear model that incorporates both gradient features
and the activation of the network. We show that our model provides a local linear
approximation to a underlying deep model, and discuss important theoretical in-
sight. Moreover, we present an efficient algorithm for the training and inference
of our model without computing the actual gradients. Our method is evaluated
across a number of representation learning tasks on several datasets and using dif-
ferent network architectures. We demonstrate strong results in all settings. And
our results are well-aligned with our theoretical insight.

1 INTRODUCTION

Despite tremendous success of deep models, training deep neural networks requires a massive
amount of labeled data and computing resources. The recent development of representation learn-
ing holds great promises for improving data efficiency of training, and enables an easy adaption to
different tasks using a same feature representation. These features can be learned via either unsu-
pervised learning using deep generative models (Kingma & Welling, 2013; Dumoulin et al., 2016),
or self-supervised learning with “pretext” tasks and pseudo labels (Noroozi & Favaro, 2016; Zhang
et al., 2016; Gidaris et al., 2018), or transfer learning from another large-scale dataset (Yosinski
et al., 2014; Oquab et al., 2014; Girshick et al., 2014). After learning, the the activation of the deep
network are considered as generic features. By leveraging these features, simple classifiers, e.g.,
linear models, can be build for different tasks. However, given sufficient amount of training data,
the performance of representation learning methods lack behind fully-supervised deep models.

As a step to bridge this gap, we propose to make use of gradient-based features from a pre-trained
network, i.e., gradients of the model parameters relative to a task-specific loss given an input sam-
ple. Our key intuition is that these per-sample gradients contain task-relevant discriminative infor-
mation. More importantly, we design a novel linear model that accounts for both gradient-based
and activation-based features. The design of our linear model stems from the recent advances in
the theoretical analysis of deep models. Specifically, our gradient-based features are inspired by the
neural tangent kernel (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019b) modified for finite-
width networks. Therefore, our model provides a local approximation of fine-tuning a underlying
deep model. And the accuracy of rthe approximation is controlled by the semantic gap between the
representation learning and the target task. Finally, we derive an efficient and scalable algorithm for
training our linear model with gradient-based features.

To evaluate our model, we focus on visual representation learning in this paper, although our model
can be easily modified for natural language processing or speech recognition. To this end, we con-
sider a number of learning tasks in vision, including unsupervised, self-supervised and transfer
learning. Our method was evaluated across tasks, datasets and architectures and compared against
a set of baseline methods. We observe empirically that our model with gradient-based features out-
performs the traditional activation-based features by a significant margin in all settings. Moreover,
our results compares favorably against those produced by fine-tuning of network parameters.

1



Under review as a conference paper at ICLR 2020

Our main contributions are summarized as follows.

• We propose a novel representation learning method. At the core of our method lies in a
linear model that builds on gradients of model parameters as the feature representation.

• From a theoretical perspective, we show that our linear model provides a local approxima-
tion of fine-tuning a underlying deep model. From a practical perspective, we devise an
efficient and scalable algorithm for the training and inference of our method.

• We demonstrate strong results of our method across various representation learning tasks,
different network architectures and several datasets. And our empirical results are well-
aligned to our theoretical insight.

2 RELATED WORK

Representation Learning. Learning good representation of data without expensive supervision
remains a challenging problem. Representation learning using deep models has been recently ex-
plored. For example, different types of deep latent variable models (Kingma & Welling, 2013;
Higgins et al., 2017; Berthelot et al., 2018; Dumoulin et al., 2016; Donahue et al., 2016; Dinh
et al., 2016; Kingma & Dhariwal, 2018; Grathwohl et al., 2018) were considered for representa-
tion learning. These models were designed to fit to the distribution of data, yet their intermediate
responses were found useful for discriminative tasks. Another example is self-supervised learning.
This paradigm seeks to learn from a discriminative pretext task whose supervision comes almost for
free. These pretext tasks for images include predicting rotation angles (Gidaris et al., 2018), solving
jigsaw puzzles (Noroozi & Favaro, 2016) and colorizing grayscale images (Zhang et al., 2016). Fi-
nally, the idea of transfer learning hinges on the assumption that feature maps learned from a large
and generic dataset can be shared across closely related tasks and datasets (Girshick et al., 2014;
Sharif Razavian et al., 2014; Oquab et al., 2014). The most successful models for transfer learning
so far are those pre-trained on the ImageNet classification task (Yosinski et al., 2014).

As opposed to proposing new representation learning tasks, our work primarily studies how to get
the most out of the existing tasks. Hence, our method is broadly applicable – it offers a generic
framework that can be readily combined with any representation learning paradigm.

Gradients of Deep Networks. Our method makes use of the Jacobian matrix of a deep network
as feature representation for a downstream task. Gradient information is traditionally employed
for visualizing and interpreting convolutional networks (Simonyan et al., 2013), and more recently
for generating adversarial samples (Szegedy et al., 2013), crafting defense strategies (Goodfellow
et al., 2014), facilitating network compression (Sinha et al., 2018), and boosting multi-task and meta
learning (Sinha et al., 2018; Achille et al., 2019).

Our work draws inspiration from Fisher vectors (FVs) (Jaakkola & Haussler, 1999)–gradient-based
features from a probabilistic model (e.g. GMM). FVs have demonstrated its success for visual
recognition using hand-crafted features (Perronnin & Dance, 2007). More recently, FVs have shown
promising results with deep models, first as an ingredient of a hybrid system (Perronnin & Larlus,
2015), and then as task embeddings for meta-learning (Achille et al., 2019). Our method differs from
the FV approaches in two folds. First, it is not built around a probabilistic model, hence has distinct
theoretical motivations as we describe later. Second, our method enjoys exact gradient computation
with respect to network parameters and allows scalable training, whereas Perronnin & Larlus (2015)
extracts FVs from a probabilistic module posterior to the network, and Achille et al. (2019) employs
heuristics in their method to aggressively approximate the computation of FVs.

Neural Tangent Kernel (NTK) for Wide Networks. Jacot et al. (2018) established the connection
between deep networks and kernel methods by introducing the neural tangent kernel (NTK). Lee
et al. (2019) further showed that a network evolves as a linear model in the infinite width limit
when trained on certain losses under gradient descent. Similar ideas have been used to analyze wide
deep neural networks, e.g., (Arora et al., 2019b;a; Li & Liang, 2018; Allen-Zhu et al., 2019a; Du
et al., 2019; Allen-Zhu et al., 2019b; Cao & Gu, 2019; Mei et al., 2019). Our method is, to our best
knowledge, the first attempt to port the theory into the regime of practical networks. In the case of
binary classification, our linear model reduces to a kernel machine equipped with NTK. Instead of
assuming random initialization of network parameters as all the prior works do, we for the first time
evaluate the implication of pre-training on the linear approximation theory.
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Figure 1: (a) An illustration of our parameterization. We consider a deep network F (x; θ,ω) ,
ωT fθ(x) that consists of a ConvNet fθ with its parameters θ , (θ1, θ2) and linear classifiers ω. (b)
An overview of our proposed model. Our model takes the activation fθ(x) and the gradients Jθ̄2(x)
as inputs (see illustration in (a)), and learns linear weights w1 and w2 for prediction.

3 GRADIENT-BASED FEATURES FOR REPRESENTATION LEARNING

We consider a feed-forward deep neural network F (x; θ,ω) , ωT fθ(x) that consists of a convo-
lutional backbone f(x; θ) , fθ(x) with its vectorized parameters θ and a linear model defined by
ω (italic for vectors and bold for matrix). Specifically, fθ encodes the input x into a vector repre-
sentation fθ(x) ∈ Rd. ω ∈ Rd×c are thus linear classifiers that map a feature vector into c output
dimensions. For this work, we focus on convolutional networks (ConvNets) for classification tasks.
With trivial modifications, our method can easily extend beyond ConvNets and classification, e.g.,
for a recurrent network as the backbone for a regression task.

Following the setting of representation learning, we assume that a pre-trained fθ̄ is given with θ̄
as the learned weights. The term representation learning refers to a set of learning methods that
do not make use of discriminative signals from the task of interest. For example, f can be the
encoder of a deep generative model ((Kingma & Welling, 2013; Dumoulin et al., 2016; Donahue
et al., 2016)), or a ConvNet learned by using proxy tasks (self-supervised learning) ((Goyal et al.,
2019; Kolesnikov et al., 2019)) or from another large-scale labeled dataset such as ImageNet ((Deng
et al., 2009)). Given a target task, it is a common practice to regard fθ̄(x) as a fixed feature extractor
(activation-based features) and train a set of linear classifiers, given by

gω̄(x) = ω̄T fθ̄(x), (1)

We omit the bias term for clarity. Note that ω̄ and θ̄ are instantiations of ω and θ, where ω̄ is the
solution of the linear model and θ̄ is given by representation learning. Based on this setup, we now
describe our method, discuss its theoretic implications and present an efficient training scheme.

3.1 METHOD OUTLINE

Our method assumes a partition of θ , (θ1, θ2), where θ1 and θ2 parameterize the bottom and
top layers of the ConvNet f (see Figure 1(a) for an illustration). Importantly, we propose to use
gradient-based features ∇θ̄2Fθ̄,ω̄(x) = ωTJθ̄2(x) in addition to activation-based features fθ̄(x).
Specifically, Jθ̄2(x) ∈ Rd×|θ2| is the Jacobian matrix of fθ̄ w.r.t. the pre-trained parameters θ̄2 from
the top layers of f . Formally, given the features (fθ̄(x),ωTJθ̄2(x)) for x, our linear model ĝ,
hereby considered as a classifier for concreteness, takes the form

ĝw1,w2
(x) = wT

1 fθ̄(x) + ω̄TJθ̄2(x)w2 = gw1(x) + ω̄TJθ̄2(x)w2, (2)

where w1 ∈ Rd×c are liner classifiers initialized from ω̄, w2 ∈ R|θ2| are shared linear weights for
gradient features, and |θ2| is the size of the parameters θ2. Both w1 andw2 are our model parameters
that need to learned from a target task. An overview of model is shown in Figure 1(b).

Our model subsumes the the linear model in Eq. (1) as the first term, and includes a second term
that is linear in the gradient-based features. We note that this extra linear term is different from
traditional linear classifiers as in Eq. (1). In this case, the gradient-based features forms a matrix and
the linear weight w2 is multiplied to each row of the feature matrix. Therefore, w2 is shared for all
output dimensions. Similar to linear classifiers, the output of ĝ is further normalized by a softmax
function and trained with a cross-entropy loss using labeled data from the target dataset.

Conceptually, our method can be summarized into three steps.
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• Pre-train the ConvNet fθ̄. This is accomplished by substituting in any existing represen-
tation learning algorithm.

• Train linear classifiers ω̄ using fθ̄(x). This is a standard step in representation learning.

• Learn the linear model ĝw1,w2
(x). A linear model of special form (in Eq. (2)) is learned

using gradient-based and activation-based features. Note that our features are obtained
when θ = θ̄ is kept fixed, hence requires no extra tuning of the parameters θ̄.

3.2 THEORETICAL INSIGHT

The key insight is that our model provides a local linear approximation to F (x; θ2,ω). This
approximation comes from Eq. (2)–the crux of our approach. Importantly, our linear model is math-
ematically well motivated –it can be interpreted as the 1st-order Taylor expansion of Fθ,ω w.r.t. its
parameters (θ2,ω) around the point of (θ̄2, ω̄). Specifically, we note that

Fθ,ω(x) ≈ ω̄T fθ̄(x) + ω̄TJθ̄2(x)(θ2 − θ̄2) + (ω − ω̄)T fθ̄(x)

= ωT fθ̄(x) + ω̄TJθ̄2(x)(θ2 − θ̄2)

= ĝω,θ2−θ̄2(x).

(3)

With ω = w1 and θ2− θ̄2 = w2, Eq. (2) provides a linear approximation of the deep model Fθ2,ω(x)
around the initialization (θ̄2, ω̄). Fθ2,ω can be considered as fine-tuning both θ2 and ω for the target
task. Our key intuition is that given a sufficiently good base network, our model will provide a linear
approximation to the underlying model Fθ2,ω , and our training approximates fine-tuning Fθ2,ω .

The quality of the linear approximation can be theoretically analyzed when the base network
ω̄T fθ̄(x) is sufficiently wide and at random initialization. This has been done via the recent neural
tangent kernel approach (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019b) or some related
ideas (Arora et al., 2019a; Li & Liang, 2018; Allen-Zhu et al., 2019a; Du et al., 2019; Allen-Zhu
et al., 2019b; Cao & Gu, 2019; Mei et al., 2019). In fact, these studies are the theoretical inspiration
for our approach. However, while their approximation was developed for networks with infinite or
sufficiently large width at random initialization, we apply the linear approximation on pre-trained
models of practical sizes. We argue that such an approximation is useful in practice for the following
two critical and natural reasons:

The network f from representation learning provides a strong starting point. Thus, the pre-
trained network parameter θ̄ is close to a good solution for the downstream task. Note that the key
for a good linear approximation is that the output of the network is stable w.r.t. small changes in
the network parameter and activation. In the existing analysis, this is proved under the conditions of
large width and random base networks (see, e.g., Section 7 in (Allen-Zhu et al., 2019b) or Section
B.1 in (Cao & Gu, 2019)). The pre-trained base network also has such stability properties, which are
supported by empirical observations. For example, the pre-trained network has similar predictions
for a significant fraction of data in the downstream task as a fine-tuned network.

The network width required for the linearization to hold decreases as data becomes more
structured. An assumption made in existing analysis is that the network is sufficiently or even
infinitely wide compared to the size of the dataset, so that the approximation can hold for any dataset.
We argue that this is not necessary in practice, since the practical datasets are well-structured, and
as long as the trained network is sufficiently wide compared to the effective complexity determined
by the structure of the data, then the approximation can hold (Li & Liang, 2018; Allen-Zhu et al.,
2019a). Our approach thus takes advantage of the bottom layers to reduce data complexity in the
hope that linearization of the top (and often the widest) layers can be sufficiently accurate.

Compared to fine-tuning Fθ2,ω , our method only need to learn a linear classifier, which is efficient
and straightforward. In particular, it is efficient for training and inference using our scalable training
technique described below, while achieving much better performance than using activation-based
features. In the most interesting setting where the task for pre-training are similar to the target
tasks, the linear approximation works well, and our method achieves comparable or even better
performance than fine-tuning; see the experimental section for details.
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3.3 SCALABLE TRAINING

Moving beyond the theoretic aspects, a practical challenge of our method lies in the scalable training
of ĝ. A naı̈ve approach requires evaluating and storing ω̄TJθ̄2(x) for all x, which is computationally
expensive and can become infeasible as the output dimension c and the number of parameters |θ2|
grow. Inspired by Pearlmutter (1994), we design an efficient training and inference scheme for ĝ.
Thanks to this scheme, the complexity of training our model using gradient-based features is on the
same magnitude as training a linear classifier on activation-based features.

Central to our scalable approach is the inexpensive evaluation of the Jacobian-vector product (JVP)
ω̄TJθ̄2(x)w2, whose size is the same as the output dimension c. First, we note that

Fθ̄+rw2,ω̄(x) = Fθ̄,ω̄(x) + rω̄TJθ̄2(x)w2 + o(r2) (4)
by 1st-order Taylor expansion around a scalar r = 0. Rearrange and take the limit of r to 0, we get

ω̄TJθ̄2(x)w2 = lim
r→0

Fθ̄+rw2,ω̄(x)− Fθ̄,ω̄(x)

r
=

∂

∂r

∣∣∣∣
r=0

Fθ̄+rw2,ω̄(x), (5)

which can be conveniently evaluated via forward-mode automatic differentiation.

More precisely, let us consider the basic building block of f–convolutional layers. These layers are
defined as a linear function h(zc;wc, bc) = wT

c zc + bc, where wc and bc, which are part of θ, are
the weight and bias respectively. And zc is the input to the layer. We denote the counterparts of wc

and bc in w2 as w̃c and b̃c, i.e., w̃c and b̃c are the linear weights applied to wc and bc. It can thus be
shown that

∂h(zc;wc + rw̃c, bc + rb̃c)

∂r
= h(zc; w̃c, b̃c) + h(

∂zc
∂r

;wc, 0), (6)

where ∂wc

∂r is the JVP coming from the upstream layer.

When a nonlinearity is encountered, we have, using the ReLU function as an example,
∂ReLU(zc)

∂r
=
∂zc
∂r
� 1zc≥0, (7)

where � is the element-wise product, and 1 is the element-wise indicator function and zc is the
input to the layer. Other activation functions as well as average/max pooling layers can be handled
in the same spirit. For batch normalization, we fold them into their corresponding convolutions.

Importantly, Eq. (6) and (7) provide an efficient approach to compute the desired JVP in Eq. (5) by
successively evaluating a set of JVPs on the fly. This process starts with the seed ∂z0

∂r = 0, where z0

is the output of the last layer in f parameterized by θ1 and can be pre-computed. And ω̄TJθ̄2(x)w2

can be computed along with the standard forward propagation through f . Moreover, during the
training of ĝ, its parameters w1 and w2 can be updated via standard back-propagation. In summary,
our approach only requires a single forward pass through the fixed f for evaluating ĝ, and a single
backward pass for updating the parameters w1 and w2.

Complexity Analysis. We further discuss the complexity of our method in training and inference,
and contrast our method to the fine-tuning of network parameters θ2. Our forward pass, as demon-
strated by Eq. (6) and (7), is a chain of linear operations intertwined by element-wise multiplications.
And the second term in Eq. (6) forms the ”main stream” of computation, while the first, ”branch”
term merges into the main stream at every layer of the ConvNet f . The same reasoning holds for the
backward pass. Overall, our method requires twice as many linear operations as fine-tuning θ2 of the
ConvNet. Note, however, that half of the linear operations by our method are slightly cheaper due to
removal of the bias term. Moreover, in the special case where θ2 only includes the very top layer of
f , our method carries out the same number of operations as fine-tuning since the second term in Eq.
(6) can be dropped. For memory consumption, our method requires to store an additional “copy”
(linear weights) of the model parameters in comparison to fine-tuning. As the size of θ2 is small,
this minor increase of computing and memory cost put our method on the same page as fine-tuning.

4 EXPERIMENTS

We now describe our experiments and results. Our main results are organized into two parts. First,
we conduct an ablation study of our method on CIFAR-10 dataset (Krizhevsky et al., 2009). Our

5



Under review as a conference paper at ICLR 2020

Table 1: Ablation study on CIFAR-10. We evaluate how the choice of θ1, θ2 and ω influence
the effectiveness of our method. All results are reported using top-1 classification accuracy. The
ConvNet comes from the encoder of BiGAN, with the last 3 conv layers of width 256, 256, and 512.

θ2: conv5 θ2: conv4-5 θ2: conv3-5

Random θ1

random θ2
random ω 63.05 62.74 63.26
pre-trained ω 64.61 65.00 64.85

pre-trained θ2
random ω 63.62 63.33 63.10
pre-trained ω 64.38 64.31 64.13

Pre-trained θ1
random θ2

random ω 67.48 65.24 57.41
pre-trained ω 69.11 67.10 62.62

pre-trained θ2
random ω 68.89 69.83 70.30
pre-trained ω 70.21 70.74 71.30

Baseline (linear logistic regression) 63.38
Fine-tuned θ2 and ω 72.27 74.16 77.14
Fine-tuned θ2 and ω + Ours 72.26 74.28 76.84

study is to dissect how different approaches of computing the gradient features influence their rep-
resentational power. Moreover, we evaluate our method on three representation learning tasks: un-
supervised learning using deep generative models, self-supervised learning using a pretext task, and
transfer learning from large-scale datasets. We report results on several datasets and network archi-
tectures and demonstrate the strength of our method.

Implementation Details. In the rest our experiments, we use the same settings for training and
evaluating our models and baselines methods, unless otherwise noticed. Concretely, we adopt the
NTK parametrization (Jacot et al., 2018) for θ2 and fold batch normalization into their preceding
convolutional layers, piror to our training. For training of our method, we use a batch size of 128,
learning rate of 0.001, and train until convergence using the Adam (Kingma & Ba, 2014). No weight
decay or dropout is used for our method. For inference, we evaluate on a single center crop of the
image for all datasets. We often refer to “baseline” as a linear classifier (logistic regression) trained
on top of the last activation from the network.

4.1 ABLATION STUDY

In this study, we probe the design of our model on a set of ablations on CIFAR-10 by using a pre-
trained encoder ConvNet from BiGAN (Dumoulin et al., 2016) (trained on CIFAR-10). Specifically,
our gradient feature Jθ̄2(x) is a function of three parameters θ1, θ2 and ω, which can take on either
random or pre-trained values. We probe the representational power of Jθ̄2(x) by feeding it all
possible configurations of the three parameters. Moreover, we compare our results to (1) a linear
classifier baseline, (2) the fine-tuning of the network and (3) our method starting from a fine-tuned
model. Our results, summarized in Table 1, highlight that the success of our method crucially
depends on pre-training all three parameters. We now provide a detailed discussion of our findings.

Random vs. pre-trained θ̄. Pre-training f plays a central role in the materialization of our theo-
retical insight. As is evidenced by our results, pre-trained θ1 and θ2 each injects substantial amount
of information into Jθ̄2(x). Computing Jθ̄2(x) from random θ2 leads to visible performance drop,
while our method becomes virtually indistinguishable from the baseline when θ1 is set to be random.

Random vs. pre-trained ω̄. We obtain better results by first training the baseline classifier (Eq.
(2)), feeding its learned weights ω̄ into the gradient operator ∇θ̄2F for computing J(x), and then
seamlessly transitioning to training our proposed classifier (Eq. (1)) by adding on the gradient term.
Hence, the best training procedure for our model can be effectively broken down into a ”pre-training”
phase and a ”residual learning” phase.

Optimal size of θ2. As the size of Jθ̄2(x) grows, our model’s performance improves slightly albeit
at the expense of extra computational overhead. Fortunately, our results suggest that it suffices to set
the very top layer as θ2 to enjoy a reasonably large performance gain.

Our method vs. fine-tuning of θ2 and ω. We highlight two observations hint by our theoretical in-
sight. First, our model, initialized with pre-trained parameters, stays close to the fine-tuned network
in terms of performance, when the gradient features come from a top layer with moderate width.
Second, we observe an enlarging performance gap between our model and the fine-tuned network
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Table 2: Unsupervised Learning Results: Evaluation of our linear model using ConvNet f pre-
trained with generative learning. We use top-1 classification accuracy as our evaluation metric. The
top-3 conv layers (i.e. conv3-5) of our BiGAN encoder have widths 128, 256 and 512. The top-3
conv layers (i.e. conv6-8) of our VAE encoder have widths 256, 256 and 512. We refer the reader to
the original papers for details of the ConvNet architectures.

Generative models / Transfer methods CIFAR-10 CIFAR-100 SVHN

BiGAN

Baseline 63.38 34.45 82.24

Our method
θ2: conv5 69.74 37.35 90.87
θ2: conv4-5 70.29 38.03 91.15
θ2: conv3-5 71.03 37.92 91.38

Fine-tuned net
θ2 conv5 72.32 39.89 93.51
θ2: conv4-5 74.40 42.47 94.59
θ2: conv3-5 75.55 45.07 95.88

VAE

Baseline 50.67 26.41 81.63

Our method
θ2: conv8 61.19 33.90 91.18
θ2: conv7-8 63.52 36.18 92.25
θ2: conv6-8 64.77 37.10 92.69

Fine-tuned net
θ2 conv8 65.14 38.41 93.53
θ2: conv7-8 70.06 43.10 95.66
θ2: conv6-8 74.61 46.45 96.55

as we gather gradient features from more narrower layers towards the bottom. Furthermore, using
gradient features from a fine-tuned parameters stays almost the same as the fine-tuned network.

Remarks. Our ablation studies shows that the best practice for our method is to start with pre-
trained θ̄2 (from representation learning) and ω̄ (linear classifier for the target task). Moreover, the
performance of our method increases slightly as the size of θ2 grows, i.e., linearization of more
layers in f . This performance boost, however, comes with an increased computational cost, as well
as an increased performance gap to the fine-tuned model. A small sized θ2, e.g., from the parameters
of last few convolutional layers seems to be sufficient.

4.2 RESULTS ON REPRESENTATION LEARNING

We present results of our method on three different representation learning tasks: unsupervised
learning, self-supervised learning and transfer learning. For all experiments in this section, we
contrast at least three sets of results: a baseline linear classifier on activation-based features, our
proposed linear classifier that makes use of gradient-based features w.r.t. θ2, and a network whose θ2

and ω is fine-tuned for the target dataset. We compare our model against the baseline to demonstrate
the advantage of our gradient-based features, and against the fine-tuned network (our theoretical
upper bound) to illustrate the various factors that support or break down our theoretical insights.

Unsupervised Learning using Deep Generative Models. We consider BiGAN and VAE train-
ing as the representation-learning tasks and use their encoders as the pre-trained ConvNet f . Our
BiGAN and VAE models strictly follow the architecture and training setup from (Dumoulin et al.,
2016) and (Berthelot et al., 2018). We average-pool the output of the ConvNet for activation-based
features, and compute our gradient-based features from one, two or all of the top-3 conv layers.
Training of our linear model follows the two-step process as described before. We train on the
train split of CIFAR-10/100 and the extra split of SVHN, and report the top-1 classification
accuracy on the test splits of both datasets.

Results. We summarize our results in Table 2. Our models consistently outperform the baseline
across three datasets with relative improvement over 10%. Moreover, we observe good agreement
of performance between our models and the fine-tuned networks. In the BiGAN case, performance
of our method saturates with gradient-based features only from the very top layer.

Self-supervised Learning. We experiment with a ResNet50 pre-trained on the Jigsaw pretext task
available from (Goyal et al., 2019). We refer the reader to Noroozi & Favaro (2016) for technical
details. We average-pool the output of the ConvNet for activation-based features, and compute our
gradient-based features from the three residual blocks in the last stage. Unlike Goyal et al. (2019)
which uses linear SVM as their baseline classifier, we use a standard linear logistic regressor. We
train on the trainval split of VOC07 and the train split of COCO2014 for image classification,
and report the mean average precision (mAP) scores on their test and val splits respectively.
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Table 3: Self-supervise Learning Results: Evaluation of our method using ConvNet f pre-trained
via self-supervised learning. We use mean average precision (mAP) score as our evaluation metric.
Our f is a ResNet-50 pre-trained on the Jigsaw pretext task. Our gradient-based features are com-
puted w.r.t. to three bottleneck residual blocks in the last stage. The conv layers in each block have
widths 2048, 512 and 2048. Unless specified, the cited experiments are AlexNet-based.

Self-supervising tasks / Transfer methods VOC07 COCO2014

Jigsaw
(ResNet50)

Baseline Logistic regression 56.31 39.31
Linear SVM 57.2 41.1

Ours (θ2: layer5 block1-3) 62.83 46.35
Fine-tuned θ2 (θ2: layer5 block1-3) 72.09 59.84

Zhang et al. (2016)
(ResNet50) Linear SVM 52.3 n/a

Zhang et al. (2016) Linear SVM 51.6 n/a
Agrawal et al. (2015) Logistic regressor 31.2 n/a
Wang & Gupta (2015) Logistic regressor 29.4 n/a
Doersch et al. (2015) Logistic regressor 44.7 n/a

Results. We summarize our experimental results in Table 3. Again, we observe a large performance
boost in comparison to the linear classifier baseline (over 5% on VOC07 and COCO2014). Our
method also outperforms a large set of self-supervised learning methods. We note that the gap
between our method and the fine-tuned network is quite large in this setting (more than 15%). We
conjecture that this is due to the large semantic gap between the representation learning (jigsaw on
ImageNet) and the target tasks (classification on VOC07 and COCO2014).

Table 4: Transfer Learning Results: Evaluation of our method using ImageNet pre-trained models
f . We report mean average precision (mAP). Our f is the first 5 conv layers of an ImageNet pre-
trained AlexNet. Our gradient-based features are from the last 2 conv layers (both widths are 256).

Pre-training datasets / Transfer methods VOC07 COCO2014

ImageNet
Baseline 67.82 44.62
Our method (θ2: conv4-5) 69.60 49.28
Fine-tuned net (θ2: conv4-5) 68.85 48.80

Transfer Learning from ImageNet We now report results of transfer learning from ImageNet pre-
traine models. Specifically, we start with the pyTorch distribution of ImageNet pre-trained AlexNet
(Paszke et al., 2017). We remove the fully connected layers so that the remaining conv layers
become our f . To obtain activation-based features, we downsample the output of f to form a 1024-
dimensional feature vector. Our gradient features are computed w.r.t. the last two conv layers of f
(i.e. conv4-5), both of width 256. For fine-tuning θ2 of the network, we use the stochastic gradient
descent (SGD) optimizer and apply a weight decay of 0.0005 and a momentum of 0.9. We remark
that performance of the fine-tuned model gets worse otherwise due to overfitting. Our train/test
splits and evaluation metric remain the same as the previous section.

Results. Our results are presented in Table 4. Our method again demonstrates strong performance
on both datasets, with a notable 2% and 5% improvements on VOC07 and COCO2014 datasets in
comparison to the baseline. More importantly, our method also slightly outperforms the fine-tuned
network. This is a very interesting result. We argue that it is due the significant overlapping between
the pre-training and target tasks. It would be interesting to identify other representation learning
scenarios where our method are particularly beneficial.

5 CONCLUSION

In this paper, we presented a novel method for deep representation learning. Specifically, given a
pre-trained model, we explored the per-sample gradients of the model parameters relative to a task-
specific loss, and constructed a linear model that combines gradients of model parameters and the
activation of the model. We showed that our model can be very efficient in training and inference,
and provides a local linear approximation to a underlying deep model. Through a set of experiments,
we demonstrated that these gradient-based features are highly discriminative for the target task, and
our method can significantly improve the baseline learning of representation learning across tasks,
datasets and network architectures.
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