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ABSTRACT

Graphs possess exotic features like variable size and absence of natural order-
ing of the nodes that make them difficult to analyze and compare. To circum-
vent this problem and learn on graphs, graph feature representation is required.
Main difficulties with feature extraction lie in the trade-off between expressive-
ness, consistency and efficiency, i.e. the capacity to extract features that repre-
sent the structural information of the graph while being deformation-consistent
and isomorphism-invariant. While state-of-the-art methods enhance expressive-
ness with powerful graph neural-networks, we propose to leverage natural spectral
properties of graphs to study a simple graph feature: the graph Laplacian spectrum
(GLS). We analyze the representational power of this object that satisfies both
isomorphism-invariance, expressiveness and deformation-consistency. In particu-
lar, we propose a theoretical analysis based on graph perturbation to understand
what kind of comparison between graphs we do when comparing GLS. To do so,
we derive bounds for the distance between GLS that are related to the divergence
to isomorphism, a standard computationally expensive graph divergence. Finally,
we experiment GLS as graph representation through consistency tests and classi-
fication tasks, and show that it is a strong graph feature representation baseline.

1 INTRODUCTION

No matter where and at which scale we look, graphs are present. Social networks, public transport,
information networks, molecules, any structural dependency between elements of a global system
is a graph. An important task is to extract information from these graphs in order to understand
whether they contain certain structural properties that can be represented and used in downstream
machine learning tasks. In general, graphs are difficult to use as input of standard algorithms because
of their exotic features like variable size and absence of natural orientation. Consequently, graph
feature representation with equal dimensionality and dimension-wise alignment is required to learn
on graphs.

Any embedding method is traditionally associated to a trade-off between preservation of structural
information (expressiveness) and computation time (efficiency) (Cai et al., 2018). In the expressive-
ness, we particularly consider two key attributes of graph feature representation: consistency under
deformation and invariance under isomorphism. The first forces the embedding to discriminate two
graphs consistently with their structural dissimilarity. The second enables to have one represen-
tation for each graph, which can be a challenge since one graph has many possible orientations.
In this paper, we propose to analyze the importance of satisfying the introduced criteria through
a known but unused, simple, expressive and efficient candidate graph feature representation: the
graph Laplacian spectrum (GLS). The Laplacian matrix of a graph is a well-known object in spec-
tral learning (Belkin & Niyogi, 2002) for several reasons. First, the Laplacian eigenvalues give
many structural information like the presence of communities and partitions (Newman, 2013), the
regularity, the closed-walks enumeration, the diameter or the connectedness of the graph (Brouwer
& Haemers, 2011). It is also interpretable in term of physics or mechanics (Bonald et al., 2018). It
is backed by efficient and robust approximate eigen decomposition algorithms enabling to scale on
large graphs and huge datasets (Halko et al., 2011). These properties give intuition that GLS can be
an appropriate candidate for graph representation. In this paper we go further and analyze additional
interesting properties of the Laplacian spectrum through the following contributions: (1) we build
a perturbation-based framework to analyze the representation capacity of the GLS, (2) we analyze
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the consistency between structural deformation of the graph and its GLS by deriving bounds for the
distance between the GLS of two graphs, (3) we validate the consistency and the representational
power of the GLS with different experiments on synthetic and real graphs.

The rest of the paper is built as follows. Section 2 gives an overview of interesting properties of the
GLS for graph representation. A presentation of the mathematical framework and the theoretical
analysis are displayed respectively in Section 3 and 4. Section 5 proposes experiments to illustrate
theoretical results and show the representational power of GLS. Finally, Section 6 describes related
work for whole-graph representation.

2 THE MEANINGFUL PROPERTIES OF THE LAPLACIAN SPECTRUM

The Laplacian matrix of a graph is a major object in spectral learning (Belkin & Niyogi, 2002).
However, most of the attention is usually directed to its eigenvectors and not its spectrum, and spec-
tral learning is generally applied to node clustering or classification, not whole-graph representation.
But, Laplacian spectrum holds interesting properties for graph representation. First, Laplacian spec-
trum is invariant under graph isomorphism. In fact, graph isomorphism is equivalent to simultaneous
permutation of lines and columns in the adjacency matrix, and since the determinant of a permutation
is 1 or −1, characteristic polynomial of the Laplacian remains unchanged. Second, each eigenvalue
can be seen as an entire whole-graph feature representation by itself, containing specific structural
information. Hence any subset of Laplacian eigenvalues is a meaningful and valuable embedding.
This enables the usage of truncated Laplacian spectrum (t-GLS) instead of GLS as whole-graph fea-
ture representation. Using t-GLS reduces the embedding time thanks to eigenvalue algorithms that
do not require entire diagonalization to give partial spectrum (Halko et al., 2011). Finally, GLS is
related to some interpretable structural information of the graph, as reminded below.

Interpretation of the GLS The smallest non-zero eigenvalue of the Laplacian is the spectral
gap, corresponding the difference between the two largest eigenvalues of the Laplacian. It contains
information about the connectivity of the graph. High spectral gap means high connectivity. For
example, given a number of vertices in a connected graph, a minimum spectral gap indicates that the
graph is a double kite (Marsden, 2013). The largest eigenvalue gives a lower bound of the maximal
node degree of the graph. The spectral gap can also be viewed as the difference in energy between the
ground state and first excited state of a dynamical system (Cubitt et al., 2015). More generally each
eigenvalue of the Laplacian corresponds to the energy level of a stable configuration of the nodes in
the embedding space (Bonald et al., 2018). The lower the energy, the stabler the configuration. In
(Shuman et al., 2016), the Laplacian eigenvalues correspond to frequencies associated to a Fourier
decomposition of any signal living on the vertices of the graph. Thus, the truncation of the Fourier
decomposition acts as filter on the signal. Characterizing a graph by the some eigenvalues of its
Laplacian is thus comparable to characterizing a melody by some fundamental frequencies.

In summary, Laplacian spectrum contains many graph structural information. Methods to get such
information are generally computationally expensive. In the light of these properties, we go further
and analyze in the following sections the capacity of GLS to represent graph structure.

3 PERTURBATION APPROACH AND PROBLEM SETUP

We consider two undirected and weighted graphs G1 = (V1, E1,W1) and G2 = (V2, E2,W2)
with respective adjacency matrix W1 and W2, degree matrix D1 and D2. These matrices are set
with respect to an arbitrary indexing of the nodes. Laplacian matrix Li of Gi is defined as Li =
Di−Wi. We aim at using the GLS to build fixed-dimensional representation that encodes structural
information to compare any graphs G1 and G2 that are not aligned nor equally sized. For the rest
of the paper, and without loss of generality we postulate that |V1| ≤ |V2|. The rest of this section
introduces the definitions, hypothesis and notations needed for our theoretical analysis of the GLS.

Definition 1. Let G = (V,E,W ) a weighted graph with n nodes, with W ∈ Mn×n the n × n
weighted adjacency matrices. We define P ∈ Mn×n a symmetric matrix with Pii = 0, Pij ∈
[−Wij ,Wij ] such that Wij +Pij ∈ [0, 1]∀(i, j). We define the two following perturbations applied
on graph G:
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• Adding isolated nodes: W =

[
W 0n×m

0m×n 0m×m

]
• Adding or removing edges: WP = W + P

We call edge-perturbation the addition or removal of edges, and node-perturbation the addition of
nodes. A complete perturbation is done by adding isolated nodes and perturbing the augmented
graph with edge-perturbation. We note that the withdrawal of a node is equivalent to removal of all
edges around this nodes. Moreover, if graph G is unweighted, i.e. with binary adjacency, then edge
perturbations Pij ∈ {−1, 0, 1}.

Remark 1. If P = −W + ΠTWΠ with Π ∈ P(n) then the perturbation is a permutation of the
node indexing. Such a perturbation is not interesting and edge perturbation due to node indexing
has to be annihilated by a permutation matrix as in the following Definition 2:

Definition 2. We say that GP
∗

is a perturbed version of G if we have

{
WP∗

= Π∗T (W + P ∗)Π∗

s.t. Π∗ = arg minΠ ‖WP∗ −ΠTWΠ‖1

i.e. such that P ∗ is the sparsest possible i.e. does not include permutations.

Notations We denote P ∗ the sparsest perturbation as defined in Definition 2. We denote G the
completion of G with isolated nodes. If M is a matrix associated to G, we denote M the equivalent
matrix for G. We denote λ(X) the eigenvalue of a square matrix X in ascending order, λi(X) the
ith smallest eigenvalue.

Hypothesis 1. Without loss of generality, we assume that G2 is a perturbed version of G1, i.e. ∃P ∗
the sparsest |V2|-square perturbation matrix and Π∗ ∈ P(|V2|) a |V2|-square permutation matrix
such that W2 = Π∗T

(
W1 + P ∗

)
Π∗. P ∗ is a |V2|-square block matrix, with top-left block P ∗11

being a |V1|-square perturbation matrix for graph G1. Bottom right block P ∗22 is the (|V2| − |V1|)-
square adjacency matrix of the additional nodes. P ∗12 is the |V1| × (|V2| − |V1|) adjacency matrix
representing the links between graph G1 and the additional nodes V2 \ V1.

We have defined a notion of continuous deformation of graphs. This deformation has a natural
and simple interpretation: any graph G2 is a perturbed version of graph G1, and the larger the
perturbation the higher the structural dissimilarity between G1 and G2.

The next section uses the previously presented mathematical framework to analyze the consistency
of the Laplacian spectrum as graph representation and its natural link to graph isomorphism problem.

4 LAPLACIAN SPECTRUM AS GRAPH FEATURE REPRESENTATION

We place ourselves under the Hypothesis 1 saying that the difference between graphs G1 and G2 is
characterized by the unknown deformation P ∗. A good embedding of these graphs should be close
when level of deformation is low, and far otherwise. This level of deformation can be quantified by
the global and node-wise entries of P ∗. These features are by construction present in the Laplacian
of P ∗, denoted LP∗ . We use this idea to propose an analysis of the distance between to GLS.

4.1 CONSISTENCY UNDER DEFORMATION AND RELATION TO GRAPH ISOMORPHISM

Two graphs G1 and G2 are isomorphic if and only if ∃Π ∈ P(|V1|) such that L2 = Π−1L1Π (Mer-
ris, 1994), hence when they are structurally equivalent irrespective to the vertex ordering. Several
papers has proposed to use a notion of divergence to graph isomophism (DGI) to compare graphs
(Grohe et al., 2018; Rameshkumar et al., 2013). The DGI between graphs G1 and G2 is generally
the minimal Frobenius norm of the difference betweenL1 and Π−1L2Π. Considering this definition,
the following Lemma links the graph-isomorphism problem and the Laplacian of the hypothetical
perturbation P ∗ and show that this divergence is the norm of LP∗ :
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Lemma 1. Using the notations from Hypothesis 1, we have: L2 = Π∗T
(
L1 + LP∗

)
Π∗, with

LP∗ = diag(P ∗1|V1|)−P ∗ the Laplacian of P ∗ and 1n the n-dimensional unit vector. In particular,
minΠ‖L2 −ΠTL1Π‖F = ‖LP∗‖F .

We remind that graph isomorphism is at best solved in quasipolynomial time (Babai, 2016) and
can not be used in practice for large graphs and datasets. The following Proposition show how the
distance between GLS relaxes the isomorphism-based graph divergence.
Proposition 1. Using Hypothesis 1 and Lemma 1: ‖λ(L2)− λ(L1)‖2 ≤ ‖LP∗‖F .

The above result tells us that the higher the difference between GLS, the larger the hypothetical
perturbation P ∗, i.e. the higher the structural dissimilarity.

We now study the implication of GLS closeness. This problem tackles the notion of non-isomorphic
L-cospectrality, i.e. the idea that two graphs can have equal eigenvalues while having different
Laplacian matrix (Brouwer & Haemers, 2011). The following proposition gives a simple insight
into the problem of spectral characterization in our perturbation-based framework:
Proposition 2. We denote Li = QiΛiQ

T
i the SVD of Li such that the diagonal of Λi is in ascending

order. Hence we have ‖LP∗‖F ≤ ‖λ(L2)− λ(L1)‖2 + ‖Π∗TQ1Λ2Q1
T

Π∗ − L2‖F .

This proposition shows that equal spectrum means equal graphs only when eigenvectors are also
equal. Otherwise, L-cospectrality for non-isomorphic graphs tells us that there exists families of
graphs that are not fully determined by their spectrum. These families are characterized by some
structural properties such that two non-isomorphic graphs with equal Laplacian spectrum share these
properties but not their adjacency (Van Dam & Haemers, 2003). In practice, this is not a problem.
First, almost all graphs are determined by their spectrum (Brouwer & Haemers, 2011). Second,
equal GLS indicates the precious information that graphs share common statistical, mechanical,
physical or chemical properties (see Section 2), no matter the adjacency matrix. These physical prop-
erties are what we seek to represent when representing graphs for ML tasks. Third, non-isomorphic
L-cospectrality concerns equally sized graphs which is not likely with respect to all possible real-
life graphs. When the studied dataset contains specifically L-cospectral non-isomorphic graphs and
when the task requires unique representation property, GLS is not appropriate and more sophisti-
cated and powerful embedding methods taking for example eigenvectors into account (Verma &
Zhang, 2017) should be studied and used. Otherwise, i.e. in almost every situations, according to
previously presented results, GLS characterizes the graph and is directly related to the hypothetical
perturbation P ∗.

Nevertheless, we accordingly propose the Proposition 3 to better understand GLS proximity even
when graphs are non-isomorphic cospectral.
Proposition 3. The closer the GLS, the closer to unitary-similarity the Laplacian matrices.

We remind that two real n-square matrices A and B are unitary-similarity if there exists an or-
thogonal matrix O such that B = OAOT . Similarity is an equivalence relation on the space of
square-matrices. Moreover, divergence to unitary-similarity is a relaxed version of the divergence
to graph-isomorphism (Grohe et al., 2018), where the permutation matrix space is replaced by a
unitary matrix space. Finally from Proposition 1 and 3 we can bound the distance between GLS as
follows: minO∈O(|V2|)‖L1 −OL2O

T ‖F ≤ ‖λ(L1)− λ(L2)‖2 ≤ ‖LP∗‖.
In this section, we have shown that structural similarity (divergence) between graphs can be reason-
ably approximated by the similarity (divergence) between their GLS.

4.2 LAPLACIAN SPECTRUM AS WHOLE-GRAPH REPRESENTATION IN PRACTICE

Previous section showed the capacity of the distance between Laplacian spectrum to serve as proxy
for graph similarity. In practice, a fixed embedding dimension d must be chosen for all graphs in
dataset D. According to previous analysis, the most obvious dimension is d = maxG∈D |V | and all
graphs with less than d nodes may be pad with isolated nodes. We note that padding with isolated
nodes is equivalent than adding zeros in the GLS. Nevertheless, in some datasets, some graphs can
be significantly larger and the padding can become abusive. We therefore propose for these graph
to have d < maxG∈D |V |. We simply truncate the GLS such that we keep only the highest d
eigenvalues. This method also enables to save computation time.
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The problem with this method is that we may lose information for graphs with more than d nodes.
In practice, for large graphs, the contribution of the lowest eigenvalues to the distance between GLS
as a proxy for graph divergence is negligible. In particular, large graph have many sparse areas,
such that many eigenvalues are very low, hence truncating the bottom part of the GLS may not be a
problem. We assess the impact of the truncation in the experimental section.

Though, we can also propose several ways to avoid this problem, like embedding the lowest eigen-
values with simple statistics, like moments or histograms. In the experimental section, we do not
use this trick.

5 EXPERIMENTS

All experiments can reproduced using the notebook given at: https://github.com/
researchsubmission/ICLR2020/.

5.1 PRELIMINARY EXPERIMENTS

As a first illustration of deformation-based results presented in Section 4, we propose to use Erdos-
Rnyi random graphs (Erdős & Rényi, 1959) with parameter p = 0.05. We focus on three simple
experiments.

First, the distance between the Laplacian spectrum of a graph and a perturbed version of this graph is
related to the number of perturbations. We can find the experimental illustration in Figure 1. We see
that the number of perturbations is roughly equally related to the distance between GLS features for
edge addition and edge withdrawal, i.e. for graph sparsity decrease or increase. A relation between
graph sparsity and Laplacian eigenvalues can be seen for example through the Gershgorin circle
theorem (Gershgorin, 1931).

Figure 1: Experimental results to illustrate how GLS behaves under edge addition (left), edge with-
drawal (right). In this case, studied adjacency and perturbation matrix are binary.

Second, we mentioned that when a graph is significantly bigger than other graphs of a dataset, w can
use a truncated GLS (t-GLS). This method both saves computation time thanks to iterative eigen-
values algorithms and avoid the addition of isolated nodes in all other graphs. In Figure 3, we show
results of experiments showing that t-GLS is consistent with node addition. As experimental setup,
we take a reference graph with n nodes and compute its GLS. Then we add a randomly connected
node and compute the t-GLS of the new graph, by keeping only the n largest eigenvalues. We repeat
it 20 times. We compute the L2-distance to reference GLS, for different levels of connectivity for
the additional nodes. We first observe that the t-GLS is consistent with node addition. We also
confirm our previous theoretical results by observing that the more connected the additional nodes,
the higher the GLS divergence.

5.2 CLASSIFICATION OF MOLECULAR AND SOCIAL NETWORK GRAPHS

We evaluate spectral feature embedding with a classification task on molecular graphs and social
network graphs. Experimental setup for classification task is given in Appendix E. We assume here
that two structurally close graphs belong to the same class. We challenge this assumption with the
following experiments.
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Figure 2: Experimental results illustrate how truncated GLS behaves under iterative addition of 20
new nodes with respectively 0, 1, 2 and 3 random connections with graph, for respectively synthetic
a 80-nodes Erdos-Reyni graph (left) and a 28-nodes molecular graph from MUTAG dataset (right).
Horizontal dotted lines (right figure) are the quartiles 25, 50, 75 and 100 of the distances between
the GLS of the 28-nodes graph and the other 187 graphs of the dataset.

We propose to compare GLS-based classification results to those obtained by feature-based and
deep learning methods. Standard graph feature representation methods are: Earth Mover’s Distance
(Nikolentzos et al., 2017) (EMD), Pyramid Match (Nikolentzos et al., 2017) (PM), Feature-Based
(Barnett et al., 2016) (FB) and Dynamic-Based Features (Gómez & Delvenne) (DyF). All of these
methods use support vector classifier (SVC) over extracted features. Deep learning methods are:
Variational Recurrent Graph Classifier (Pineau & de Lara, 2019) (VRGC), Graph Convolutional
Network (Kipf & Welling, 2016) (GCN), Deep Graph CNN (Zhang et al., 2018) (DGCNN), Capsule
GNN (Xinyi & Chen, 2018) (CapsGNN), Graph Isomorphism Network (Xu et al., 2019) (GIN) and
GraphSAGE (Hamilton et al., 2017). All deep learning methods are end-to-end graph classifers. A
description of these models is given in the related work, Section 6.

All values reported in Table 1 and Table 2 are taken from the above-mentioned papers.

On molecular graphs We use five datasets for the experiments: Mutag (MT), Enzymes (EZ),
Proteins Full (PF), Dobson and Doig (DD) and National Cancer Institute (NCI1) (Kersting et al.,
2016). All graphs are chemical components. Nodes are atoms or molecules and edges represent
checmical or electrostatic bindings. We note that molecular graphs contain node attributes, that are
used by some models presented in Table 1. We let the question of the relevance of comparing models
with slightly different inputs to the discretion of the reader. Description and statistics of molecular
datasets are presented in Table 3, Appendix F.

MT EZ PF DD NCI1
EMD + SVC 86.1 ± 0.8 36.8 ± 0.8 - - 72.7 ± 0.2
PM + SVC 85.6 ± 0.6 28.2 ± 0.4 - 75.6 ± 0.6 69.7 ± 0.1
FB + SVC 84.7 ± 2.0 29.0 ± 1.2 70.0 ± 1.3 - 62.9 ± 1.0
DyF + SVC 86.3 ± 1.3 26.6 ± 1.2 73.1 ± 0.4 - 66.6 ± 0.3
VRGC 86.3 ± 8.6 48.4 ± 6.2 74.8 ± 3.0 - 80.7 ± 2.2
GCN* 85.6 ± 5.8 - 76.0 ± 3.2 - 80.2 ± 2.0
DGCNN* 85.8 ± 1.7 51.0 ± 7.3 75.5 ± 0.9 79.4 ± 0.9 74.4 ± 0.5
CapsGNN* 86.7 ± 6.9 54.7 ± 5.7 76.3 ± 3.6 75.4 ± 4.2 78.4 ± 1.6
GIN-0* 89.4 ± 5.6 - 76.2 ± 2.8 - 82.7 ± 1.7
GraphSAGE* 85.1 ± 7.6 - 75.9 ± 3.2 - 77.7 ± 1.5
GLS + SVC 87.9 ± 7.0 40.7 ± 6.3 75.3 ± 3.5 74.3 ± 3.5 73.3 ± 2.1

Table 1: Accuracy (%) of classification with different graph representations, on molecular graphs.
SVC stands for support vector classifier. Comparative models are divided into two groups: feature
+ SVC and end-to-end deep learning. *Models using node attributes.

On social network graphs We use five datasets for the experiments: IMDB-Binary (IMBD-
B), IMDB-Multi (IMDB-M), REDDIT-Binary (REDDIT-B), REDDIT-5K-Multi (REDDIT-M) and
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COLLAB. All graphs are social networks. The graphs of these datasets do not contain node at-
tributes. Therefore, we can more appropriately compare GLS + SVC to deep learning based classi-
fication. Statistics about social networks datasets are presented in Table 4, Appendix F.

IMDB-B IMDB-M REDDIT-B REDDIT-M COLLAB
GCN 74.0 ± 3.4 51.9 ± 3.8 - - 79.0 ± 1.8
DGCNN 70.0 ± 0.9 47.8 ± 0.9 76.0 ± 1.7 - 73.8 ± 0.5
CapsGNN 73.1 ± 4.8 50.3 ± 2.7 - 52.9 ± 1.5 79.6 ± 0.9
GIN-0 75.1 ± 5.1 52.3 ± 2.8 92.4 ± 2.5 57.5 ± 1.5 80.2 ± 1.9
GraphSAGE 72.3 ± 5.3 50.9 ± 2.2 - - -
GLS + SVC 73.2 ± 4.2 48.5 ± 2.5 87.4 ± 3.4 52.0 ± 1.8 78.5 ± 1.1

Table 2: Classification accuracy (%) of different deep learning based models plus ours over standard
social networks datasets. Graphs of these datasets does not have node features. SVC stands for
support vector classifier.

Analysis of the results The classification results above illustrate the capacity of GLS to capture
graph structural information, under the assumption that structurally close graphs belong to the same
class. The graph neural-networks are globally more expressive since they can leverage specific
information for graph classification since is end-to-end. In particular, they obtain strong results
when there are node labels (see molecular experiments 5.2). Nevertheless, GLS is a simple way
to represent graphs in an unsupervised manner, with theoretical background, simplicity of imple-
mentation (eigendecomposition is accessible to anyone interested in any computer) and competitive
downstream classification results.

On the reasonability of using truncated GLS We assess the impact of truncating the GLS. Using
truncated GLS (t-GLS) enables to (1) reduce the computational cost for large graphs and (2) reduce
the dimensionality of the graph representation for all graphs. Results are presented in Figure 3 for
molecular datasets.

Figure 3: Illustration of the impact of the truncation in term of classification accuracy of the molec-
ular graphs. We represent the impact relatively to the 95-percentile truncation adopted for classifi-
cation experiments.

We see that truncating GLS is not highly impacting classification results. Only ENZYME multi-
class classification, which is a particularly difficult task (see experiments in Section 5.2), suffers
from truncation. Additional insight about the t-GLS is given in Appendix G.

6 RELATED WORK

We propose to divide graph feature representation into three categories: graph kernel methods,
feature-based methods and deep learning.

Graph kernel methods Kernel methods create a high-dimensional feature representation of data.
The kernel trick (Shawe-Taylor et al., 2004) avoids to compute explicitly the coordinates in the
feature space, only the inner product between all pairs of data image: it is an implicit embedding
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methods. These methods are applied to graphs (Nikolentzos et al., 2018; 2017). It consists in
performing pairwise comparisons between atomic substructures of the graphs until a good represen-
tative dictionary is found. The embedding of a graph is then the number of occurrences of these
substructures within it. These substructures can be graphlets (Yanardag & Vishwanathan, 2015),
subtree patterns (Shervashidze et al., 2011), random walks (Vishwanathan et al., 2010) or paths
(Borgwardt & Kriegel, 2005). The main difficulty lives in the choice of appropriate algorithm and
kernel that accept graphs with variable size and capture useful feature for downstream task. More-
over, kernel methods can be computationally expensive but techniques like the Nystrm algorithm
(Williams & Seeger, 2001) allow to lower the number of comparison with a low rank approximation
of the similarity matrix.

Feature-based methods Feature-based representation methods (Barnett et al., 2016) represent
each graph as the concatenation of features. Generally, the feature-based representation can offer
a certain degree of interpretability and transparency. The most basic ones are the number of nodes
or edges, the histogram of node degrees. These simple graph-level features offers by construction
the sought isormorphism-invariance but suffer from low expressiveness. More sophisticated algo-
rithms consider features based on attributes of random walks on the graph (Gómez & Delvenne)
while others are graphlet based (Kondor et al., 2009). (Kondor & Borgwardt, 2008) explicitly built
permutation-invariant features by mapping the adjacency matrix to a function on the symmetric
group. (Verma & Zhang, 2017) proposed a family of graph spectral distances to build graph fea-
tures. Experimental work in (de Lara & Pineau, 2018) used normalized Laplacian spectrum with
random forest for graph classification with promising results. (Wilson & Zhu, 2008) analyzes the
cospectrality of different graph matrices and studies experimentally the representational power of
their spectra. These two last works are directly related to the current work. Nevertheless, in both
cases, the theoretical analysis is absent and comparative experiment with current benchmarks and
methods is limited. in this paper we propose a response to these concerns.

Deep learning based methods GNNs learn representation of nodes of a graph by leveraging to-
gether their attributes, information on neighboring nodes and the attributes of the connecting edges.
When graphs have no vertex features, the node degrees are used instead. To create graph-level rep-
resentation instead of node representation, node embeddings are pooled by a permutation invariant
readout function like summation or more sophisticated information preserving ones (Ying et al.,
2018; Zhang et al., 2018). A condition of optimality for readout function is presented in (Xu et al.,
2019). Recently, Xinyi & Chen (2018) levraged capsule networks (Sabour et al., 2017), neural units
designed to enable to better preserve information at pooling time. Other popular evolution of GNNs
formulate convolution-like operations on graphs. Formulation in spectral domain (Bruna et al., 2013;
Defferrard et al., 2016) is limited to the processing of different signals on a single graph structure,
because they rely on the fixed spectrum of the Laplacian. Conversly, formulation in spatial domain
are not limited to one graph structure (Atwood & Towsley, 2016; Duvenaud et al., 2015; Niepert
et al., 2016; Hamilton et al., 2017) and can infer information from unseen graph structures. At the
same time, alternative to GNN exist and are related to random walk embedding. In Li et al. (2017),
neural networks help to sample paths which preserve significant graph properties. Other approaches
transforms graphs into sequence of nodes embedding passed into a recurrent neural network (RNN)
(You et al., 2018; Pineau & de Lara, 2019) to get useful embedding. These models do not inherently
include isomorphism-invariance but greedy learn it by seeing the same graph numerous times with
different node ordering and embedding. These methods are powerful and globally obtain a high
level of expressiveness (see experimental section 5.2).

7 CONCLUSION

In this paper, we analyzed the graph Laplacian spectrum (GLS) as whole graph representation.
In particular, we showed that comparing two GLS is a good proxy for the divergence between
two graphs in term of structural information. We coupled these results to the natural invariance
to isomorphism, the simplicity of implementation, the computational efficiency offered by modern
randomized algorithms and the rare occurrence of detrimental L-cospectral non-isomorphic graphs
to propose the GLS as a strong baseline graph feature representation.
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A PROOF OF LEMMA 1

Proof.

L2 = D2 −W2

= diag(W21)−W2

= diag(Π∗T
(
W1 + P ∗

)
Π∗1)−Π∗

(
W1 + P ∗

)
Π∗

= diag(Π∗TW1Π∗1) + diag(Π∗TP ∗Π∗1)−Π∗TW1Π∗ −Π∗TP ∗Π∗

= Π∗TD1Π∗ −Π∗TW1Π∗ + Π∗TDP∗Π∗ −Π∗TP ∗Π∗

= Π∗TL1Π∗ + Π∗TLP∗Π∗

with LP∗ = diag(P ∗1)− P ∗ = DP∗ − P ∗ and 1 the unit vector.

Therefore,

min
Π
‖L2 −ΠTL1Π‖F = min

Π
‖ΠTLP∗Π‖F = ‖LP∗‖F

B PROOF OF PROPOSITION 1

Proof. From lemma 1 we have L2 = Π∗TL1Π∗+ Π∗TLP∗Π∗. Moreover, from Weyl’s eigenvalues
inequalities and since eigenvalues are isomorphism invariant:{

λi(L2) ≤ λi(L1) + λ|V2|(LP∗)

λi(L1) + λ1(LP∗) ≤ λi(L2)

Hence:

λ1(LP∗) ≤ λi(L2)− λi(L1) ≤ λ|V |(LP∗)

Now let (λ, x) be any eigen couple of a matrix M ∈ Mn×n. We can always pick i ∈ {1 . . . n} and
build x such that |xi| = 1 and |xj 6=i| < 1. Hence:

(Mx)i = λxi ⇐⇒
n∑
j=1

mijxj = λxi

⇐⇒ λ2 ≤
n∑
j=1

(mijxj)
2

=⇒ λ2 ≤
n∑
j=1

(mij)
2

=⇒ λ2 ≤ 1

n

n∑
i,j=1

m2
ij

Using previous results we get:

|V2|∑
i=1

(
λi(L2)− λi(L1)

)2 ≤ |V2|
1

|V2|

|V2|∑
i,j=1

LP∗
2
ij = ‖LP∗‖2F ,
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with ‖X‖F =
√∑

i

∑
j |Xij |2 the Frobenius norm.

C PROOF OF PROPOSITION 2

Proof. We remind that the Forbenius norm is unitarily invariant thanks to the cyclic property of the
trace. For any P̃ ∈ O(|V2|) we have:

‖LP∗‖F =‖Π∗TL1Π∗ − L2‖F
=‖Π∗TL1Π∗ − P̃TL2P̃ + P̃TL2P̃ − L2‖F
≤‖Π∗TL1Π∗ − P̃TL2P̃‖F + ‖P̃TL2P̃ − L2‖F .

In particular if P̃ = Q2Q1
T

Π∗:

‖P̃TL2P̃ − L2‖F =‖(Q2Q1
T

Π∗)TL2Q2Q1
T

Π∗ − L2‖F
=‖(Q2Q1

T
Π∗)TQ2Λ2Q2

TQ2Q1
T

Π∗ − L2‖F
=‖Π∗TQ1Λ2Q1

T
Π∗ − L2‖F ,

We also have that

‖Π∗TL1Π∗ − P̃TL2P̃‖F =‖Q1Λ1Q1
T −Π∗(Q2Q1

T
Π∗)TQ2Λ2Q2

TQ2Q1
T

Π∗Π∗T ‖F
=‖Λ1 − Λ2‖F .

Hence:

‖LP∗‖F ≤ ‖Λ1 − Λ2‖F + ‖Π∗TQ1Λ2Q1
T

Π∗ − L2‖F .

D PROOF OF PROPOSITION 3

Proof. Denoting O(n) the n-orthogonal matrices group (orthogonal since real), we want to show
that:

min
O∈O(|V2|)

‖L1 −OTL2O‖F ≤ ‖λ(L1)− λ(L2)‖2

We denote Li = QiΛiQi
T the eigendecomposition of the Laplacian Li with Λi = diag(λ(Li)).

Since Q1 is unitary and using property of Frobenius norm, we have, ∀O ∈ O(|V2|):

‖L1 −OTL2O‖F = ‖Λ1 −Q1
T
OTQ2Λ2Q2

TOQ1‖F ,

We know that Q1 and Q2 are orthogonal since they are respectively eigenvector matrices of sym-
metric matrix L1 and L2. We therefore have:
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(QT2 OQ1)T (QT2 OQ1) = Q1
T
OTQ2Q

T
2 OQ1 = I|V1|

Moreover ∀Π̃ ∈ P(|V2|) ⊂ O(|V2|), if O = Q2Π̃Q1
T

then O ∈ O(|V2|).

Hence,

min
O∈O(|V2|)

‖L1 −OTL2O‖F = min
O∈O(|V2|)

‖Λ1 −Q1
T
OTQ2Λ2Q2

TOQ1‖F

≤ min
Π̃∈P(|V2|)

‖Λ1 −Q1
T

(Q2Π̃Q1
T

)TQ2Λ2Q2
T (Q2Π̃Q1

T
)Q1‖F

= min
Π̃∈P(|V2|)

‖Λ1 − Π̃TΛ2Π̃‖F

= min
Π̃∈P(|V2|)

‖Λ1 − Π̃Λ2Π̃T ‖F

= min
Π̃∈P(|V2|)

‖Λ1 − Π̃Λ2Π̃T ‖F

= min
σ∈S(|V2|)

‖λ(L1)− λ(L2)σ(1:|V2|)‖2

≤ ‖λ(L1)− λ(L2)‖2

with S(n) the permutation group of {1 . . . n}.

E EXPERIMENTAL SETUP FOR CLASSIFICATION OF GRAPHS

For classification, we use standard 10-folds cross validation setup. Each dataset is divided into 10
folds such that the class proportions are preserved in each fold for all datasets. These folds are
then used for cross-validation i.e, one fold serves as the testing set while the other ones compose
the training set. Results are averaged over all testing sets. All figures gathered in the tables of
results are build using this setup. For the dimension d ∈ J1,maxG∈D |V |K, representing the number
of eigenvalues we keep to build the truncated GLS, we chose the percentile 95 of the distribution
of graph sizes in each dataset, i.e. we truncate the 5% smallest eigenvalues. Considering weak
truncation impact (see Section 5.2, when we have large datasets containing large graphs, like the
two REDDIT datasets, we can truncate more severely to make the problem computationally more
efficient. In particular considering that GLS approached as a simple baseline more than a final graph
representation for large scale usage.

We use the support vector classifier (SVC) from scikit-learn (Pedregosa et al., 2011). We im-
pose Radial Basis Function as kernel, i.e. K(λ(L1), λ(L2)) = exp (−γ‖λ(L1)− λ(L2)‖22).
It is a similarity measure related to L2-norm between GLS. Hence, our theoretical results re-
main consistent with our experiments. Hyper parameters C and γ are tuned among respectively
{0.5, 1, 5} and {0.0001, 0.001, 0.01, 0.1, 0.5, 1, 5} for the molecular datasets, and {0.5, 1, 5, 25, 50}
and {0.0001, 0.001, 0.01, 0.1} for the social network datasets. In practice, using a global pool for
all the datasets gives equivalent results, but hyperparameter inference becomes expensive with a too
large grid, in particular in a 10-fold cross validation setup. We use a nested hyperparameter search
cross-validation for each of the 10 folds: in each 90% training fold we performe a 5-fold random
search cross-validation before training. We therefore avoid the problem of overfitting related to
model selection that appear when using non-nested cross-validation (Cawley & Talbot, 2010).

We additionally put our results with k-nearest neighbor algorithm with L2 norm, in order to illustrate
the notion of proximity we introduced: neighboring GLS is related to structurally close graphs (i.e.
eventually graphs from the same class).
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F CHARACTERISTICS OF THE REAL DATASETS

We use five molecular datasets and five social network datasets for the experiments (Ker-
sting et al., 2016). Tables 3 and 4 gives statistics of the differents datasets. All used
datasets can be found at https://ls11-www.cs.tu-dortmund.de/staff/morris/
graphkerneldatasets (Kersting et al., 2016).

Molecular graphs datasets are Mutag (MT), Enzymes (EZ), Proteins Full (PF), Dobson and Doig
(DD) and National Cancer Institute (NCI1). In MT, the graphs are either mutagenic and not muta-
genic. EZ graphs are tertiary structures of proteins from the 6 Enzyme Commission top level classes.
In DD, compounds are secondary structures of proteins that are enzyme or not. PF is a subset of DD
without the largest graphs. In NCI1, graphs are anti-cancer or not. The graphs of these datasets have
node labels that can be leverages by graph neural networks.

MT EZ PF DD NCI1
# graphs 188 600 1113 1178 4110
# classes 2 6 2 2 2
bias (%) 66.5 16.7 59.6 58.7 50.0
min./max. |V | 10/28 2/125 4/620 30/5736 3/106
avg. |V | 18 33 39 284 30
avg. |E| 39 124 146 1431 65
Node attributes X X X X X

Table 3: Molecular datasets statistics. Bias indicates the proportion of the dominant class.

Social networks datasets are IMDB-Binary (IMBD-B), IMDB-Multi (IMDB-M), REDDIT-Binary
(REDDIT-B), REDDIT-5K-Multi (REDDIT-M) and COLLAB. REDDIT-B and REDDIT-M contain
graphs representing discussion thread, with edges between users (nodes) when one responded to the
other’s comment. Classes are the subreddit topics from which thread have originated. IMDB-B
and IMDB-M contain networks of actors that appeared together within the same movie. IMDB-B
contains two classes for action or romance genres and IMDB-M three classes for comedy, romance
and sci-fi. COLLAB graphs represent scientific collaborations, with edge between two researchers
meaning that they co-authored a paper. Labels of the graphs correspond to subfields of Physics.
The graphs of these datasets have no node attributes and therefore enable fair comparison with deep
learning methods.

IMDB-B IMDB-M REDDIT-B REDDIT-M COLLAB
# graphs 1000 1500 2000 4999 5000
# classes 2 3 2 5 3
bias (%) 50.0 33.3 50.0 20.0 52.0
min./max. |V | 12/136 7/89 3/3760 22/3606 32/492
avg. |V | 20 13 426 501 75
avg. |E| 97 66 496 590 2458
Node attributes 7 7 7 7 7

Table 4: Social network datasets statistics. Bias indicates the proportion of the dominant class.

G ADDITIONAL INSIGHT ON THE ACCEPTABILITY OF USING TRUNCATED
GLS

Figure 4 illustrates the reasonability of using only the highest eigenvalues of the Laplacian spectrum
as whole-graph feature representation. We take the original and final graphs of the deformation-
consistency test presented in Figure 3. We compute the L2 distance between t-GLS with dimension
d and divide it by d, for d varying from 1 to 15 . The objective is to confirm that first eigenvalues
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Figure 4: Illustration of the relative importance of the dimensionality of GLS-embedding, after the
iterative addition of 20 new nodes with respectively 0, 1, 2 and 3 random connections with graph,
for respectively synthetic a 80-nodes Erdos-Reyni graph (left) and a 28-nodes molecular graph from
MUTAG dataset (right). We see that the first largest eigenvalues of the Laplacian are the most
important to discriminate a graph and its perturbed version.

are relatively more important to discriminate to structurally different graphs, which is the case. We
note that for the Erdos-Reyni case with few connected additional nodes, first eigenvalues are not as
relatively important as for the other example. In fact, adding nodes with stochastic connections is
the construction process of Erdos-Reyni graphs. Hence, discriminating augmented graph from the
original one is difficult based only on the structural information.
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